Catheter-Related Late Complications in Cancer Patients During and After the COVID-19 Pandemic: A Retrospective Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Design
2.3. Current Strategies for These Complications’ Prevention
2.4. Catheter-Related Late Complications
2.5. Patient Selection
2.6. Statistical Analysis
3. Results
3.1. Sociodemographic and Clinical Patients’ Characteristics
3.2. Vascular Access Devices
3.3. Duration of Medication
3.4. Adverse Events
3.5. Stratification by Type of Malignancy
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gravdahl, E.; Haugen, D.F.; Fredheim, O.M. Use of Peripherally Inserted Central Venous Catheters and Midline Catheters for Palliative Care in Patients with Cancer: A Systematic Review. Support. Care Cancer 2024, 32, 464. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, G.; Bersani, A.; Tramacere, I.; Lusignani, M.; Gaviani, P.; Silvani, A. The Role of Body Mass Index in the Development of Thromboembolic Events among Cancer Patients with PICCs: A Systematic Review. J. Vasc. Nurs. 2022, 40, 11–16. [Google Scholar] [CrossRef]
- Bertoglio, S.; Faccini, B.; Lalli, L.; Cafiero, F.; Bruzzi, P. Peripherally Inserted Central Catheters (PICCs) in Cancer Patients under Chemotherapy: A Prospective Study on the Incidence of Complications and Overall Failures. J. Surg. Oncol. 2016, 113, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Mercadante, S.; Bellavia, G.; Cascio, A.L.; Dabbene, M.; di Silvestre, G.; Casuccio, A. The Use of Complementary Alternative Medicines in Advanced Cancer Patients Followed at Home. Support. Care Cancer 2022, 30, 2003–2008. [Google Scholar] [CrossRef]
- Kang, K.-A.; Chun, J.; Kim, H.Y.; Kim, H.-Y. Hospice Palliative Care Nurses’ Perceptions of Spiritual Care and Their Spiritual Care Competence: A Mixed-Methods Study. J. Clin. Nurs. 2021, 30, 961–974. [Google Scholar] [CrossRef]
- Curtis, K.; Gough, K.; Krishnasamy, M.; Tarasenko, E.; Hill, G.; Keogh, S. Central Venous Access Device Terminologies, Complications, and Reason for Removal in Oncology: A Scoping Review. BMC Cancer 2024, 24, 498. [Google Scholar] [CrossRef]
- Piredda, M.; Sguanci, M.; De Maria, M.; Petrucci, G.; Usai, M.; Fiorini, J.; De Marinis, M.G. Nurses’ Evidence-Based Knowledge and Self-Efficacy in Venous Access Device Insertion and Management: Development and Validation of a Questionnaire. Nurs. Open 2024, 11, e2177. [Google Scholar] [CrossRef]
- Mao, X.; Wu, S.; Huang, D.; Li, C. Complications and Comorbidities Associated with Antineoplastic Chemotherapy: Rethinking Drug Design and Delivery for Anticancer Therapy. Acta Pharm. Sin. B 2024, 14, 2901–2926. [Google Scholar] [CrossRef]
- Ritti-Dias, R.M.; Correia, M.A.; Carvalho, J.F.; Braghieri, H.A.; Wolosker, N.; Cucato, G.G.; Kanegusuku, H. Impact of the COVID-19 Pandemic on Health Lifestyle in Patients with Peripheral Artery Disease: A Cross-Sectional Study. J. Vasc. Nurs. 2022, 40, 54–58. [Google Scholar] [CrossRef]
- Yap, Y.-S.; Karapetis, C.; Lerose, S.; Iyer, S.; Koczwara, B. Reducing the Risk of Peripherally Inserted Central Catheter Line Complications in the Oncology Setting. Eur. J. Cancer Care 2006, 15, 342–347. [Google Scholar] [CrossRef]
- Leroyer, C.; Lashéras, A.; Marie, V.; Le Bras, Y.; Carteret, T.; Dupon, M.; Rogues, A.-M. Prospective Follow-up of Complications Related to Peripherally Inserted Central Catheters. Med. Mal. Infect. 2013, 43, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Cheong, K.; Perry, D.; Karapetis, C.; Koczwara, B. High Rate of Complications Associated with Peripherally Inserted Central Venous Catheters in Patients with Solid Tumours. Intern. Med. J. 2004, 34, 234–238. [Google Scholar] [CrossRef]
- Maki, D.G.; Kluger, D.M.; Crnich, C.J. The Risk of Bloodstream Infection in Adults with Different Intravascular Devices: A Systematic Review of 200 Published Prospective Studies. Mayo Clin. Proc. 2006, 81, 1159–1171. [Google Scholar] [CrossRef]
- Grau, D.; Clarivet, B.; Lotthé, A.; Bommart, S.; Parer, S. Complications with Peripherally Inserted Central Catheters (PICCs) Used in Hospitalized Patients and Outpatients: A Prospective Cohort Study. Antimicrob. Resist. Infect. Control 2017, 6, 18. [Google Scholar] [CrossRef]
- Al Raiy, B.; Fakih, M.G.; Bryan-Nomides, N.; Hopfner, D.; Riegel, E.; Nenninger, T.; Rey, J.; Szpunar, S.; Kale, P.; Khatib, R. Peripherally Inserted Central Venous Catheters in the Acute Care Setting: A Safe Alternative to High-Risk Short-Term Central Venous Catheters. Am. J. Infect. Control 2010, 38, 149–153. [Google Scholar] [CrossRef]
- Timsit, J.-F.; Baleine, J.; Bernard, L.; Calvino-Gunther, S.; Darmon, M.; Dellamonica, J.; Desruennes, E.; Leone, M.; Lepape, A.; Leroy, O.; et al. Expert Consensus-Based Clinical Practice Guidelines Management of Intravascular Catheters in the Intensive Care Unit. Ann. Intensive Care 2020, 10, 118. [Google Scholar] [CrossRef]
- Gunst, M.; Matsushima, K.; Vanek, S.; Gunst, R.; Shafi, S.; Frankel, H. Peripherally Inserted Central Catheters May Lower the Incidence of Catheter-Related Blood Stream Infections in Patients in Surgical Intensive Care Units. Surg. Infect. 2011, 12, 279–282. [Google Scholar] [CrossRef]
- Chopra, V.; Flanders, S.A.; Saint, S.; Woller, S.C.; O’Grady, N.P.; Safdar, N.; Trerotola, S.O.; Saran, R.; Moureau, N.; Wiseman, S.; et al. The Michigan Appropriateness Guide for Intravenous Catheters (MAGIC): Results from a Multispecialty Panel Using the RAND/UCLA Appropriateness Method. Ann. Intern. Med. 2015, 163, S1–S40. [Google Scholar] [CrossRef]
- Cotogni, P.; Pittiruti, M. Focus on Peripherally Inserted Central Catheters in Critically Ill Patients. World J. Crit. Care Med. 2014, 3, 80–94. [Google Scholar] [CrossRef]
- Filip, R.; Gheorghita Puscaselu, R.; Anchidin-Norocel, L.; Dimian, M.; Savage, W.K. Global Challenges to Public Health Care Systems during the COVID-19 Pandemic: A Review of Pandemic Measures and Problems. J. Pers. Med. 2022, 12, 1295. [Google Scholar] [CrossRef]
- Badraoui, R.; Alrashedi, M.M.; El-May, M.V.; Bardakci, F. Acute Respiratory Distress Syndrome: A Life Threatening Associated Complication of SARS-CoV-2 Infection Inducing COVID-19. J. Biomol. Struct. Dyn. 2021, 39, 6842–6851. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Gandhi, S.; Mebane, A.; Singh, A.; Vishnuvardhan, N.; Patel, E. Cancer Patients and COVID-19: Mortality, Serious Complications, Biomarkers, and Ways Forward. Cancer Treat. Res. Commun. 2021, 26, 100285. [Google Scholar] [CrossRef] [PubMed]
- Núñez, A.; Sreeganga, S.D.; Ramaprasad, A. Access to Healthcare during COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 2980. [Google Scholar] [CrossRef] [PubMed]
- Pittiruti, M.; Pinelli, F. Recommendations for the Use of Vascular Access in the COVID-19 Patients: An Italian Perspective. Crit. Care 2020, 24, 269. [Google Scholar] [CrossRef] [PubMed]
- Scoppettuolo, G.; Biasucci, D.G.; Pittiruti, M. Vascular Access in COVID-19 Patients: Smart Decisions for Maximal Safety. J. Vasc. Access 2020, 21, 408–410. [Google Scholar] [CrossRef]
- Wendel, D.; Mezoff, E.A.; Raghu, V.K.; Kinberg, S.; Soden, J.; Avitzur, Y.; Rudolph, J.A.; Gniadek, M.; Cohran, V.C.; Venick, R.S.; et al. Management of Central Venous Access in Children with Intestinal Failure: A Position Paper from the NASPGHAN Intestinal Rehabilitation Special Interest Group. J. Pediatr. Gastroenterol. Nutr. 2021, 72, 474–486. [Google Scholar] [CrossRef]
- Napolitano, D.; Settanni, C.R.; Parisio, L.; Orgiana, N.; Poscia, A.; Schiavoni, E.; Turchini, L.; Cascio, A.L.; Germini, F.; Sblendorio, E.; et al. Transition from Intravenous to Subcutaneous Biological Therapies in Inflammatory Bowel Disease: An Online Survey of Patients. Indian J. Gastroenterol. 2024, 43, 215–225. [Google Scholar] [CrossRef]
- Rine, S.; Lara, S.T.; Bikomeye, J.C.; Beltrán-Ponce, S.; Kibudde, S.; Niyonzima, N.; Lawal, O.O.; Mulamira, P.; Beyer, K.M. The Impact of the COVID-19 Pandemic on Cancer Care Including Innovations Implemented in Sub-Saharan Africa: A Systematic Review. J. Glob. Health 2023, 13, 06048. [Google Scholar] [CrossRef]
- Nickel, B.; Gorski, L.; Kleidon, T.; Kyes, A.; DeVries, M.; Keogh, S.; Meyer, B.; Sarver, M.J.; Crickman, R.; Ong, J.; et al. Infusion Therapy Standards of Practice, 9th Edition. J. Infus. Nurs. 2024, 47, S1–S285. [Google Scholar] [CrossRef]
- O’Grady, N.P.; Alexander, M.; Burns, L.A.; Dellinger, E.P.; Garland, J.; Heard, S.O.; Lipsett, P.A.; Masur, H.; Mermel, L.A.; Pearson, M.L.; et al. Guidelines for the Prevention of Intravascular Catheter-Related Infections. Clin. Infect. Dis. 2011, 52, e162–e193. [Google Scholar] [CrossRef]
- Toney-Butler, T.J.; Gasner, A.; Carver, N. Hand Hygiene. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Imataki, O.; Shimatani, M.; Ohue, Y.; Uemura, M. Effect of Ultrasound-Guided Central Venous Catheter Insertion on the Incidence of Catheter-Related Bloodstream Infections and Mechanical Complications. BMC Infect. Dis. 2019, 19, 857. [Google Scholar] [CrossRef]
- Open Resources for Nursing (Open RN). Nursing Management and Professional Concepts; Ernstmeyer, K., Christman, E., Eds.; Open RN OER Textbooks; Chippewa Valley Technical College: Eau Claire, WI, USA, 2022; ISBN 978-1-73491-418-4. [Google Scholar]
- Baskin, J.L.; Pui, C.-H.; Reiss, U.; Wilimas, J.A.; Metzger, M.L.; Ribeiro, R.C.; Howard, S.C. Management of Occlusion and Thrombosis Associated with Long-Term Indwelling Central Venous Catheters. Lancet 2009, 374, 159. [Google Scholar] [CrossRef] [PubMed]
- Rajasekhar, A.; Streiff, M.B. Etiology and Management of Upper-Extremity Catheter-Related Thrombosis in Cancer Patients. Thromb. Hemost. Cancer 2019, 179, 117–137. [Google Scholar] [CrossRef]
- Smith, T.; Kaufman, C.; Quencer, K. Internal Jugular Central Venous Catheter Tip Migration: Patient and Procedural Factors. Tomography 2022, 8, 1033–1040. [Google Scholar] [CrossRef]
- Waheed, S.M.; Kudaravalli, P.; Hotwagner, D.T. Deep Vein Thrombosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Patt, D.; Gordan, L.; Diaz, M.; Okon, T.; Grady, L.; Harmison, M.; Markward, N.; Sullivan, M.; Peng, J.; Zhou, A. Impact of COVID-19 on Cancer Care: How the Pandemic Is Delaying Cancer Diagnosis and Treatment for American Seniors. JCO Clin. Cancer Inf. 2020, 4, 1059–1071. [Google Scholar] [CrossRef]
- Keim-Malpass, J.; Vavolizza, R.D.; Cohn, W.F.; Kennedy, E.M.; Showalter, S.L. Cancer Screening and Treatment Delays During the COVID-19 Pandemic and the Role of Health Literacy in Care Re-Engagement: Findings from an NCI-Designated Comprehensive Cancer Center Sample. J. Cancer Educ. 2023, 38, 1405–1412. [Google Scholar] [CrossRef]
- Mercadante, S.; Grassi, Y.; Cascio, A.L.; Restivo, V.; Casuccio, A. Characteristics of Untreated Cancer Patients Admitted to an Acute Supportive/Palliative Care Unit. J. Pain Symptom Manag. 2023, 65, e677–e682. [Google Scholar] [CrossRef]
- Frondizi, F.; Dolcetti, L.; Pittiruti, M.; Calabrese, M.; Fantoni, M.; Biasucci, D.G.; Scoppettuolo, G. Complications Associated with the Use of Peripherally Inserted Central Catheters and Midline Catheters in COVID-19 Patients: An Observational Prospective Study. Am. J. Infect. Control 2023, 51, 1208–1212. [Google Scholar] [CrossRef]
- Costa, G.J.; Júnior, H.d.A.F.; Malta, F.C.; Bitu, F.C.L.; Barbosa, C.; de Sá, J.; Amarante, A.; Thuler, L.C.S. The Impact of the COVID-19 Pandemic on Tertiary Care Cancer Center: Analyzing Administrative Data. Semin. Oncol. 2022, 49, 182–188. [Google Scholar] [CrossRef]
- Sands, K.E.; Blanchard, E.J.; Fraker, S.; Korwek, K.; Cuffe, M. Health Care-Associated Infections Among Hospitalized Patients with COVID-19, March 2020-March 2022. JAMA Netw. Open 2023, 6, e238059. [Google Scholar] [CrossRef]
- Ng, H.J.; Alata, M.K.; Nguyen, Q.T.; Huynh Duc Vinh, P.; Tan, J.Y.; Wong, C.L. Managing and Treating COVID-19 in Patients with Hematological Malignancies: A Narrative Review and Expert Insights. Clin. Exp. Med. 2024, 24, 119. [Google Scholar] [CrossRef]
- Hus, I.; Szymczyk, A.; Mańko, J.; Drozd-Sokołowska, J. COVID-19 in Adult Patients with Hematological Malignancies—Lessons Learned after Three Years of Pandemic. Biology 2023, 12, 545. [Google Scholar] [CrossRef] [PubMed]
- Milczarek, S.; Kulig, P.; Piotrowska, O.; Zuchmańska, A.; Wilk-Milczarek, E.; Machaliński, B. Incidence of Catheter-Associated Bloodstream Infections in Stem Cell Recipients—Should We Be “PICCy”? Cancers 2024, 16, 1239. [Google Scholar] [CrossRef] [PubMed]
- Rieger, M.J.; Schenkel, X.; Dedic, I.; Brunn, T.; Gnannt, R.; Hofmann, M.; de Rougemont, O.; Stolz, S.M.; Rösler, W.; Studt, J.-D.; et al. Complication Rates of Peripherally Inserted Central Catheters vs Implanted Ports in Patients Receiving Systemic Anticancer Therapy: A Retrospective Cohort Study. Int. J. Cancer 2023, 153, 1397–1405. [Google Scholar] [CrossRef]
- Urtecho, M.; Torres Roldan, V.D.; Nayfeh, T.; Espinoza Suarez, N.R.; Ranganath, N.; Sampathkumar, P.; Chopra, V.; Safdar, N.; Prokop, L.J.; O’Horo, J.C. Comparing Complication Rates of Midline Catheter vs Peripherally Inserted Central Catheter. A Systematic Review and Meta-Analysis. Open Forum Infect. Dis. 2023, 10, ofad024. [Google Scholar] [CrossRef] [PubMed]
- Annetta, M.G.; Bertoglio, S.; Biffi, R.; Brescia, F.; Giarretta, I.; Greca, A.L.; Panocchia, N.; Passaro, G.; Perna, F.; Pinelli, F.; et al. Management of Antithrombotic Treatment and Bleeding Disorders in Patients Requiring Venous Access Devices: A Systematic Review and a GAVeCeLT Consensus Statement. J. Vasc. Access 2022, 23, 660–671. [Google Scholar] [CrossRef]
- Marcomini, I.; Pendoni, R.; Bozzetti, M.; Mallio, M.; Riboni, F.; Di Nardo, V.; Caruso, R. Psychometric Characteristics of the Quality of Oncology Nursing Care Scale (QONCS): A Validation Study. Semin. Oncol. Nurs. 2024, 40, 151751. [Google Scholar] [CrossRef]
- Talaee, N.; Varahram, M.; Jamaati, H.; Salimi, A.; Attarchi, M.; Kazempour Dizaji, M.; Sadr, M.; Hassani, S.; Farzanegan, B.; Monjazebi, F.; et al. Stress and Burnout in Health Care Workers during COVID-19 Pandemic: Validation of a Questionnaire. Z. Gesundh. Wiss. 2022, 30, 531–536. [Google Scholar] [CrossRef]
- Ye, J.; He, L.; Beestrum, M. Implications for Implementation and Adoption of Telehealth in Developing Countries: A Systematic Review of China’s Practices and Experiences. NPJ Digit. Med. 2023, 6, 174. [Google Scholar] [CrossRef]
- Khatri, R.B.; Endalamaw, A.; Erku, D.; Wolka, E.; Nigatu, F.; Zewdie, A.; Assefa, Y. Enablers and Barriers of Community Health Programs for Improved Equity and Universal Coverage of Primary Health Care Services: A Scoping Review. BMC Prim. Care 2024, 25, 385. [Google Scholar] [CrossRef]
- Salunke, A.A.; Nandy, K.; Pathak, S.K.; Shah, J.; Kamani, M.; Kottakota, V.; Thivari, P.; Pandey, A.; Patel, K.; Rathod, P.; et al. Impact of COVID-19 in Cancer Patients on Severity of Disease and Fatal Outcomes: A Systematic Review and Meta-Analysis. Diabetes Metab. Syndr. 2020, 14, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Nadkarni, A.R.; Vijayakumaran, S.C.; Gupta, S.; Divatia, J.V. Mortality in Cancer Patients with COVID-19 Who Are Admitted to an ICU or Who Have Severe COVID-19: A Systematic Review and Meta-Analysis. JCO Glob. Oncol. 2021, 7, 1286–1305. [Google Scholar] [CrossRef] [PubMed]
- Patrianakos, J.; Longo, B.A.; Williams, S.C. Successful Practices to Reduce Central Line-Associated Bloodstream Infections Post Pandemic: A Qualitative Study. Am. J. Infect. Control 2024, 52, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Teymourian, H.; ArianNik, M.; Mohit, B.; Massoudi, N. A Retrospective Cohort Study of the Impact of COVID-19 Infection Control Measures on Surgical Site Infections in an Academic Hospital Setting. Int. Wound J. 2024, 21, e14583. [Google Scholar] [CrossRef]
- Kashyap, B.; Sarkar, K.; Jhamb, R.; LNU, S. Device-Associated Infection Trend Analysis in a Tertiary Care Centre in India: A Comparative Study Before and After the COVID-19 Pandemic. Hosp. Pract. Res. 2024, 9, 402–408. [Google Scholar] [CrossRef]
Variables | Value |
---|---|
Gender | |
Female | 314 (57.1%) |
Male | 236 (42.9%) |
Age M [IQR] | 63 years [17.75] |
Education | |
Middle school | 261 (47.5%) |
High school | 157 (28.5%) |
Bachelor | 40 (7.3%) |
Hospital ward | |
Oncology | 227 (41.3%) |
Hematology | 174 (31.7%) |
Transplantation and Bone-Marrow Oncology | 71 (12.9%) |
Other | 77 (14.1%) |
Cancer diagnosis | |
Leukemia/Lymphoma | 260 (47.6%) |
Digestive system cancers | 121 (22.2%) |
Breast cancer | 81 (14.8%) |
Head and neck cancers | 26 (4.7%) |
Metastatic disease | |
Present | 223 (40.5%) |
Absent | 327 (59,5%) |
Home care § | |
No | 336 (62.1%) |
Yes | 205 (37.8%) |
Indication for device insertion | |
Chemotherapy | 518 (94.1%) |
DIVA | 31 (5.58%) |
Parenteral Nutrition | 1 (0.2%) |
In-Hospital insertion | |
No | 49 (8.9%) |
Yes | 501 (91.1%) |
Device caliber | |
4 French | 516 (93.8%) |
5 French | 34 (6.2%) |
Number of lumens | |
Mono-lumen | 524 (95.3%) |
Bi-lumen | 26 (4.7%) |
Vein | |
Basilic | 353 (64.2%) |
Brachial | 189 (34.4%) |
Cephalic | 8 (1.4%) |
Arm | |
Left | 193 (35.1%) |
Right | 357 (64.9%) |
Variable | 2020 | 2021 | 2022 | 2023 | 2024 | p-Value |
---|---|---|---|---|---|---|
Sex | ||||||
Male | 59 (45.4%) | 74 (48.4%) | 56 (46.3%) | 39 (31.5%) | 7 (33.3%) | 0.035 * |
Female | 71 (54.6%) | 79 (51.6%) | 65 (53.7%) | 85 (68.6%) | 14 (66.7%) | |
Educational Level | ||||||
First School | 26 (20.2%) | 20 (13.1%) | 20 (16.5%) | 22 (17.7%) | 3 (14.3%) | 0.663 |
Middle school | 55 (42.6%) | 73 (47.7%) | 60 (49.6%) | 63 (50.8%) | 9 (42.9%) | |
High school | 38 (29.5%) | 49 (32.0%) | 29 (23.9%) | 32 (25.8%) | 9 (42.8%) | |
Bachelor’s Degree | 10 (7.7%) | 11 (7.2%) | 12 (9.9%) | 7 (5.6%) | 0 (0.0%) | |
Home care n (%) | ||||||
No | 70 (53.8%) | 58 (38.4%) | 79 (65.3%) | 108 (92.3%) | 20 (95.2%) | <0.0001 *** |
Yes | 60 (46.1%) | 93 (61.6%) | 42 (34.7%) | 9 (7.7%) | 1 (4.8%) | |
Vascular Access n (%) | ||||||
Midline | 15 (11.5%) | 20 (13.0%) | 15 (12.4%) | 6 (4.8%) | 3 (14.3%) | 0.125 |
PICC | 115 (88.5%) | 133 (86.9%) | 106 (87.6%) | 118 (95.2%) | 18 (85.7%) | |
Indication for insertion (%) | ||||||
Chemotherapy | 128 (98.5%) | 149 (97.4%) | 115 (95.0%) | 107 (86.3%) | 18 (85.7%) | 0.003 ** |
DIVA | 2 (1.5%) | 4 (2.6%) | 6 (4.9%) | 16 (12.9%) | 3 (14.3%) | |
Parenteral Nutrition | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (0.81%) | 0 (0.0%) | |
In-Hospital insertion n (%) | ||||||
No | 18 (13.8%) | 10 (6.5%) | 9 (7.4%) | 12 (9.7%) | 0 (0.0%) | 0.154 |
Yes | 112 (86.1%) | 143 (93.5%) | 112 (92.6%) | 112 (90.3%) | 21 (100.0%) | |
Caliber n (%) | ||||||
4 French | 127 (97.7%) | 148 (96.7%) | 109 (90.1%) | 113 (91.1%) | 18 (85.2%) | 0.008 ** |
5 French | 3 (2.3%) | 5 (3.3%) | 12 (9.9%) | 11 (8.9%) | 3 (14.2%) | |
Lumen n (%) | ||||||
Mono-lumen | 128 (98.5%) | 147 (96.0%) | 108 (89.2%) | 121 (97.6%) | 19 (90.5%) | 0.003 ** |
Bi-lumen | 2 (1.5%) | 6 (4.0%) | 13 (10.7%) | 3 (2.4%) | 2 (9.2%) | |
Vein n (%) | ||||||
Basilic | 85 (65.4%) | 107 (70.0%) | 68 (56.2%) | 77 (62.1%) | 15 (71.4%) | 0.125 |
Brachial | 42 (32.3%) | 44 (28.7%) | 51 (42.1%) | 47 (37.9%) | 5 (23.8%) | |
Cephalic | 3 (2.3%) | 2 (1.3%) | 2 (1.6%) | 0 (0.0%) | 1 (4.7%) | |
Arm n (%) | ||||||
Left | 36 (27.7%) | 51 (33.3%) | 49 (40.5%) | 44 (35.5%) | 13 (61.9%) | 0.013 * |
Right | 94 (72.3%) | 102 (66.6%) | 72 (59.5%) | 80 (64.5%) | 8 (38.1%) | |
Complications n (%) | ||||||
Dislocation | 29 (22.3%) | 33 (21.6%) | 18 (14.8%) | 40 (32.3%) | 5 (23.8%) | <0.0001 *** |
Mechanical injury | 7 (5.4%) | 3 (2.0%) | 3 (2.4%) | 1 (0.8%) | 0 (0.0%) | |
Tip migration | 3 (2.3%) | 2 (1.3%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
Occlusion | 25 (19.2%) | 40 (26.1%) | 19 (15.7%) | 21 (16.9%) | 7 (33.3%) | |
Suspected infection | 55 (42.3%) | 58 (37.9%) | 41 (33.8%) | 26 (20.9%) | 5 (23.8%) | |
Replacement with another device | 9 (6.9%) | 13 (8.5%) | 34 (28.1%) | 32 (25.8%) | 4 (19.0%) | |
Venous thrombosis | 2 (1.5%) | 4 (2.6%) | 6 (4.9%) | 4 (3.2%) | 0 (0.0%) | |
Blood culture n (%) | ||||||
Positive | 36 (31.0%) | 39 (25.5%) | 24 (20.5%) | 28 (22.7%) | 6 (30.0%) | <0.0001 *** |
Negative | 20 (17.2%) | 22 (14.4%) | 13 (11.1%) | 9 (7.3%) | 2 (10.0%) | |
Not performed | 60 (51.7%) | 92 (60.1%) | 80 (68.4%) | 86 (69.9%) | 12 (60.0%) | |
Infectious agent n (%) | ||||||
Aerobic | 17 (50.0%) | 15 (39.5%) | 7 (36.8%) | 5 (35.7%) | 0 (NA) | 0.013 * |
Anaerobic | 1 (2.9%) | 3 (7.9%) | 4 (21.0%) | 0 (0.0%) | 0 (NA) | |
Aerobic and Anaerobic | 16 (47.0%) | 20 (52.6%) | 8 (42.1%) | 9 (64.3%) | 0 (NA) | |
Tip culture n (%) | ||||||
Negative | 16 (13.9%) | 11 (7.3%) | 0 (0.0%) | 2 (1.7%) | 3 (15.0%) | <0.0001 *** |
Positive | 32 (27.8%) | 35 (23.2%) | 38 (31.9%) | 23 (19.2%) | 4 (20.0%) | |
Not performed | 67 (58.3%) | 105 (69.5%) | 81 (68.0%) | 95 (79.2%) | 13 (65.0%) | |
Occlusion test n (%) | ||||||
Negative | 18 (16.4%) | 26 (17.2%) | 15 (12.5%) | 6 (4.9%) | 5 (25.0%) | <0.0001 *** |
Positive | 87 (79.1%) | 124 (82.1%) | 101 (84.2%) | 38 (30.9%) | 1 (5.0%) | |
Not performed | 5 (4.5%) | 1 (0.6%) | 4 (3.3%) | 79 (64.2%) | 14 (70.0%) | |
Post-hoc Comparisons of Medication Duration | Adjusted p-value | |||||
2020–2021 | 3.4165 | 0.003 *** | ||||
2020–2022 | 3.1173 | 3.1173 | 0.009 *** | |||
2021–2022 | −113 | 1.000 | ||||
2020–2023 | 5.723 | 5.723 | 0.000 *** | |||
2021–2023 | 2.5726 | 2.5726 | 0.051 | |||
2022–2023 | 2.5402 | 0.055 | ||||
2020–2024 | 3.3172 | 3.3172 | 0.004 *** | |||
2021–2024 | 1.6012 | 1.6012 | 0.546 | |||
2022–2024 | 1.6344 | 1.6344 | 0.511 | |||
2023–2024 | 0.2617 | 1.000 |
Complications n (%) | |
---|---|
Occlusion | 122 (20.4%) |
Dislocation | 125 (22.7%) |
Mechanical injury | 14 (2.5%) |
Tip migration | 5 (0.9%) |
Suspected infection | 185 (33.6%) |
Replacement with another device | 93 (16.9%) |
Venous thrombosis | 16 (2.9%) |
Blood culture n (%) | |
Positive | 133 (25.1%) |
Negative | 66 (12.4%) |
Not performed | 331 (62.4%) |
Infectious agent n (%) | |
Aerobic | 44 (41.9%) |
Anaerobic | 8 (7.6%) |
Aerobic and Anaerobic | 53 (50.5%) |
Positive tip culture n (%) | |
No | 32 (6.1%) |
Yes | 132 (25.2%) |
Not performed | 359 (68.6%) |
Occlusion test n (%) | |
Negative | 70 (13.3%) |
Positive | 351 (66.8%) |
Not performed | 104 (19.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Cascio, A.; Bozzetti, M.; Napolitano, D.; Dabbene, M.; Lunetto, L.; Latina, R.; Mancin, S.; Sguanci, M.; Piredda, M. Catheter-Related Late Complications in Cancer Patients During and After the COVID-19 Pandemic: A Retrospective Study. Cancers 2025, 17, 1182. https://doi.org/10.3390/cancers17071182
Lo Cascio A, Bozzetti M, Napolitano D, Dabbene M, Lunetto L, Latina R, Mancin S, Sguanci M, Piredda M. Catheter-Related Late Complications in Cancer Patients During and After the COVID-19 Pandemic: A Retrospective Study. Cancers. 2025; 17(7):1182. https://doi.org/10.3390/cancers17071182
Chicago/Turabian StyleLo Cascio, Alessio, Mattia Bozzetti, Daniele Napolitano, Marcella Dabbene, Leonardo Lunetto, Roberto Latina, Stefano Mancin, Marco Sguanci, and Michela Piredda. 2025. "Catheter-Related Late Complications in Cancer Patients During and After the COVID-19 Pandemic: A Retrospective Study" Cancers 17, no. 7: 1182. https://doi.org/10.3390/cancers17071182
APA StyleLo Cascio, A., Bozzetti, M., Napolitano, D., Dabbene, M., Lunetto, L., Latina, R., Mancin, S., Sguanci, M., & Piredda, M. (2025). Catheter-Related Late Complications in Cancer Patients During and After the COVID-19 Pandemic: A Retrospective Study. Cancers, 17(7), 1182. https://doi.org/10.3390/cancers17071182