Single-Port Robot-Assisted Minimally Invasive Esophagectomy Using the Single-Port Robotic System via the Subcostal Approach: A Single-Center Retrospective Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Perioperative Data
2.3. Operative Techniques
2.3.1. Thoracic Phase
2.3.2. Abdominal Phase
2.3.3. Cervical Phase
2.3.4. Anastomotic Technique
2.3.5. Identification of Blood Perfusion Using Indocyanine Green (ICG) Fluorescence Imaging
2.4. Postoperative Management
2.5. Statistical Analyses
2.6. Ethical Statement
3. Results
3.1. Clinical Characteristics of Patients Who Underwent SRAMIE Using the SP Robotic System
3.2. Comparative Analysis of SRAMIE Using the SP Robotic System, MRAMIE Using the XI Robotic System, and VAE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICG | Indocyanine green |
ICS | Intercostal space |
LN | Lymph node |
MIE | Minimally invasive esophagectomy |
MRAMIE | Multiport robot-assisted minimally invasive esophagectomy |
OE | Open esophagectomy |
PET | Positron emission tomography |
RAMIE | Robot-assisted minimally invasive esophagectomy |
RLN | Recurrent laryngeal nerve |
SP | Single port |
SRAMIE | Single-port robot-assisted minimally invasive esophagectomy |
VAE | Video-assisted thoracoscopic esophagectomy |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, M.; Roshandel, G.; McCormack, V.; Malekzadeh, R. Current Status and Future Prospects for Esophageal Cancer. Cancers 2023, 15, 765. [Google Scholar] [CrossRef] [PubMed]
- Obermannova, R.; Alsina, M.; Cervantes, A.; Leong, T.; Lordick, F.; Nilsson, M.; van Grieken, N.C.T.; Vogel, A.; Smyth, E.C.; ESMO Guidelines Committee. Oesophageal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 992–1004. [Google Scholar] [CrossRef]
- Watanabe, M.; Otake, R.; Kozuki, R.; Toihata, T.; Takahashi, K.; Okamura, A.; Imamura, Y. Recent progress in multidisciplinary treatment for patients with esophageal cancer. Surg. Today 2020, 50, 12–20. [Google Scholar] [CrossRef]
- Cuschieri, A. Endoscopic subtotal oesophagectomy for cancer using the right thoracoscopic approach. Surg. Oncol. 1993, 1, 3–11. [Google Scholar] [CrossRef]
- Mariette, C.; Markar, S.; Dabakuyo-Yonli, T.S.; Meunier, B.; Pezet, D.; Collet, D.; D’Journo, X.B.; Brigand, C.; Perniceni, T.; Carrere, N.; et al. Health-related Quality of Life Following Hybrid Minimally Invasive Versus Open Esophagectomy for Patients With Esophageal Cancer, Analysis of a Multicenter, Open-label, Randomized Phase III Controlled Trial: The MIRO Trial. Ann. Surg. 2020, 271, 1023–1029. [Google Scholar] [CrossRef]
- Straatman, J.; van der Wielen, N.; Cuesta, M.A.; Daams, F.; Roig Garcia, J.; Bonavina, L.; Rosman, C.; van Berge Henegouwen, M.I.; Gisbertz, S.S.; van der Peet, D.L. Minimally Invasive Versus Open Esophageal Resection: Three-year Follow-up of the Previously Reported Randomized Controlled Trial: The TIME Trial. Ann. Surg. 2017, 266, 232–236. [Google Scholar] [CrossRef]
- Dantoc, M.M.; Cox, M.R.; Eslick, G.D. Does minimally invasive esophagectomy (MIE) provide for comparable oncologic outcomes to open techniques? A systematic review. J. Gastrointest. Surg. 2012, 16, 486–494. [Google Scholar] [CrossRef]
- Nuytens, F.; Dabakuyo-Yonli, T.S.; Meunier, B.; Gagniere, J.; Collet, D.; D’Journo, X.B.; Brigand, C.; Perniceni, T.; Carrere, N.; Mabrut, J.Y.; et al. Five-Year Survival Outcomes of Hybrid Minimally Invasive Esophagectomy in Esophageal Cancer: Results of the MIRO Randomized Clinical Trial. JAMA Surg. 2021, 156, 323–332. [Google Scholar] [CrossRef]
- Kernstine, K.H.; DeArmond, D.T.; Karimi, M.; Van Natta, T.L.; Campos, J.H.; Yoder, M.R.; Everett, J.E. The robotic, 2-stage, 3-field esophagolymphadenectomy. J. Thorac. Cardiovasc. Surg. 2004, 127, 1847–1849. [Google Scholar] [CrossRef] [PubMed]
- Towe, C.W.; Servais, E.L.; Brown, L.M.; Blasberg, J.D.; Mitchell, J.D.; Worrell, S.G.; Seder, C.W.; David, E.A. The Society of Thoracic Surgeons General Thoracic Surgery Database: 2023 Update on Outcomes and Research. Ann. Thorac. Surg. 2024, 117, 489–496. [Google Scholar] [CrossRef]
- Park, B.J.; Flores, R.M.; Rusch, V.W. Robotic assistance for video-assisted thoracic surgical lobectomy: Technique and initial results. J. Thorac. Cardiovasc. Surg. 2006, 131, 54–59. [Google Scholar] [CrossRef]
- Kang, C.H. Totally Robotic Esophagectomy. J. Chest Surg. 2021, 54, 302–309. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, T.H.; Kim, H.K. Robotic thoracic surgery using the single-port robotic system: Initial experience with more than 100 cases. J. Thorac. Cardiovasc. Surg. 2024, 168, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Hong, J.I.; Jin Jang, Y.; Kim, H.K. Single-port plus one port subcostal robotic-assisted minimally invasive McKewon esophagectomy using the daVinci Single-Port surgical system. Interdiscip. CardioVascular Thorac. Surg. 2023, 36, ivad026. [Google Scholar] [CrossRef]
- Mann, C.; Berlth, F.; Hadzijusufovic, E.; Lang, H.; Grimminger, P.P. Minimally invasive esophagectomy: Clinical evidence and surgical techniques. Langenbeck’s Arch. Surg. 2020, 405, 1061–1067. [Google Scholar] [CrossRef]
- Yun, J.K.; Lee, I.S.; Gong, C.S.; Kim, B.S.; Kim, H.R.; Kim, D.K.; Park, S.I.; Kim, Y.H. Clinical utility of robot-assisted transthoracic esophagectomy in advanced esophageal cancer after neoadjuvant chemoradiation therapy. J. Thorac. Dis. 2019, 11, 2913–2923. [Google Scholar] [CrossRef]
- Rice, T.W.; Ishwaran, H.; Ferguson, M.K.; Blackstone, E.H.; Goldstraw, P. Cancer of the Esophagus and Esophagogastric Junction: An Eighth Edition Staging Primer. J. Thorac. Oncol. 2017, 12, 36–42. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibanes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef]
- Low, D.E.; Alderson, D.; Cecconello, I.; Chang, A.C.; Darling, G.E.; D’Journo, X.B.; Griffin, S.M.; Holscher, A.H.; Hofstetter, W.L.; Jobe, B.A.; et al. International Consensus on Standardization of Data Collection for Complications Associated With Esophagectomy: Esophagectomy Complications Consensus Group (ECCG). Ann. Surg. 2015, 262, 286–294. [Google Scholar] [CrossRef] [PubMed]
- National Health Commission of The People’s Republic of China. National guidelines for diagnosis and treatment of esophageal carcinoma 2022 in China (English version). Chin. J. Cancer Res. 2022, 34, 309–334. [Google Scholar] [CrossRef]
- Park, B.J.; Kim, D.J. Robot-Assisted Thoracoscopic Esophagectomy with Total Mediastinal Lymphadenectomy: A Guide to a Systematic Approach Using the Concept of Fascial Plane Dissection. J. Chest Surg. 2021, 54, 294–301. [Google Scholar] [CrossRef]
- Harrington, C.; Molena, D. Minimally invasive Ivor Lewis esophagectomy in 10 steps. JTCVS Tech. 2021, 10, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Okumura, T.; Nagata, T.; Sawada, S.; Matsui, K.; Hori, R.; Yoshioka, I.; Yoshida, T.; Osada, R.; Tsukada, K. Usefulness of blood supply visualization by indocyanine green fluorescence for reconstruction during esophagectomy. Esophagus 2011, 8, 259–266. [Google Scholar] [CrossRef]
- You, J.; Zhang, H.; Li, W.; Dai, N.; Lu, B.; Ji, Z.; Zhuang, H.; Zheng, Z. Intrathoracic versus cervical anastomosis in esophagectomy for esophageal cancer: A meta-analysis of randomized controlled trials. Surgery 2022, 172, 575–583. [Google Scholar] [CrossRef]
- McLarty, A.J.; Deschamps, C.; Trastek, V.F.; Allen, M.S.; Pairolero, P.C.; Harmsen, W.S. Esophageal resection for cancer of the esophagus: Long-term function and quality of life. Ann. Thorac. Surg. 1997, 63, 1568–1572. [Google Scholar] [CrossRef]
- Ercan, S.; Rice, T.W.; Murthy, S.C.; Rybicki, L.A.; Blackstone, E.H. Does esophagogastric anastomotic technique influence the outcome of patients with esophageal cancer? J. Thorac. Cardiovasc. Surg. 2005, 129, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Williams, V.A.; Watson, T.J.; Zhovtis, S.; Gellersen, O.; Raymond, D.; Jones, C.; Peters, J.H. Endoscopic and symptomatic assessment of anastomotic strictures following esophagectomy and cervical esophagogastrostomy. Surg. Endosc. 2008, 22, 1470–1476. [Google Scholar] [CrossRef]
- Aiolfi, A.; Sozzi, A.; Bonitta, G.; Lombardo, F.; Cavalli, M.; Cirri, S.; Campanelli, G.; Danelli, P.; Bona, D. Linear- versus circular-stapled esophagogastric anastomosis during esophagectomy: Systematic review and meta-analysis. Langenbecks Arch. Surg. 2022, 407, 3297–3309. [Google Scholar] [CrossRef]
- Kondra, J.; Ong, S.R.; Clifton, J.; Evans, K.; Finley, R.J.; Yee, J. A change in clinical practice: A partially stapled cervical esophagogastric anastomosis reduces morbidity and improves functional outcome after esophagectomy for cancer. Dis. Esophagus 2008, 21, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, B.; Yi, J.; Hua, R.; Chen, H.; Tan, L.; Li, H.; He, Y.; Guo, X.; Sun, Y.; et al. Robot-assisted Versus Conventional Minimally Invasive Esophagectomy for Resectable Esophageal Squamous Cell Carcinoma: Early Results of a Multicenter Randomized Controlled Trial: The RAMIE Trial. Ann. Surg. 2022, 275, 646–653. [Google Scholar] [CrossRef]
- Chao, Y.K.; Li, Z.; Jiang, H.; Wen, Y.W.; Chiu, C.H.; Li, B.; Shang, X.; Fang, T.J.; Yang, Y.; Yue, J.; et al. Multicentre randomized clinical trial on robot-assisted versus video-assisted thoracoscopic oesophagectomy (REVATE trial). Br. J. Surg. 2024, 111, znae143. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, L.; Zheng, H.; Zhang, W.; Lv, X.; Abdellateef, A. Early postoperative pain after subxiphoid uniportal thoracoscopic major lung resection: A prospective, single- blinded, randomized controlled trial. Interdiscip. CardioVascular Thorac. Surg. 2022, 35, ivac133. [Google Scholar] [CrossRef]
- Luo, Y.; He, F.; Wu, Q.; Shi, H.; Chen, D.; Tie, H. Feasibility of Video-Assisted Thoracoscopic Surgery via Subxiphoid Approach in Anterior Mediastinal Surgery: A Meta-Analysis. Front. Surg. 2022, 9, 900414. [Google Scholar] [CrossRef]
- Bagan, P.; Das-Neves-Pereira, J.C.; Abdesselam, A.B.; Couffinhal, J.C. Intercostal-subcostal combined complete port-accessed video-assisted lobectomy. Interdiscip. CardioVascular Thorac. Surg. 2010, 11, 383–384. [Google Scholar] [CrossRef] [PubMed]
- Tagkalos, E.; Goense, L.; Hoppe-Lotichius, M.; Ruurda, J.P.; Babic, B.; Hadzijusufovic, E.; Kneist, W.; van der Sluis, P.C.; Lang, H.; van Hillegersberg, R.; et al. Robot-assisted minimally invasive esophagectomy (RAMIE) compared to conventional minimally invasive esophagectomy (MIE) for esophageal cancer: A propensity-matched analysis. Dis. Esophagus 2020, 33, doz060. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Li, X.K.; Zhang, C.; Zhou, H.; Ji, S.G.; Zhong, J.H.; Xu, Y.; Cong, Z.Z.; Wang, G.M.; Wu, W.J.; et al. Comparison of short-term clinical outcomes between robot-assisted minimally invasive esophagectomy and video-assisted minimally invasive esophagectomy: A systematic review and meta-analysis. J. Thorac. Dis. 2021, 13, 708–719. [Google Scholar] [CrossRef]
- Suda, K.; Ishida, Y.; Kawamura, Y.; Inaba, K.; Kanaya, S.; Teramukai, S.; Satoh, S.; Uyama, I. Robot-assisted thoracoscopic lymphadenectomy along the left recurrent laryngeal nerve for esophageal squamous cell carcinoma in the prone position: Technical report and short-term outcomes. World J. Surg. 2012, 36, 1608–1616. [Google Scholar] [CrossRef]
- Oshikiri, T.; Goto, H.; Horikawa, M.; Urakawa, N.; Hasegawa, H.; Kanaji, S.; Yamashita, K.; Matsuda, T.; Nakamura, T.; Kakeji, Y. Incidence of Recurrent Laryngeal Nerve Palsy in Robot-Assisted Versus Conventional Minimally Invasive McKeown Esophagectomy in Prone Position: A Propensity Score-Matched Study. Ann. Surg. Oncol. 2021, 28, 7249–7257. [Google Scholar] [CrossRef]
- Guerra, F.; Vegni, A.; Gia, E.; Amore Bonapasta, S.; Di Marino, M.; Annecchiarico, M.; Coratti, A. Early experience with totally robotic esophagectomy for malignancy. Surgical and oncological outcomes. Int. J. Med. Robot. Comput. Assist. Surg. 2018, 14, e1902. [Google Scholar] [CrossRef]
- Davakis, S.; Charalabopoulos, A.; Kyros, E.; Sakarellos, P.; Tsourouflis, G.; Dimitroulis, D.; Nikiteas, N. Minimally Invasive Transcervical Esophagectomy with Mediastinal Lymphadenectomy for Cancer. A Comparison with Standardized Techniques. Anticancer Res. 2022, 42, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Hadzijusufovic, E.; Lozanovski, V.J.; Griemert, E.V.; Bellaio, L.; Lang, H.; Grimminger, P.P. Single-Port da Vinci Robot-Assisted Cervical Esophagectomy: How to Do It. J. Thorac. Cardiovasc. Surg. 2024, 72, 654–658. [Google Scholar] [CrossRef]
Sex/Age (Years) | Tumor Location | Diagnosis | Procedure | Console Time (min) | Chest Tube Duration/Postoperative LOS (Days) | Intraoperative/Postoperative Complications |
---|---|---|---|---|---|---|
M/55 | Middle | SqCC | McKeown | 400 | 6/12 | |
M/57 | Upper | SqCC | McKeown | 239 | 19/43 | Re-operation owing to anastomotic leakage, vocal cord palsy, pneumonia |
M/68 | Middle | SqCC | McKeown | 237 | 11/14 | Vocal cord palsy |
M/52 | Lower | SqCC | Ivor–Lewis | 253 | 9/14 | |
M/75 | Lower | SqCC | Ivor–Lewis | 272 | 6/10 | |
M/63 | Lower | SqCC | Ivor–Lewis | 225 | 7/9 | |
M/54 | Lower | SqCC | Ivor–Lewis | 188 | 7/10 | Vocal cord palsy |
M/56 | Middle | SqCC | Ivor–Lewis | 211 | 7/10 | |
M/72 | Middle | SqCC | McKeown | 270 | 8/16 | |
M/74 | Lower | SqCC | Ivor–Lewis | 283 | 12/18 | Pneumonia |
M/77 | Middle | SqCC | Ivor–Lewis | 307 | 10/13 | Pleural effusion |
M/67 | Upper | SqCC | McKeown | 275 | 19/34 | Vocal cord palsy, pneumonia |
M/73 | Middle | SqCC | McKeown | 325 | 8/14 | |
F/69 | Lower | SqCC | Ivor–Lewis | 198 | 6/8 | |
M/49 | Lower | SqCC | Ivor–Lewis | 272 | 11/53 | Seizure |
M/62 | Lower | SqCC | Ivor–Lewis | 240 | 6/11 | Pleural effusion |
M/67 | Upper | SqCC | McKeown | 258 | 5/11 |
Variable | SRAMIE | MRAMIE | VAE | p-Value | ||
---|---|---|---|---|---|---|
(n = 17) | (n = 13) | (n = 23) | SRAMIE vs. MRAMIE | SRAMIE vs. VAE | MRAMIE vs. VATS | |
Age, years | 67 [55–72] | 64 [61–65] | 65 [61–70] | 0.713 | 0.829 | 0.415 |
Sex, male | 16 (94%) | 11 (85%) | 21 (91%) | 0.565 | 1.000 | 0.609 |
BMI (kg/m2) | 22.8 [19.7–24.1] | 22.4 [19.9–23.8] | 21.4 [19.9–24.7] | 0.663 | 0.810 | 0.827 |
Comorbidities | ||||||
HTN | 10 (59%) | 8 (61%) | 10 (43%) | 1.000 | 0.337 | 0.298 |
DM | 1 (6%) | 4 (31%) | 5 (22%) | 0.138 | 0.216 | 0.693 |
COPD | 1 (6%) | 3 (23%) | 2 (9%) | 0.290 | 1.000 | 0.328 |
ASA | 2 [2–3] | 3 [2–3] | 3 [2–3] | 0.462 | 0.538 | 0.731 |
Pathology | 1.000 | 1.000 | 1.000 | |||
SqCC | 17 (100%) | 13 (100%) | 22 (96%) | |||
AC | 0 | 0 | 1 (4%) | |||
Neoadjuvant therapy | 0.698 | 0.233 | 0.336 | |||
CRT | 4 (24%) | 4 (31%) | 4 (17%) | |||
CT | 0 | 0 | 4 (17%) | |||
None | 13 (76%) | 9 (69%) | 15 (65%) | |||
Tumor location | 0.340 | 1.000 | 0.204 | |||
Upper | 3 (17%) | 5 (38%) | 5 (22%) | |||
Middle | 6 (35%) | 5 (38%) | 7 (30%) | |||
Lower | 8 (47%) | 3 (23%) | 11 (48%) | |||
Operative types | 0.713 | 0.680 | 0.265 | |||
Ivor–Lewis | 10 (59%) | 6 (46%) | 15 (65%) | |||
McKeown | 7 (41%) | 7 (54%) | 8 (35%) | |||
Clinical TNM stage | 1.000 | 0.143 | 0.391 | |||
I | 10 (59%) | 7 (54%) | 7 (30%) | |||
II | 3 (18%) | 3 (23%) | 10 (43%) | |||
III | 4 (23%) | 3 (23%) | 6 (26%) | |||
Clinical status | 0.103 | 0.909 | 0.607 | |||
cT1a N0/N1 | 2 (12%)/1 (6%) | 4 (31%)/0 | 3 (13%)/0 | |||
cT1b N0/N1 | 8 (47%)/0 | 3 (23%)/2 (15%) | 7 (30%)/2 (9%) | |||
cT2 N0 | 4 (24%) | 2 (15%) | 5 (22%) | |||
cT3 N0/N1/N2 | 2 (12%)/0/0 | 0/2 (15%)/0 | 3 (13%)/1 (4%)/1 (4%) | |||
cT4 N0 | 0 | 0 | 1 (4%) |
Variables | SRAMIE | MRAMIE | VAE | p-Value | ||
---|---|---|---|---|---|---|
(n = 17) | (n = 13) | (n = 23) | SRAMIE vs. MRAMIE | SRAMIE vs. VAE | MRAMIE vs. VAE | |
Thoracotomy conversion | 0 (0%) | 1 (8%) | 1 (4%) | 0.433 | 1.000 | 1.000 |
R0 resection | 16 (94%) | 12 (92%) | 21 (91%) | 1.000 | 1.000 | 1.000 |
Total operative time (min) | 465 [430–542] | 427 [395–538] | 455 [378–510] | 0.187 | 0.389 | 0.877 |
Console time (min) | 258 [231–279] | 250 [226–346] | 0.613 | |||
Anastomosis technique | 0.002 | 0.003 | 0.020 | |||
Linear stapling | ||||||
Totally stapled | 3 (18%) | 8 (62%) | 3 (13%) | |||
Partially stapled | 13 (76%) | 2 (15%) | 7 (30%) | |||
Circular stapling | 1 (6%) | 3 (23%) | 12 (52%) | |||
Handsewn | 0 | 0 | 1 (4%) | |||
Number of LNs resected | ||||||
Total LNs | 32 [26–42] | 30 [20–35] | 27 [20–37] | 0.240 | 0.404 | 0.714 |
Left RLN LNs | 2 [2–4] | 2 [1–3] | 1 [1–3] | 0.265 | 0.072 | 0.668 |
Right RLN LNs | 3 [2–4] | 2 [1–3] | 2 [1–4] | 0.207 | 0.655 | 0.512 |
Chest tube duration (days) | 7 [6–11] | 8 [7–11] | 11 [8–16] | 0.406 | 0.019 | 0.082 |
Postoperative LOS (days) | 13 [10–17] | 15 [13–18] | 18 [14–40] | 0.214 | 0.030 | 0.228 |
Postoperative pain (VAS) | ||||||
Peak | 4 [3–5] | 6 [3–7] | 6 [5–7] | 0.459 | 0.003 | 0.255 |
POD 0 | 3 [3–5] | 3 [3–7] | 5 [3–7] | 0.349 | 0.108 | 0.928 |
POD 1 | 3 [3–4] | 3 [3–5] | 3 [3–5] | 0.703 | 0.286 | 0.622 |
POD 2 | 3 [2–3] | 3 [2–6] | 3 [3–5] | 0.436 | 0.557 | 0.798 |
POD 3 | 3 [2–3] | 3 [2–3] | 3 [2–3] | 0.910 | 0.919 | 1.000 |
POD 7 | 2 [1–3] | 3 [1–3] | 2 [1–4] | 0.420 | 0.332 | 0.992 |
Postoperative complications | ||||||
Major complications | 2 (12%) | 1 (8%) | 5 (22%) | 1.000 | 0.677 | 0.385 |
Anastomotic leakage | 1 (6%) | 1 (8%) | 4 (17%) | 1.000 | 0.373 | 0.634 |
Vocal cord palsy | 4 (24%) | 3 (23%) | 7 (30%) | 1.000 | 0.725 | 0.709 |
Pneumonia | 3 (18%) | 4 (31%) | 7 (30%) | 0.666 | 0.471 | 1.000 |
Reoperation | 1 (6%) | 1 (8%) | 2 (9%) | 1.000 | 1.000 | 1.000 |
Pathological status | 0.904 | 0.543 | 0.916 | |||
pT0 N0/N1 | 3/0 | 2/1 | 2/1 | |||
pT1a N0/N1 | 3/0 | 3/1 | 2/0 | |||
pT1b N0/N1/N3 | 6/1/1 | 3/1/0 | 4/1/0 | |||
pT2 N0/N1 | 0/0 | 0/0 | 2/1 | |||
pT3 N0/N1/N2/N3 | 1/2/0/0 | 0/1/1/0 | 1/2/3/1 | |||
pT4a N3 | 0 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.H.; Gu, B.M.; Song, H.H.; Jang, Y.J.; Kim, H.K. Single-Port Robot-Assisted Minimally Invasive Esophagectomy Using the Single-Port Robotic System via the Subcostal Approach: A Single-Center Retrospective Study. Cancers 2025, 17, 1052. https://doi.org/10.3390/cancers17071052
Lee JH, Gu BM, Song HH, Jang YJ, Kim HK. Single-Port Robot-Assisted Minimally Invasive Esophagectomy Using the Single-Port Robotic System via the Subcostal Approach: A Single-Center Retrospective Study. Cancers. 2025; 17(7):1052. https://doi.org/10.3390/cancers17071052
Chicago/Turabian StyleLee, Jun Hee, Byung Mo Gu, Hyeong Hun Song, You Jin Jang, and Hyun Koo Kim. 2025. "Single-Port Robot-Assisted Minimally Invasive Esophagectomy Using the Single-Port Robotic System via the Subcostal Approach: A Single-Center Retrospective Study" Cancers 17, no. 7: 1052. https://doi.org/10.3390/cancers17071052
APA StyleLee, J. H., Gu, B. M., Song, H. H., Jang, Y. J., & Kim, H. K. (2025). Single-Port Robot-Assisted Minimally Invasive Esophagectomy Using the Single-Port Robotic System via the Subcostal Approach: A Single-Center Retrospective Study. Cancers, 17(7), 1052. https://doi.org/10.3390/cancers17071052