Artificial Intelligence in Gynecological Oncology from Diagnosis to Surgery
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Diagnostic Perspectives
3.2. The Role of AI in the Setting of Gynecologic Oncology Surgery
3.3. Application of AI in Ovarian Cancer Surgery
3.4. AI Premises for Uterine Cancers Surgeries
4. Discussion
Future Perspectives
- -
- Legal Issues and Diagnostic Decisions Based on Deep Learning Without Expert Opinions: Deep learning models can assist in diagnostic decision-making, but they should not replace expert opinions entirely. Legal concerns arise if the AI model makes a wrong diagnosis, leading to liability issues. In most cases, medical decisions still require a professional’s oversight, and guidelines must consider the possibility of human error in AI applications.
- -
- Deep Learning and Machine Learning Errors: Deep learning tools may be able to detect errors within their own algorithms (self-checking mechanisms), but the detection of computer system errors often requires intervention from either another machine or a physician. Automatic bias occurs when models are trained on biased datasets, which can lead to skewed predictions, potentially exacerbating health disparities.
- -
- Approval Process for AI Tests or Methods: To set up an approval process, regulatory agencies (e.g., FDA in the U.S.) should assess AI tools for safety, efficacy, and transparency. This typically involves rigorous clinical trials, validation, and adherence to ethical standards. AI methods need to be tested for robustness, reproducibility, and alignment with medical guidelines.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garg, P.; Mohanty, A.; Ramisetty, S.; Kulkarni, P.; Horne, D.; Pisick, E.; Salgia, R.; Singhal, S.S. Artificial intelligence and allied subsets in early detection and preclusion of gynecological cancers. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 189026. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, W.; Zhuang, X.; Wang, X.; He, Y.; Li, L.; Lyu, G. Advances in artificial intelligence for the diagnosis and treatment of ovarian cancer (Review). Oncol. Rep. 2024, 51, 46. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef]
- Capasso, I.; Cucinella, G.; Wright, D.E.; Takahashi, H.; De Vitis, L.A.; Gregory, A.V.; Kim, B.; Reynolds, E.; Fumagalli, D.; Occhiali, T.; et al. Artificial intelligence model for enhancing the accuracy of transvaginal ultrasound in detecting endometrial cancer and endometrial atypical hyperplasia. Int. J. Gynecol. Cancer 2024, 34, 1547–1555. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, L. Prospects and Challenges of Deep Learning in Gynaecological Malignancies. Available online: https://ssrn.com/abstract=4868537 (accessed on 10 February 2025).
- Reilly, G.; Bullock, R.G.; Greenwood, J.; Ure, D.R.; Stewart, E.; Davidoff, P.; DeGrazia, J.; Fritsche, H.; Dunton, C.J.; Bhardwaj, N.; et al. Analytical Validation of a Deep Neural Network Algorithm for the Detection of Ovarian Cancer. JCO Clin. Cancer Inform. 2022, 6, e2100192. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Li, Y.; Zheng, J.; Liu, L.; Jiao, Z.; Lin, J.; Jiang, S.; Lin, X.; Sun, Y. Modeling of senescence-related chemoresistance in ovarian cancer using data analysis and patient-derived organoids. Front. Oncol. 2024, 13, 1291559. [Google Scholar] [CrossRef] [PubMed]
- Abrego, L.; Zaikin, A.; Marino, I.P.; Krivonosov, M.I.; Jacobs, I.; Menon, U.; Gentry-Maharaj, A.; Blyuss, O. Bayesian and deep-learning models applied to the early detection of ovarian cancer using multiple longitudinal biomarkers. Cancer Med. 2024, 13, e7163. [Google Scholar] [CrossRef]
- LeBien, J.; Velev, J.; Roche-Lima, A. Indirect reference interval estimation using a convolutional neural network with application to cancer antigen 125. Sci. Rep. 2024, 14, 19332. [Google Scholar] [CrossRef]
- Bahado-Singh, R.O.; Ibrahim, A.; Al-Wahab, Z.; Aydas, B.; Radhakrishna, U.; Yilmaz, A.; Vishweswaraiah, S. Precision gynecologic oncology: Circulating cell free DNA epigenomic analysis, artificial intelligence and the accurate detection of ovarian cancer. Sci. Rep. 2022, 12, 18625. [Google Scholar] [CrossRef]
- Cristiano, S.; Leal, A.; Phallen, J.; Fiksel, J.; Adleff, V.; Bruhm, D.C.; Jensen, S.Ø.; Medina, J.E.; Hruban, C.; White, J.R.; et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 2019, 570, 385–389. [Google Scholar] [CrossRef]
- Ulz, P.; Perakis, S.; Zhou, Q.; Fiksel, J.; Adleff, V.; Bruhm, D.C.; Jensen, S.Ø.; Medina, J.E.; Hruban, C.; White, J.R.; et al. Inference of transcription factor binding from cell-free DNA enables tumor subtype prediction and early detection. Nat. Commun. 2019, 10, 4666. [Google Scholar] [CrossRef] [PubMed]
- Doebley, A.L.; Ko, M.; Liao, H.; Cruikshank, A.E.; Santos, K.; Kikawa, C.; Hiatt, J.B.; Patton, R.D.; De Sarkar, N.; Collier, K.A. framework for clinical cancer subtyping from nucleosome profiling of cell-free DNA. Nat. Commun. 2022, 13, 7475. [Google Scholar] [CrossRef] [PubMed]
- Danzi, F.; Pacchiana, R.; Mafficini, A.; Scupoli, M.T.; Scarpa, A.; Donadelli, M.; Fiore, A. To metabolomics and beyond: A technological portfolio to investigate cancer metabolism. Signal Transduct. Target. Ther. 2023, 8, 137. [Google Scholar] [CrossRef]
- Ban, D.; Housley, S.N.; Matyunina, L.V.; McDonald, L.D.; Bae-Jump, V.L.; Benigno, B.B.; Skolnick, J.; McDonald, J.F. A personalized probabilistic approach to ovarian cancer diagnostics. Gynecol. Oncol. 2024, 182, 168–175. [Google Scholar] [CrossRef]
- Yao, J.Z.; Tsigelny, I.F.; Kesari, S.; McDonald, L.D.; Bae-Jump, V.L.; Benigno, B.B.; Skolnick, J.; McDonald, J.F. Diagnostics of ovarian cancer via metabolite analysis and machine learning. Integr. Biol. 2023, 15, zyad005. [Google Scholar] [CrossRef]
- Liu, J.; Hu, D.; Lin, Y.; Chen, X.; Yang, R.; Li, L.; Zhan, Y.; Bao, H.; Zang, L.; Zhu, M.; et al. Early detection of uterine corpus endometrial carcinoma utilizing plasma cfDNA fragmentomics. BMC Med. 2024, 22, 310. [Google Scholar] [CrossRef] [PubMed]
- Troisi, J.; Raffone, A.; Travaglino, A.; Belli, G.; Belli, C.; Anand, S.; Giugliano, L.; Cavallo, P.; Scala, G.; Symes, S.; et al. Development and Validation of a Serum Metabolomic Signature for Endometrial Cancer Screening in Postmenopausal Women. JAMA Netw. Open 2020, 3, e2018327. [Google Scholar] [CrossRef]
- Ganguli, R.; Franklin, J.; Yu, X.; Lin, A.; Heffernan, D.S. Machine learning methods to predict presence of residual cancer following hysterectomy. Sci. Rep. 2022, 12, 2738. [Google Scholar] [CrossRef]
- Gaba, F. GO SOAR Team. Global Gynaecological Oncology Surgical Outcomes Collaborative (GO SOAR). Int. J. Gynecol. Cancer 2023, 33, 304–305. [Google Scholar] [CrossRef]
- Gaba, F.; Mohammadi, S.M.; Krivonosov, M.I.; Blyuss, O.; GO SOAR Collaborators; On Behalf Of The Go Soar Collaborators. Predicting Risk of Post-Operative Morbidity and Mortality following Gynaecological Oncology Surgery (PROMEGO): A Global Gynaecological Oncology Surgical Outcomes Collaborative Led Study. Cancers 2024, 16, 2021. [Google Scholar] [CrossRef]
- Maubert, A.; Birtwisle, L.; Bernard, J.L.; Benizri, E.; Bereder, J.M. Can machine learning predict resecability of a peritoneal carcinomatosis? Surg. Oncol. 2019, 29, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Laios, A.; De Freitas, D.L.D.; Saalmink, G.; Tan, Y.S.; Johnson, R.; Zubayraeva, A.; Munot, S.; Hutson, R.; Thangavelu, A.; Broadhead, T.; et al. Stratification of Length of Stay Prediction following Surgical Cytoreduction in Advanced High-Grade Serous Ovarian Cancer Patients Using Artificial Intelligence; the Leeds L-AI-OS Score. Curr. Oncol. 2022, 29, 9088–9104. [Google Scholar] [CrossRef]
- Laios, A.; De Oliveira Silva, R.V.; Dantas De Freitas, D.L.; Tan, Y.S.; Saalmink, G.; Zubayraeva, A.; Johnson, R.; Kaufmann, A.; Otify, M.; Hutson, R.; et al. Machine Learning-Based Risk Prediction of Critical Care Unit Admission for Advanced Stage High Grade Serous Ovarian Cancer Patients Undergoing Cytoreductive Surgery: The Leeds-Natal Score. J. Clin. Med. 2021, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Laios, A.; Kalampokis, E.; Johnson, R.; Munot, S.; Thangavelu, A.; Hutson, R.; Broadhead, T.; Theophilou, G.; Leach, C.; Nugent, D.; et al. Factors Predicting Surgical Effort Using Explainable Artificial Intelligence in Advanced Stage Epithelial Ovarian Cancer. Cancers 2022, 14, 3447. [Google Scholar] [CrossRef] [PubMed]
- Laios, A.; Kalampokis, E.; Johnson, R.; Munot, S.; Thangavelu, A.; Hutson, R.; Broadhead, T.; Theophilou, G.; Nugent, D.; De Jong, D. Development of a Novel Intra-Operative Score to Record Diseases′ Anatomic Fingerprints (ANAFI Score) for the Prediction of Complete Cytoreduction in Advanced-Stage Ovarian Cancer by Using Machine Learning and Explainable Artificial Intelligence. Cancers 2023, 15, 966. [Google Scholar] [CrossRef]
- Piedimonte, S.; Erdman, L.; So, D.; Bernardini, M.Q.; Ferguson, S.E.; Laframboise, S.; Bouchard Fortier, G.; Cybulska, P.; May, T.; Hogen, L. Using a machine learning algorithm to predict outcome of primary cytoreductive surgery in advanced ovarian cancer. J. Surg. Oncol. 2023, 127, 465–472. [Google Scholar] [CrossRef]
- Laios, A.; Kalampokis, E.; Mamalis, M.E.; Thangavelu, A.; Hutson, R.; Broadhead, T.; Nugent, D.; De Jong, D. Exploring the Potential Role of Upper Abdominal Peritonectomy in Advanced Ovarian Cancer Cytoreductive Surgery Using Explainable Artificial Intelligence. Cancers 2023, 15, 5386. [Google Scholar] [CrossRef]
- AlSomairi, A.; Himayda, S.; Altelmesani, A.; Lee, Y.J.; Lee, J.Y. Prognostic value of HE4 in advanced-stage, high-grade serous ovarian cancer: Analysis of HE4 kinetics during NACT, predicting surgical outcome and recurrence in comparison to CA125. Gynecol. Oncol. 2024, 181, 155–161. [Google Scholar] [CrossRef]
- Bogani, G.; Rossetti, D.; Ditto, A.; Martinelli, F.; Chiappa, V.; Mosca, L.; Leone Roberti Maggiore, U.; Ferla, S.; Lorusso, D.; Raspagliesi, F. Artificial intelligence weights the importance of factors predicting complete cytoreduction at secondary cytoreductive surgery for recurrent ovarian cancer. J. Gynecol. Oncol. 2018, 29, e66. [Google Scholar] [CrossRef]
- Levin, G.; Matanes, E.; Brezinov, Y.; Ferenczy, A.; Pelmus, M.; Brodeur, M.N.; Salvador, S.; Lau, S.; Gotlieb, W.H. Machine learning for prediction of concurrent endometrial carcinoma in patients diagnosed with endometrial intraepithelial neoplasia. Eur. J. Surg. Oncol. 2024, 50, 108006. [Google Scholar] [CrossRef]
- Giannella, L.; Piva, F.; Delli Carpini, G.; Ferenczy, A.; Pelmus, M.; Brodeur, M.N.; Salvador, S.; Lau, S.; Gotlieb, W.H. Concurrent Endometrial Cancer in Women with Atypical Endometrial Hyperplasia: What Is the Predictive Value of Patient Characteristics? Cancers 2023, 16, 172. [Google Scholar] [CrossRef] [PubMed]
- Troisi, J.; Mollo, A.; Lombardi, M.; Scala, G.; Richards, S.M.; Symes, S.J.K.; Travaglino, A.; Neola, D.; de Laurentiis, U.; Insabato, L.; et al. The Metabolomic Approach for the Screening of Endometrial Cancer: Validation from a Large Cohort of Women Scheduled for Gynecological Surgery. Biomolecules 2022, 12, 1229. [Google Scholar] [CrossRef]
- Taliento, C.; Scutiero, G.; Arcieri, M.; Pellecchia, G.; Tius, V.; Bogani, G.; Petrillo, M.; Pavone, M.; Bizzarri, N.; Driul, L.; et al. Simple hysterectomy versus radical hysterectomy in early-stage cervical cancer: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2024, 50, 108252. [Google Scholar] [CrossRef] [PubMed]
- Charoenkwan, P.; Shoombuatong, W.; Nantasupha, C.; Muangmool, T.; Suprasert, P.; Charoenkwan, K. Machine Learning-Aided Identification of Parametrial Invasion in Women with Early-Stage Cervical Cancer. Diagnostics 2021, 11, 1454. [Google Scholar] [CrossRef]
- Dong, T.; Wang, L.; Li, R.; Liu, Q.; Xu, Y.; Wei, Y.; Jiao, X.; Li, X.; Zhang, Y.; Zhang, Y.; et al. Development of a Novel Deep Learning-Based Prediction Model for the Prognosis of Operable Cervical Cancer. Comput. Math. Methods Med. 2022, 2022, 4364663. [Google Scholar] [CrossRef]
- Moro, F.; Ciancia, M.; Zace, D.; Vagni, M.; Tran, H.E.; Giudice, M.T.; Zoccoli, S.G.; Mascilini, F.; Ciccarone, F.; Boldrini, L.; et al. Role of artificial intelligence applied to ultrasound in gynecology oncology: A systematic review. Int. J. Cancer 2024, 155, 1832–1845. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Smith, J.A.; Nestel, D. The other side of the table: Early career gynaecological oncologists′ transition from trainee to trainer. Aust. N. Z. J. Obstet. Gynaecol. 2023, 63, 254–259. [Google Scholar] [CrossRef]
- Ilic, I.; Babic, G.; Dimitrijevic, A.; Grujicic, S.S.; Jakovljevic, V.; Macuzic, I.Z.; Ilic, M. Detecting the impact of diagnostic procedures in Pap-positive women on anxiety using artificial neural networks. PLoS ONE 2024, 19, e0312870. [Google Scholar] [CrossRef]
- Zhu, Y.; Fu, C.; Du, J.; Jin, Y.; Du, S.; Zhao, F. Prediction of Cervical Cancer Lymph Node Metastasis via a Multimodal Transfer Learning Approach. Br. J. Hosp. Med. 2024, 85, 1–14. [Google Scholar] [CrossRef]
- Bogaerts, J.M.; Steenbeek, M.P.; Bokhorst, J.M.; van Bommel, M.H.; Abete, L.; Addante, F.; Brinkhuis, M.; Chrzan, A.; Cordier, F.; Devouassoux-Shisheboran, M.; et al. Assessing the impact of deep-learning assistance on the histopathological diagnosis of serous tubal intraepithelial carcinoma (STIC) in fallopian tubes. J. Pathol. Clin. Res. 2024, 10, e70006. [Google Scholar] [CrossRef]
- Mascarenhas, M.; Alencoão, I.; Carinhas, M.J.; Martins, M.; Ribeiro, T.; Mendes, F.; Cardoso, P.; Almeida, M.J.; Mota, J.; Fernandes, J.; et al. Artificial Intelligence and Colposcopy: Automatic Identification of Vaginal Squamous Cell Carcinoma Precursors. Cancers 2024, 16, 3540. [Google Scholar] [CrossRef] [PubMed]
- Kluz-Barłowska, M.; Kluz, T.; Paja, W.; Sarzyński, J.; Barnaś, E.; Łączyńska-Madera, M.; Shpotyuk, Y.; Gumbarewicz, E.; Klebowski, B.; Cebulski, J.; et al. Determination of platinum-resistance of women with ovarian cancer by FTIR spectroscopy combined with multivariate analyses and machine learning methods. Sci. Rep. 2024, 14, 24923. [Google Scholar] [CrossRef]
- Lu, Z.; Pu, T.; Boning, L.; Ling, X.; Xu, L.; Qiu, L.; Bi, Z.; Chen, L.; Sui, L. Risk-stratified management of cervical high-grade squamous intraepithelial lesion based on machine learning. J. Med. Virol. 2024, 96, e70016. [Google Scholar]
- Wagner, V.M. Is Histopathology Deep Learning Artificial Intelligence the Future of Precision Oncology? J. Clin. Oncol. 2024, 42, 3513–3516. [Google Scholar] [CrossRef]
- Mysona, D.P.; Kapp, D.S.; Rohatgi, A.; Lee, D.; Mann, A.K.; Tran, P.; Tran, L.; She, J.X.; Chan, J.K. Applying Artificial Intelligence to Gynecologic Oncology: A Review. Obs. Gynecol. Surv. 2021, 76, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, P.; Poudyal, B.; Yadollahi, S.; Wright, D.E.; Gregory, A.E.; Warner, J.D.; Korfiatis, P.; Green, I.C.; Rassier, S.L.; Mariani, A.; et al. A systematic review on the use of artificial intelligence in gynecologic imaging—Background, state of the art, and future directions. Gynecol. Oncol. 2022, 166, 596–605. [Google Scholar] [CrossRef]
- Khattar, H.; Goel, R.; Kumar, P. Artificial Intelligence in Gynaecological Malignancies: Perspectives of a Clinical Oncologist. Cureus 2023, 15, e45660. [Google Scholar] [CrossRef]
- Available online: https://www.rcog.org.uk/media/o3gfrbdr/ai-in-gynaecology-oncology-peer-review.pdf?utm_source=chatgpt.com (accessed on 10 November 2024).
- Brandão, M.; Mendes, F.; Martins, M.; Cardoso, P.; Macedo, G.; Mascarenhas, T.; Mascarenhas Saraiva, M. Revolutionizing Women’s Health: A Comprehensive Review of Artificial Intelligence Advancements in Gynecology. J. Clin. Med. 2024, 13, 1061. [Google Scholar] [CrossRef]
Title | Author | Year | Focus |
---|---|---|---|
Applying Artificial Intelligence to Gynecologic Oncology: A Review [46] | David Pierce Mysona et al. | 2021 | Overview of AI’s role in enhancing diagnosis, clinical decision-making, and personalized therapies in gynecologic cancers. |
A Systematic Review on the Use of Artificial Intelligence in Gynecologic Cancer Imaging—Background, state of the art, and future directions [47] | Pallabi Shrestha et al. | 2022 | Discusses AI concepts and computer vision methods in the context of gynecologic cancer imaging. |
Artificial Intelligence in Gynaecological Malignancies: Perspectives of a Clinical Oncologist [48] | Himanshi Khattar et al. | 2023 | Reviews AI’s role in various steps of the workflow of gynecological malignancies and discusses clinical aspects for future research. |
Artificial Intelligence in Gynaecology Oncology [49] | Royal College of Obstetricians and Gynaecologists | 2024 | Explores the potential of AI to improve accuracy and efficiency in gynecological oncology diagnosis and treatment. |
Artificial Intelligence in Women’s Health: A Comprehensive Review of Artificial Intelligence Advancements in Gynecology [50] | Marta Brandão et al. | 2024 | Aim to establish the current status of AI in gynecology, the upcoming developments in this area, and discuss the challenges facing its clinical implementation, namely the technological and ethical concerns for technology development, implementation, and accountability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Restaino, S.; De Giorgio, M.R.; Pellecchia, G.; Arcieri, M.; Vasta, F.M.; Fedele, C.; Bonome, P.; Vizzielli, G.; Pignata, S.; Giannone, G. Artificial Intelligence in Gynecological Oncology from Diagnosis to Surgery. Cancers 2025, 17, 1060. https://doi.org/10.3390/cancers17071060
Restaino S, De Giorgio MR, Pellecchia G, Arcieri M, Vasta FM, Fedele C, Bonome P, Vizzielli G, Pignata S, Giannone G. Artificial Intelligence in Gynecological Oncology from Diagnosis to Surgery. Cancers. 2025; 17(7):1060. https://doi.org/10.3390/cancers17071060
Chicago/Turabian StyleRestaino, Stefano, Maria Rita De Giorgio, Giulia Pellecchia, Martina Arcieri, Francesca Maria Vasta, Camilla Fedele, Paolo Bonome, Giuseppe Vizzielli, Sandro Pignata, and Gaia Giannone. 2025. "Artificial Intelligence in Gynecological Oncology from Diagnosis to Surgery" Cancers 17, no. 7: 1060. https://doi.org/10.3390/cancers17071060
APA StyleRestaino, S., De Giorgio, M. R., Pellecchia, G., Arcieri, M., Vasta, F. M., Fedele, C., Bonome, P., Vizzielli, G., Pignata, S., & Giannone, G. (2025). Artificial Intelligence in Gynecological Oncology from Diagnosis to Surgery. Cancers, 17(7), 1060. https://doi.org/10.3390/cancers17071060