Advancing Cancer Therapy with Quantum Dots and Other Nanostructures: A Review of Drug Delivery Innovations, Applications, and Challenges
Simple Summary
Abstract
1. Introduction
2. Approaches to Drug Conjugation onto QDs
2.1. Covalent Linking
- EDC-NHS (N-hydroxy succinimide) chemistry: Employing 1-ethyl-3-dimethylamino propyl carbodiimide hydrochloride (EDC) as a cross-linker to form an amide bond between the carboxyl group of QDs and the amine group of the biomolecule [64]. This method is commonly used for targeting cells through receptor-mediated endocytosis and folate receptor-mediated delivery [65]. Figure 2 depicts the covalent conjugation.
- Conjugation of biomolecules with –NH2-containing QDs is a widely used technique involving the thiol group on the molecules [58]. Reagents like Sulpho-SMCC [Sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate] are frequently employed [66]. QDs with amino groups are used for conjugation with peptides, proteins, receptors, and antibodies [67].
- Thiol-containing QDs can bind to sulphur-containing compounds, such as amino acids, through disulfide bonds, thereby enhancing the solubility of hydrophobic QDs [64]. Similarly, epoxide-containing QDs react with amine, thiol, or hydroxyl molecules, forming stable secondary amine, thioether, or ether bonds [64].
2.2. Non-Covalent Conjugation
2.3. Click Chemistry
2.4. Disulphide Linkage
2.5. pH-Sensitive Linkage
3. QDs in Oncology
3.1. Graphene Quantum Dots
3.1.1. Breast Cancer
3.1.2. Colorectal Cancer
3.1.3. Lung Cancer
3.1.4. Pancreatic Cancer
3.1.5. Blood Cancer
3.1.6. Cervical Cancer
3.2. Carbon Dots
3.2.1. Brain Cancer
3.2.2. Breast Cancer
3.2.3. Cervical Cancer
3.2.4. Liver Cancer
3.2.5. Adenoid Cystic Carcinoma
3.2.6. Lung Cancer
3.3. Carbon Quantum Dots
3.3.1. Breast Cancer
3.3.2. Cervical Cancer
3.4. SQDs
3.4.1. Breast Cancer
3.4.2. Cervical Cancer
3.4.3. Lung Cancer
3.4.4. Oral Carcinoma
3.4.5. Skin Cancer
3.5. Others
Osteosarcoma
4. Challenges Involved
4.1. Potential Toxicity
4.2. Stability and Pharmacokinetics
4.3. Targeting Specificity
4.4. Minimal Clinical Information
5. Future Prospects
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chatterjee, P.; Dhibar, S. Nanomaterial Marvels: Pioneering Applications and Cutting-Edge Advancements in Drug Delivery. Nano Med. Mater. 2023, 3, 220. [Google Scholar] [CrossRef]
- Chehelgerdi, M.; Chehelgerdi, M.; Allela, O.Q.B.; Pecho, R.D.C.; Jayasankar, N.; Rao, D.P.; Thamaraikani, T.; Vasanthan, M.; Viktor, P.; Lakshmaiya, N.; et al. Progressing Nanotechnology to Improve Targeted Cancer Treatment: Overcoming Hurdles in Its Clinical Implementation. Mol. Cancer 2023, 22, 169. [Google Scholar] [CrossRef] [PubMed]
- Sathe, K.P.; Garud, N.S.; Bangar, V.B.; Gadakh, N.R. A Review on Quantum Dots (QDS). J. Adv. Sci. Res. 2022, 13, 23–27. [Google Scholar] [CrossRef]
- Ebeid El-Zeiny, M.; Okba, E.A. Quantum Dots: Their Unique Properties and Contemporary Applications. In Advances in Semiconductor Physics, Devices and Quantum Dots—Nanotechnology and Future Challenges; IntechOpen: London, UK, 2024; pp. 1–26. [Google Scholar]
- Khan, M.S.; Sheikh, A.; Abourehab, M.A.S.; Gupta, N.; Kesharwani, P. Understanding the Theranostic Potential of Quantum Dots in Cancer Management. Mater. Today Commun. 2023, 36, 106424. [Google Scholar] [CrossRef]
- Guo, R.; Wei, C.; Zhang, W.; Xie, F. Quantum Dots. In Encyclopaedia of Color Science and Technology; Shamey, R., Ed.; Springer: Cham, Switzerland, 2023; pp. 1357–1360. [Google Scholar]
- Naylor-Adamson, L.; Price, T.W.; Booth, Z.; Stasiuk, G.J.; Calaminus, S.D.J. Quantum Dot Imaging Agents: Haematopoietic Cell Interactions and Biocompatibility. Cells 2024, 13, 354. [Google Scholar] [CrossRef]
- Omidian, H.; Wilson, R.L.; Cubeddu, L.X. Quantum Dot Research in Breast Cancer: Challenges and Prospects. Materials 2024, 17, 2152. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Majumdar, P.; Alessandri, E.; Roemer, C. Recent Advancement of Quantum Dot-Based Nanocomposites as Electrode Materials for Secondary Batteries. Energies 2025, 18, 630. [Google Scholar] [CrossRef]
- Jong, W.H.D.; Borm, P.J. Drug Delivery and Nanoparticles: Applications and Hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef]
- Nabil, M.; Megahed, F. Quantum Dot Nanomaterials: Preparation, Characterization, Advanced Bio-Imaging and Therapeutic Applications. J. Fluoresc. 2023, 34, 2467–2484. [Google Scholar] [CrossRef]
- Giroux, M.S.; Zahra, Z.; Salawu, O.A.; Burgess, R.M.; Ho, K.T.; Adeleye, A.S. Assessing the Environmental Effects Related to Quantum Dot Structure, Function, Synthesis and Exposure. Environ. Sci. Nano 2021, 9, 867–910. [Google Scholar] [CrossRef]
- Ren, D.; Wang, B.; Hu, C.; You, Z. Quantum Dot Probes for Cellular Analysis. Anal. Methods 2017, 9, 2621–2632. [Google Scholar] [CrossRef]
- Badıllı, U.; Mollarasouli, F.; Bakirhan, N.K.; Ozkan, Y.; Ozkan, S.A. Role of Quantum Dots in Pharmaceutical and Biomedical Analysis, and Its Application in Drug Delivery. TrAC-Trends Anal. Chem. 2020, 131, 116013. [Google Scholar] [CrossRef]
- Ramezani, Z.; Kiani Ghalehsardi, F.; Noorizadeh, S. Classifications of Quantum Dots and Their Detection Principles in Sensing. In Quantum Dots in Bioanalytical Chemistry and Medicine; Thompson, M., Ramezani, Z., Eds.; The Royal Society of Chemistry: London, UK, 2023; Volume 22, pp. 1–36. [Google Scholar]
- Mowbray, D. Inorganic Semiconductor. In Nanoscale Science and Technology; Kelsall, R.W., Hamley, I.W., Geoghegan, M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 130–202. [Google Scholar]
- Rizvi, S.B.; Ghaderi, S.; Keshtgar, M.; Seifalian, A.M. Semiconductor Quantum Dots as Fluorescent Probes for in Vitro and in Vivo Bio-Molecular and Cellular Imaging. Nano Rev. 2010, 1, 5161. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, M.; Mostafavi, E.; Vincent, S.; Negash, H.; Andavar, R.; Perumal, V.; Chandra, N.; Narayanasamy, S.; Kalimuthu, K.; Barabadi, H. Nanotechnology-Based Approaches for Emerging and Re-Emerging Viruses: Special Emphasis on COVID-19. Microb. Pathog. 2021, 156, 104908. [Google Scholar] [CrossRef]
- Wagner, A.M.; Knipe, J.M.; Orive, G.; Peppas, N.A. Quantum Dots in Biomedical Applications. Acta Biomater. 2019, 94, 44–63. [Google Scholar] [CrossRef]
- Wen, L.; Qiu, L.; Wu, Y.; Hu, X.; Zhang, X. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications. Sensors 2017, 17, 1736. [Google Scholar] [CrossRef]
- Wang, X.; Wang, P.; Li, M.; Li, J. Advances in the Preparation and Biological Applications of Core@shell Nanocrystals Based on Quantum Dots and Noble Metal. RSC Adv. 2024, 14, 26308–26324. [Google Scholar] [CrossRef]
- Chen, T.; Chen, Y.; Li, Y.; Liang, M.; Wu, W.; Wang, Y. A Review on Multiple I-III-VI Quantum Dots: Preparation and Enhanced Luminescence Properties. Materials 2023, 16, 5039. [Google Scholar] [CrossRef]
- Nikazar, S.; Sivasankarapillai, V.S.; Rahdar, A.; Gasmi, S.; Anumol, P.S.; Muhammad, A.; Shanavas, S. Revisiting the Cytotoxicity of Quantum Dots: An in-Depth Overview. Biophys. Rev. 2020, 12, 703–718. [Google Scholar] [CrossRef]
- Le, N.; Kim, K. Current Advances in the Biomedical Applications of Quantum Dots: Promises and Challenges. Int. J. Mol. Sci. 2023, 24, 12682. [Google Scholar] [CrossRef]
- Bian, F.; Sun, L.; Cai, L.; Wang, Y.; Zhao, Y. Quantum Dots from Microfluidics for Nanomedical Application. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, 1567. [Google Scholar] [CrossRef]
- Mohamed, W.A.A.; Abd El-Gawad, H.; Mekkey, S.; Galal, H.; Handal, H.; Mousa, H.; Labib, A. Quantum Dots Synthetization and Future Prospect Applications. Nanotechnol. Rev. 2021, 10, 1926–1940. [Google Scholar] [CrossRef]
- Sulaman, M.; Han, T.; Qasim, M.; Liu, B.; Shah, N.H.; Wu, Q.; Imran, A.; Wei, Y.; Guo, H.; Li, C. High-Performance Self-Powered NIR Enabled by PbSe Quantum Surface Passivation with P3HT through bulk-Heterojunction Integration. Mater. Today Chem. 2025, 43, 102466. [Google Scholar] [CrossRef]
- Li, P.; Wu, C.; Xu, Y.; Cheng, D.; Lu, Q.; Gao, J.; Yang, W.; Zhu, X.; Liu, M.; Li, H.; et al. Group IV Nanodots: Newly Emerging Properties and Application in Biomarkers Sensing. TrAC-Trends Anal. Chem. 2020, 131, 116007. [Google Scholar] [CrossRef]
- Liu, Y.S.; Sun, Y.; Vernier, P.T.; Liang, C.H.; Chong, S.Y.C.; Gundersen, M.A. pH-sensitive Photoluminescence of CdSe/ZnSe/ZnS Quantum Dots in Human Ovarian Cancer Cells. J. Phys. Chem. C Nanomater. Interfaces 2007, 111, 2872–2878. [Google Scholar] [CrossRef]
- Qian, J.; Yong, K.T.; Roy, I.; Ohulchanskyy, T.Y.; Bergey, E.J.; Lee, B.H.; Tramposch, K.M.; He, S.; Maitra, A.; Prasad, P.N. Imaging Pancreatic Cancer Using Surface-Functionalized Quantum Dots. J. Phys. Chem. B 2007, 111, 6969–6972. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, T.; Abdullah, M.M.; Lafta, F.M. Cysteine-Cupped CdSe/CdS Quantum Dots as an Opticalbiosensor for Early Skin Cancer Detection. J. Opt. 2024. [Google Scholar] [CrossRef]
- Elugoke, S.E.; Uwaya, G.E.; Quadri, T.W.; Ebenso, E.E. Carbon Quantum Dots: Basics, Properties, and Fundamentals. In Carbon Dots: Recent Developments and Future Perspectives; Berdimurodov, E., Verma, D.K., Guo, L., Eds.; American Chemical Society: Washington, DC, USA, 2024; Volume 1465, pp. 3–42. [Google Scholar]
- Kong, J.; Wei, Y.; Zhou, F.; Shi, L.; Zhao, S.; Wan, M.; Zhang, X. Carbon Quantum Dots: Properties, Preparation, and Applications. Molecules 2024, 29, 2002. [Google Scholar] [CrossRef]
- Mansuriya, B.D.; Altintas, Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care—An Updated Review (2018–2021). Nanomaterials 2021, 11, 2525. [Google Scholar] [CrossRef]
- Das, S.; Mondal, S.; Ghosh, D. Carbon Quantum Dots in Bioimaging and Biomedicines. Front. Bioeng. Biotechnol. 2024, 11, 1333752. [Google Scholar] [CrossRef]
- Anpalagan, K.; Yin, H.; Cole, I.; Zhang, T.; Lai, D.T.H. Quantum Yield Enhancement of Carbon Quantum Dots Using Chemical-Free Precursors for Sensing Cr (VI) Ions. Inorganics 2024, 12, 96. [Google Scholar] [CrossRef]
- Molaei, M.J. Carbon Quantum Dots and Their Biomedical and Therapeutic Applications: A Review. RSC Adv. 2019, 9, 6460–6481. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Chatterjee, S.; Prajapati, R.; Mukherjee, T.K. Size-Dependent Penetration of Carbon Dots inside the Ferritin Nanocages: Evidence for the Quantum Confinement Effect in Carbon Dots. Phys. Chem. Chem. Phys. 2015, 17, 12833–12840. [Google Scholar] [CrossRef]
- Chen, F.; Gao, W.; Qiu, X.; Zhang, H.; Liu, L.; Liao, P.; Fu, W.; Luo, Y. Graphene Quantum Dots in Biomedical Applications: Recent Advances and Future Challenges. Front. Lab. Med. 2017, 1, 192–199. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B. Photoluminescence Mechanism in Graphene Quantum Dots: Quantum Confinement Effect and Surface/Edge State. Nano Today 2017, 13, 10–14. [Google Scholar] [CrossRef]
- Zarepour, A.; Khosravi, A.; Yücel Ayten, N.; Çakır Hatır, P.; Iravani, S.; Zarrabi, A. Innovative Approaches for Cancer Treatment: Graphene Quantum Dots for Photodynamic and Photothermal Therapies. J. Mater. Chem. B 2024, 12, 4307–4334. [Google Scholar] [CrossRef]
- Kortel, M.; Mansuriya, B.D.; Santana, N.V.; Altintas, Z. Graphene Quantum Dots as Flourishing Nanomaterials for Bio-Imaging, Therapy Development, and Micro-Supercapacitors. Micromachines 2020, 11, 866. [Google Scholar] [CrossRef]
- Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; et al. A Graphene Quantum Dot Photodynamic Therapy Agent with High Singlet Oxygen Generation. Nat. Commun. 2014, 5, 4596. [Google Scholar] [CrossRef]
- Edis, Z.; Wang, J.; Waqas, M.K.; Ijaz, M.; Ijaz, M. Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives. Int. J. Nanomedicine 2021, 16, 1313–1330. [Google Scholar] [CrossRef]
- Chakraborty, P.; Das, S.S.; Dey, A.; Chakraborty, A.; Bhattacharyya, C.; Kandimalla, R.; Mukherjee, B.; Gopalakrishnan, A.V.; Singh, S.K.; Kant, S.; et al. Quantum Dots: The Cutting-Edge Nanotheranostics in Brain Cancer Management. J. Control. Release 2022, 350, 698–715. [Google Scholar] [CrossRef]
- Hersh, A.M.; Alomari, S.; Tyler, B.M. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int. J. Mol. Sci. 2022, 23, 4153. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Itoh, K.; Yaoi, T.; Tozawa, T.; Yoshikawa, Y.; Yasui, H.; Kanamura, N.; Hoshino, A.; Manabe, N.; Yamamoto, K.; et al. Organ Distribution of Quantum Dots after Intraperitoneal Administration, with Special Reference to Area-Specific Distribution in the Brain. Nanotech 2010, 21, 335103. [Google Scholar] [CrossRef]
- Li, N.; Liang, X.; Wang, L.; Li, Z.H.; Li, P.; Zhu, Y.; Song, J. Biodistribution Study of Carbogenic Dots in Cells and In Vivo for Optical Imaging. J. Nanopart Res. 2012, 14, 1177. [Google Scholar] [CrossRef]
- Kim, D.; Yoo, J.M.; Hwang, H.; Lee, J.; Lee, S.H.; Yun, S.P.; Park, M.J.; Lee, M.J.; Choi, S.; Kwon, S.H.; et al. Graphene Quantum Dots Prevent α-Synucleinopathy in Parkinson’s Disease. Nat. Nanotechnol. 2018, 13, 812–818. [Google Scholar] [CrossRef]
- Hashizume, H.; Baluk, P.; Morikawa, S.; Mclean, J.W.; Thurston, G.; Roberge, S.; Jain, R.K.; Mcdonald, D.M. Openings between Defective Endothelial Cells Explain Tumor Vessel Leakiness. Am. J. Pathol. 2000, 156, 1363–1380. [Google Scholar] [CrossRef] [PubMed]
- SalmanOgli, A. Nanobio Applications of Quantum Dots in Cancer: Imaging, Sensing, and Targeting. Cancer Nanotechnol. 2011, 2, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Awad, N.S.; Salkho, N.M.; Abuwatfa, W.H.; Paul, V.; AlSawaftah, N.M.; Husseini, G.A. Tumor Vasculature vs. Tumor Cell Targeting: Understanding the Latest Trends in Using Functional Nanoparticles for Cancer Treatment. OpenNano 2023, 11, 100136. [Google Scholar] [CrossRef]
- Mohkam, M.; Sadraeian, M.; Lauto, A.; Gholami, A.; Nabavizadeh, S.H.; Esmaeilzadeh, H.; Alyasin, S. Exploring the Potential and Safety of Quantum Dots in Allergy Diagnostics. Microsyst. Nanoeng. 2023, 9, 145. [Google Scholar] [CrossRef]
- Sanmartín-Matalobos, J.; Bermejo-Barrera, P.; Aboal-Somoza, M.; Fondo, M.; García-Deibe, A.M.; Corredoira-Vázquez, J.; Alves-Iglesias, Y. Semiconductor Quantum Dots as Target Analytes: Properties, Surface Chemistry and Detection. Nanomaterials 2022, 12, 2501. [Google Scholar] [CrossRef]
- Henna, T.K.; Pramod, K. Graphene Quantum Dots Redefine Nanobiomedicine. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 110651. [Google Scholar] [CrossRef]
- Yukawa, H.; Sato, K.; Baba, Y. Theranostics Applications of Quantum Dots in Regenerative Medicine, Cancer Medicine, and Infectious Diseases. Adv. Drug Deliv. Rev. 2023, 200, 114863. [Google Scholar] [CrossRef] [PubMed]
- Le, N.; Zhang, M.; Kim, K. Quantum Dots and Their Interaction with Biological Systems. Int. J. Mol. Sci. 2022, 23, 10763. [Google Scholar] [CrossRef] [PubMed]
- Yap, S.L.; Yu, H.; Li, S.; Drummond, C.J.; Conn, C.E.; Tran, N. Cell Interactions with Lipid Nanoparticles Possessing Different Internal Nanostructures: Liposomes, Bicontinuous Cubosomes, Hexosomes, and Discontinuous Micellar Cubosomes. J. Colloid. Interface Sci. 2024, 656, 409–423. [Google Scholar] [CrossRef]
- Delehanty, J.B.; Mattoussi, H.; Medintz, I.L. Delivering Quantum Dots into Cells: Strategies, Progress and Remaining Issues. Anal. Bioanal. Chem. 2009, 393, 1091–1105. [Google Scholar] [CrossRef]
- Delehanty III, J.B.; Bradburne, C.E.; Boeneman, K.E.; Medintz, I.L.; Farrell, D.; Pons, T.; Mei, B.C.; Blanco-Canosa, J.B.; Dawson, P.E.; Mattoussi, H. Delivery of Quantum Dot Bioconjugates to the Cellular Cytosol: Release from the Endolysosomal System. In Proceedings of the Colloidal Quantum Dots for Biomedical Applications V, San Francisco, CA, USA, 23–28 January; SPIE: Washington, DC, USA, 2010; Volume 7575, p. 75750S. [Google Scholar]
- Pereira, G.; Monteiro, C.A.P.; Albuquerque, G.M.; Pereira, M.I.A.; Cabrera, M.P.; Cabral Filho, P.E.; Pereira, G.A.L.; Fontesa, A.; Santos, B.S. (Bio)Conjugation Strategies Applied to Fluorescent Semiconductor Quantum Dots. J. Braz. Chem. Soc. 2019, 30, 2536–2560. [Google Scholar] [CrossRef]
- Huang, S.; Huang, G. The Utilization of Quantum Dot Labeling as a Burgeoning Technique in the Field of Biological Imaging. RSC Adv. 2024, 14, 20884–20897. [Google Scholar] [CrossRef]
- Banerjee, A.; Pons, T.; Lequeux, N.; Dubertret, B. Quantum Dots-DNA Bioconjugates: Synthesis to Applications. Interface Focus. 2016, 6, 20160064. [Google Scholar] [CrossRef]
- Gidwani, B.; Sahu, V.; Shukla, S.S.; Pandey, R.; Joshi, V.; Jain, V.K.; Vyas, A. Quantum Dots: Prospectives, Toxicity, Advances and Applications. J. Drug Deliv. Sci. Technol. 2021, 61, 102308. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Xian, M.; Dong, C.; Shuang, S. Folic Acid-Conjugated Green Luminescent Carbon Dots as a Nanoprobe for Identifying Folate Receptor-Positive Cancer Cells. Talanta 2018, 183, 39–47. [Google Scholar] [CrossRef]
- Foubert, A.; Beloglazova, N.V.; Rajkovic, A.; Sas, B.; Madder, A.; Goryacheva, I.Y.; De Saeger, S. Bioconjugation of Quantum Dots: Review & Impact on Future Application. Trends Anal. Chem. 2016, 83, 31–48. [Google Scholar]
- Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum Dots in Imaging, Drug Delivery and Sensor Applications. Int. J. Nanomed. 2017, 12, 5421–5431. [Google Scholar] [CrossRef]
- Iannazzo, D.; Pistone, A.; Celesti, C.; Triolo, C.; Patané, S.; Giofré, S.V.; Romeo, R.; Ziccarelli, I.; Mancuso, R.; Gabriele, B.; et al. A Smart Nanovector for Cancer Targeted Drug Delivery Based on Graphene Quantum Dots. Nanomat 2019, 9, 282. [Google Scholar] [CrossRef]
- Chen, X.; Argandona, S.M.; Melle, F.; Rampal, N.; Fairen-Jimenez, D. Advances in Surface Functionalization of Next-Generation Metal-Organic Frameworks for Biomedical Applications: Design, Strategies, and Prospects. Chem 2024, 10, 504–543. [Google Scholar] [CrossRef]
- Sun, T.; Zheng, M.; Xie, Z.; Jing, X. Supramolecular Hybrids of Carbon Dots with Doxorubicin: Synthesis, Stability and Cellular Trafficking. Mater. Chem. Front. 2017, 1, 354–360. [Google Scholar] [CrossRef]
- Mann, V.R.; Powers, A.S.; Tilley, D.C.; Sack, J.T.; Cohen, B.E. Azide-Alkyne Click Conjugation on Quantum Dots by Selective Copper Coordination. ACS Nano 2018, 12, 4469–4477. [Google Scholar] [CrossRef]
- Linda, M. Bioorthogonal Click Chemistry for Imaging and Targeted Drug Delivery. J. Chem. Pharm. Res. 2024, 16, 19–20. [Google Scholar]
- Chen, C.T.; Salunke, S.; Wei, T.T.; Tang, Y.A.; Wang, Y.C. Fluorescent Nanohybrids from ZnS/CdSe Quantum Dots Functionalized with Triantennary, N-Hydroxy-p-(4-Arylbutanamido)Benzamide/Gallamide Dendrons That Act as Inhibitors of Histone Deacetylase for Lung Cancer. ACS Appl. Bio Mater. 2021, 4, 2475–2489. [Google Scholar] [CrossRef]
- Sangtani, A.; Petryayeva, E.; Wu, M.; Susumu, K.; Oh, E.; Huston, A.L.; Lasarte-Aragones, G.; Medintz, I.L.; Algar, W.R.; Delehanty, J.B. Intracellularly Actuated Quantum Dot-Peptide-Doxorubicin Nanobioconjugates for Controlled Drug Delivery via the Endocytic Pathway. Bioconjug Chem. 2018, 29, 136–148. [Google Scholar] [CrossRef]
- Bao, W.; Ma, H.; Wang, N.; He, Z. PH-Sensitive Carbon Quantum Dots−doxorubicin Nanoparticles for Tumor Cellular Targeted Drug Delivery. Polym. Adv. Technol. 2019, 30, 2664–2673. [Google Scholar] [CrossRef]
- Chen, W.; Liu, P. Fluorescent Carbon Quantum Dots-Based Prodrug Nanosponges with Outstanding Tumor-Specific Drug Delivery and Imaging. Adv. Powder Technol. 2022, 33, 103816. [Google Scholar] [CrossRef]
- Montón, H.; Nogués, C.; Rossinyol, E.; Castell, O.; Roldán, M. QDs versus Alexa: Reality of Promising Tools for Immunocytochemistry. J. Nanobiotechnol. 2009, 7, 4. [Google Scholar] [CrossRef]
- Li, M.; Huang, Y.; Shen, C.; Wang, Y.; Lin, Y.; Wang, Z.; Chen, N.; Luo, Y. Application of Quantum Dots in Cancer Diagnosis and Treatment: Advances and Perspectives. Nano Res. 2025, 18, 94907163. [Google Scholar] [CrossRef]
- Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum Dots versus Organic Dyes as Fluorescent Labels. Nat. Methods 2008, 5, 763–775. [Google Scholar] [CrossRef]
- Singh, S.; Dhawan, A.; Karhana, S.; Bhat, M.; Dinda, A.K. Quantum Dots: An Emerging Tool for Point-of-Care Testing. Micromachines 2020, 11, 1058. [Google Scholar] [CrossRef]
- Probst, C.E.; Zrazhevskiy, P.; Bagalkot, V.; Gao, X. Quantum Dots as a Platform for Nanoparticle Drug Delivery Vehicle Design. Adv. Drug Deliv. Rev. 2013, 65, 703–718. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K.; Nie, S. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nat. Biotechnol. 2004, 22, 969–976. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, S.C.; Deep, A. Bioconjugation of Anti Estrogen Alpha Antibody with CdSSe/ZnS Quantum Dots for Molecular Sensing of a Breast Cancer Antigen. Sens. Actuators B Chem. 2014, 202, 404–409. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Lee, Y.-M.; Zhao, D.; Mak, N.-K.; Ngok-Shun Wong, R.; Chan, W.-H.; Cheung, N.-H. Quantum Dot-Mediated Photoproduction of Reactive Oxygen Species for Cancer Cell Annihilation. Photochem. Photobiol. 2010, 86, 431–437. [Google Scholar] [CrossRef]
- Lovrić, J.; Cho, S.J.; Winnik, F.M.; Maysinger, D. Unmodified Cadmium Telluride Quantum Dots Induce Reactive Oxygen Species Formation Leading to Multiple Organelle Damage and Cell Death. Chem. Biol. 2005, 12, 1227–1234. [Google Scholar] [CrossRef]
- Jigyasu, A.K.; Siddiqui, S.; Lohani, M.; Khan, I.A.; Arshad, M. Chemically Synthesized CDSE Quantum Dots Inhibit Growth of Human Lung Carcinoma Cells via Ros Generation. Excli J. 2016, 15, 54–63. [Google Scholar]
- Choi, A.O.; Ju, S.J.; Desbarats, J.; Lovrić, J.; Maysinger, D. Quantum Dot-Induced Cell Death Involves Fas Upregulation and Lipid Peroxidation in Human Neuroblastoma Cells. J. Nanobiotechnol. 2007, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Samia, A.C.S.; Dayal, S.; Burda, C. Invited Review Quantum Dot-Based Energy Transfer: Perspectives and Potential for Applications in Photodynamic Therapy. Photochem. Photobiol. 2006, 82, 61–68. [Google Scholar] [CrossRef]
- Bailey, R.E.; Nie, S. Alloyed Semiconductor Quantum Dots: Tuning the Optical Properties without Changing the Particle Size. J. Am. Chem. Soc. 2003, 125, 7100–7106. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, H.; Wang, F.; Ren, J.; Qu, X. How Functional Groups Influence the ROS Generation and Cytotoxicity of Graphene Quantum Dots. Chem. Commun. 2017, 53, 10588–10591. [Google Scholar] [CrossRef]
- Kuo, W.S.; Chen, H.H.; Chen, S.Y.; Chang, C.Y.; Chen, P.C.; Hou, Y.I.; Shao, Y.T.; Kao, H.F.; Lilian Hsu, C.L.; Chen, Y.C.; et al. Graphene Quantum Dots with Nitrogen-Doped Content Dependence for Highly Efficient Dual-Modality Photodynamic Antimicrobial Therapy and Bioimaging. Biomaterials 2017, 120, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Feng, S.S. Targeting and Imaging Cancer Cells by Folate-Decorated, Quantum Dots (QDs)- Loaded Nanoparticles of Biodegradable Polymers. Biomaterials 2009, 30, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Kunachowicz, D.; Kłosowska, K.; Sobczak, N.; Kepinska, M. Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities—A State-of-the-Art Review. Nanomaterials 2024, 14, 1424. [Google Scholar] [CrossRef] [PubMed]
- Hamidu, A.; Pitt, W.G.; Husseini, G.A. Recent Breakthroughs in Using Quantum Dots for Cancer Imaging and Drug Delivery Purposes. Nanomaterials 2023, 13, 2566. [Google Scholar] [CrossRef]
- Javanbakht, S.; Namazi, H. Doxorubicin Loaded Carboxymethyl Cellulose/Graphene Quantum Dot Nanocomposite Hydrogel Films as a Potential Anticancer Drug Delivery System. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 87, 50–59. [Google Scholar] [CrossRef]
- Zheng, X.T.; He, H.L.; Li, C.M. Multifunctional Graphene Quantum Dots-Conjugated Titanate Nanoflowers for Fluorescence-Trackable Targeted Drug Delivery. RSC Adv. 2013, 3, 24853–24857. [Google Scholar] [CrossRef]
- Khodadadei, F.; Safarian, S.; Ghanbari, N. Methotrexate-Loaded Nitrogen-Doped Graphene Quantum Dots Nanocarriers as an Efficient Anticancer Drug Delivery System. Mater. Sci. Eng. C 2017, 79, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, J.; Jin, X.; Yao, S.; Chen, B.; Huang, Q.; Hu, J.; Wan, J.; Hu, Z.; Wang, B. Versatile Nanoplatform Loaded with Doxorubicin and Graphene Quantum Dots/Methylene Blue for Drug Delivery and Chemophotothermal/Photodynamic Synergetic Cancer Therapy. ACS Appl. Bio Mater. 2020, 3, 7122–7132. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi-Kashani, M.; Dehghani, H.; Zarrabi, A. A Biocompatible Nanoplatform Formed by MgAl-Layered Double Hydroxide Modified Mn3O4/N-Graphene Quantum Dot Conjugated-Polyaniline for PH-Triggered Release of Doxorubicin. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 114, 111055. [Google Scholar] [CrossRef]
- Ghanbari, N.; Salehi, Z.; Khodadadi, A.A.; Shokrgozar, M.A.; Saboury, A.A. Glucosamine-Conjugated Graphene Quantum Dots as Versatile and PH-Sensitive Nanocarriers for Enhanced Delivery of Curcumin Targeting to Breast Cancer. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 121, 111809. [Google Scholar] [CrossRef]
- Iranpour, S.; Bahrami, A.R.; Dayyani, M.; Saljooghi, A.S.; Matin, M.M. A Potent Multifunctional ZIF-8 Nanoplatform Developed for Colorectal Cancer Therapy by Triple-Delivery of Chemo/Radio/Targeted Therapy Agents. J. Mater. Chem. B 2024, 12, 1096–1114. [Google Scholar] [CrossRef]
- Gautam, A.; Pal, K. Gefitinib Conjugated PEG Passivated Graphene Quantum Dots Incorporated PLA Microspheres for Targeted Anticancer Drug Delivery. Heliyon 2022, 8, e12512. [Google Scholar] [CrossRef]
- Karimi, S.; Namazi, H. Simple Preparation of Maltose-Functionalized Dendrimer/Graphene Dots as a PH-Sensitive Biocompatible Carrier for Targeted of Doxorubicin. Int. J. Biol. Macromol. 2020, 156, 648–659. [Google Scholar] [CrossRef]
- Nigam, P.; Waghmode, S.; Louis, M.; Wangnoo, S.; Chavan, P.; Sarkar, D. Graphene Quantum Dots Conjugated Albumin Nanoparticles for Targeted Drug Delivery and Imaging of Pancreatic Cancer. J. Mater. Chem. B 2014, 2, 3190–3195. [Google Scholar] [CrossRef]
- Nigam, P.J.; Agawane, S.; Athalye, M.C.; Jadhav, V.; Sarkar, D.; Prakash, R. Multifunctional Inulin Tethered Silver-Graphene Quantum Dots Nanotheranostic Module for Pancreatic Cancer Therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 1203–1211. [Google Scholar] [CrossRef]
- Moasses, S.G.; Rahimjazi, E.; Hamzehil, H.; Modarres Mousavi, S.M.; Nikkhah, M.; Hosseinkhani, S. Design and Preparation of a Theranostic Peptideticle for Targeted Cancer Therapy: Peptide-Based Codelivery of Doxorubicin/Curcumin and Graphene Quantum Dots. Nanomedicine 2022, 42, 102544. [Google Scholar] [CrossRef]
- Felix, D.M.; Rebelo Alencar, L.M.; Duarte de Menezes, F.; do Valle Pereira Midlej, V.; Aguiar, L.; Gemini Piperni, S.; Zhang, J.; Liu, Y.; Ricci-Junior, E.; Alexis, F.; et al. Graphene Quantum Dots Decorated with Imatinib for Leukemia Treatment. J. Drug Deliv. Sci. Technol. 2021, 61, 102117. [Google Scholar] [CrossRef] [PubMed]
- Vahedi, N.; Tabandeh, F.; Mahmoudifard, M. Hyaluronic Acid–Graphene Quantum Dot Nanocomposite: Potential Target Drug Delivery and Cancer Cell Imaging. Biotechnol. Appl. Biochem. 2022, 69, 1068–1079. [Google Scholar] [CrossRef]
- Gui, W.; Zhang, J.; Chen, X.; Yu, D.; Ma, Q. N-Doped Graphene Quantum Dot@mesoporous Silica Nanoparticles Modified with Hyaluronic Acid for Fluorescent Imaging of Tumor Cells and Drug Delivery. Mikrochim. Acta 2018, 185, 66. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, S.D.; Graham, R.M.; Mintz, K.J.; Zhou, Y.; Vanni, S.; Peng, Z.; Leblanc, R.M. Triple Conjugated Carbon Dots as a Nano-Drug Delivery Model for Glioblastoma Brain Tumors. Nanoscale 2019, 11, 6192–6205. [Google Scholar] [CrossRef]
- Kong, T.; Hao, L.; Wei, Y.; Cai, X.; Zhu, B. Doxorubicin Conjugated Carbon Dots as a Drug Delivery System for Human Breast Cancer Therapy. Cell Prolif. 2018, 51, e12488. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Thakur, M.; Mewada, A.; Anjarlekar, D.; Mishra, N.; Sharon, M. Carbon Dots Functionalized Gold Nanorod Mediated Delivery of Doxorubicin: Tri-Functional Nano-Worms for Drug Delivery, Photothermal Therapy and Bioimaging. J. Mater. Chem. B 2013, 1, 4972–4982. [Google Scholar] [CrossRef]
- Yang, T.; Huang, J.L.; Wang, Y.T.; Zheng, A.Q.; Shu, Y.; Wang, J.H. β-Cyclodextrin-Decorated Carbon Dots Serve as Nanocarriers for Targeted Drug Delivery and Controlled Release. Chem. Nano Mat. 2019, 5, 479–487. [Google Scholar] [CrossRef]
- Wen, X.; Zhao, Z.; Zhai, S.; Wang, X.; Li, Y. Stable Nitrogen and Sulfur Co-Doped Carbon Dots for Selective Folate Sensing, in Vivo Imaging and Drug Delivery. Diam. Relat. Mater. 2020, 105. [Google Scholar] [CrossRef]
- Xie, C.; Wang, B.; Qi, X.; Bao, L.; Zhai, J.; Xu, X.; Zhang, C.; Yu, H. Investigation of Anticancer Therapy Using PH-Sensitive Carbon Dots-Functionalized Doxorubicin in Cubosomes. ACS Appl. Bio. Mater. 2024, 7, 1958–1967. [Google Scholar] [CrossRef]
- Hailing, Y.; Xiufang, L.; Lili, W.; Baoqiang, L.; Kaichen, H.; Yongquan, H.; Qianqian, Z.; Chaoming, M.; Xiaoshuai, R.; Rui, Z.; et al. Doxorubicin-Loaded Fluorescent Carbon Dots with PEI Passivation as a Drug Delivery System for Cancer Therapy. Nanoscale 2020, 12, 17222–17237. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Jiang, J.; Cui, N.; Xue, X.; Wang, T.; Wang, X.; He, Y.; Wang, D. Doxorubicin-Loaded Carbon Dots Lipid-Coated Calcium Phosphate Nanoparticles for Visual Targeted Delivery and Therapy of Tumor. Int. J. Nanomed. 2020, 15, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Liu, S.; Li, J.; Qu, D.; Zhao, H.; Guan, X.; Hu, X.; Xie, Z.; Jing, X.; Sun, Z. Integrating Oxaliplatin with Highly Luminescent Carbon Dots: An Unprecedented Theranostic Agent for Personalized Medicine. Adv. Mater. 2014, 26, 3554–3560. [Google Scholar] [CrossRef]
- Yuan, Y.; Guo, B.; Hao, L.; Liu, N.; Lin, Y.; Guo, W.; Li, X.; Gu, B. Doxorubicin-Loaded Environmentally Friendly Carbon Dots as a Novel Drug Delivery System for Nucleus Targeted Cancer Therapy. Colloids Surf. B Biointerfaces 2017, 159, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Tang, K.; Cai, Z.; Lin, X.; Huang, Y.; Yu, T.; Zhang, Q.; Wang, Q.; Wu, L.; Yang, L.; et al. Carbon Dots-Based Nanozyme for Drug-Resistant Lung Cancer Therapy by Encapsulated Doxorubicin/SiRNA Cocktail. Int. J. Nanomed. 2023, 18, 933–948. [Google Scholar] [CrossRef] [PubMed]
- Cutrim, E.S.M.; Vale, A.A.M.; Manzani, D.; Barud, H.S.; Rodríguez-Castellón, E.; Santos, A.P.S.A.; Cutrim, E.S.M.; Vale, A.A.M.; Manzani, D.; Barud, H.S.; et al. Preparation, Characterization and in Vitro Anticancer Performance of Nanoconjugate Based on Carbon Quantum Dots and 5-Fluorouracil. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111781. [Google Scholar] [CrossRef]
- Zoghi, M.; Poumadadi, M.; Yazdian, F.; Nigjeh, M.N.; Rashedi, H.; Sahraeian, R. Synthesis and Characterization of Chitosan/Carbon Quantum Dots/Fe2O3 Nanocomposite Comprising Curcumin for Targeted Drug Delivery in Breast Cancer Therapy. Int. J. Biol. Macromol. 2023, 249, 125788. [Google Scholar] [CrossRef]
- Balan, A.; Magdalin, M.; Kennedy, R.; Manikantan, V.; Alexander, A.; Sri Varalakshmi, G.; Ramasamy, S.; Pillai, A.S.; Enoch, I.V.M.V. Dysprosium-Doped Carbon Quantum Dot Nanocarrier: In Vitro Anticancer Activity. Bull. Mater. Sci. 2024, 47, 28. [Google Scholar] [CrossRef]
- Mahani, M.; Pourrahmani-Sarbanani, M.; Yoosefian, M.; Divsar, F.; Mousavi, S.M.; Nomani, A. Doxorubicin Delivery to Breast Cancer Cells with Transferrin-Targeted Carbon Quantum Dots: An In Vitro and in Silico Study. J. Drug Deliv. Sci. Technol. 2021, 62, 102342. [Google Scholar] [CrossRef]
- Samimi, S.; Ardestani, M.S.; Dorkoosh, F.A. Preparation of Carbon Quantum Dots- Quinic Acid for Drug Delivery of Gemcitabine to Breast Cancer Cells. J. Drug Deliv. Sci. Technol. 2021, 61, 102287. [Google Scholar] [CrossRef]
- Yao, Y.Y.; Gedda, G.; Girma, W.M.; Yen, C.L.; Ling, Y.C.; Chang, J.Y. Magnetofluorescent Carbon Dots Derived from Crab Shell for Targeted Dual-Modality Bioimaging and Drug Delivery. ACS Appl. Mater. Interfaces 2017, 9, 13887–13899. [Google Scholar] [CrossRef]
- Wu, P.J.; Ou, K.L.; Chen, J.K.; Fang, H.P.; Tzing, S.H.; Lin, W.X.; Chang, J.Y. Methotrexate-Conjugated AgInS2/ZnS Quantum Dots for Optical Imaging and Drug Delivery. Mater. Lett. 2014, 128, 412–416. [Google Scholar] [CrossRef]
- Duman, F.D.; Erkisa, M.; Khodadust, R.; Ari, F.; Ulukaya, E.; Acar, H.Y. Folic Acid-Conjugated Cationic Ag2S Quantum Dots for Optical Imaging and Selective Doxorubicin Delivery to HeLa Cells. Nanomedicine 2017, 12, 2319–2333. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, F.; Guo, M.; Qi, W.; Sun, F.; Wang, A.; Guo, Y.; Zhu, G. PH-Triggered Controlled Drug Release from Mesoporous Silica Nanoparticles via Intracelluar Dissolution of ZnO Nanolids. J. Am. Chem. Soc. 2011, 133, 8778–8781. [Google Scholar] [CrossRef]
- Ruzycka-Ayoush, M.; Kowalik, P.; Kowalczyk, A.; Bujak, P.; Nowicka, A.M.; Wojewodzka, M.; Kruszewski, M.; Grudzinski, I.P. Quantum Dots as Targeted Doxorubicin Drug Delivery Nanosystems. Cancer Nanotechnol. 2021, 12, 8. [Google Scholar] [CrossRef]
- Xie, C.; Zhan, Y.; Wang, P.; Zhang, B.; Zhang, Y. Novel Surface Modification of ZnO QDs for Paclitaxel-Targeted Drug Delivery for Lung Cancer Treatment. Dose-Response 2020, 18, 1559325820926739. [Google Scholar] [CrossRef] [PubMed]
- Pilch, J.; Potęga, A.; Kowalik, P.; Kowalczyk, A.; Bujak, P.; Kasprzak, A.; Paluszkiewicz, E.; Nowicka, A.M. In Vitro Biological Evaluation of a Novel Folic Acid-Targeted Receptor Quantum Dot-β-cyclodextrin Carrier for C−2028 Unsymmetrical Bisacridine in the Treatment of Human Lung and Prostate Cancers. Pharmacol. Rep. 2024, 76, 823–837. [Google Scholar] [CrossRef]
- Johari-Ahar, M.; Barar, J.; Alizadeh, A.M.; Davaran, S.; Omidi, Y.; Rashidi, M.R. Methotrexate-Conjugated Quantum Dots: Synthesis, Characterisation and Cytotoxicity in Drug Resistant Cancer Cells. J. Drug Target. 2016, 24, 120–133. [Google Scholar] [CrossRef]
- Fakhri, A.; Tahami, S.; Nejad, P.A. Preparation and Characterization of Fe3O4-Ag2O Quantum Dots Decorated Cellulose Nanofibers as a Carrier of Anticancer Drugs for Skin Cancer. J. Photochem. Photobiol. B 2017, 175, 83–88. [Google Scholar] [CrossRef]
- Xu, Y.; Du, L.; Han, B.; Wang, Y.; Fei, J.; Xia, K.; Zhai, Y.; Yu, Z. Black Phosphorus Quantum Dots Camouflaged with Platelet-Osteosarcoma Hybrid Membrane and Doxorubicin for Combined Therapy of Osteosarcoma. J. Nanobiotechnol. 2023, 21, 243. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, M. Review of in Vitro Toxicological Research of Quantum Dot and Potentially Involved Mechanisms. Sci. Total Environ. 2018, 625, 940–962. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, Z.; Gao, S.; Goh, B.L.; Samsudin, I.B.; Lwe, K.W.; Wu, Y.; Wu, C.; Su, X. Recent Advances in Non-Toxic Quantum Dots and Their Biomedical Applications. Prog. Nat. Sci. Mater. Int. 2019, 29, 628–640. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, M. Dysfunction of Various Organelles Provokes Multiple Cell Death after Quantum Dot Exposure. Int. J. Nanomed. 2018, 13, 2729–2742. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, K.; Johny, S.; Thomas, D.; Setua, S.; Menon, D.; Nair, S. Bio-Conjugated Luminescent Quantum Dots of Doped ZnS: A Cyto-Friendly System for Targeted Cancer Imaging. Nanotechnology 2009, 20, 065102. [Google Scholar] [CrossRef]
- Kim, J.; Huy, B.T.; Sakthivel, K.; Choi, H.J.; Joo, W.H.; Shin, S.K.; Lee, M.J.; Lee, Y.I. Highly Fluorescent CdTe Quantum Dots with Reduced Cytotoxicity-A Robust Biomarker. Sens. Biosens. Res. 2015, 3, 46–52. [Google Scholar] [CrossRef]
- Du, Y.; Zhong, Y.; Dong, J.; Qian, C.; Sun, S.; Gao, L.; Yang, D. The Effect of PEG Functionalization on the: In Vivo Behavior and Toxicity of CdTe Quantum Dots. RSC Adv. 2019, 9, 12218–12225. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Zayed, D.; Ramadan, W.; Kamel, O.A.; Shehab, M.; Ebrahim, S. Synthesis, Characterization and Cytotoxicity of Polyethylene Glycol-Encapsulated CdTe Quantum Dots. Int. Nano Lett. 2019, 9, 61–71. [Google Scholar] [CrossRef]
- Gérard, V.A.; Maguire, C.M.; Bazou, D.; Gun’ko, Y.K. Folic Acid Modified Gelatine Coated Quantum Dots as Potential Reagents for in Vitro Cancer Diagnostics. J. Nanobiotechnol. 2011, 9, 50. [Google Scholar] [CrossRef]
- Hu, Z.; Song, B.; Xu, L.; Zhong, Y.; Peng, F.; Ji, X.; Zhu, F.; Yang, C.; Zhou, J.; Su, Y.; et al. Aqueous Synthesized Quantum Dots Interfere with the NF-ΚB Pathway and Confer Anti-Tumor, Anti-Viral and Anti-Inflammatory Effects. Biomaterials 2016, 108, 187–196. [Google Scholar] [CrossRef]
- Hardman, R. A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors. Environ. Health Perspect. 2006, 114, 165–172. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, Q. Stability Strategies of Perovskite Quantum Dots and Their Extended Applications in Extreme Environment: A Review. Mater. Res. Bull. 2022, 156, 111987. [Google Scholar] [CrossRef]
- Liu, R.; Fang, F.; Liu, P.; Duan, X.; Wang, K.; Sun, X.W. Liquid-Encapsulated Quantum Dot for Enhanced UV and Thermal Stability of Quantum Dot Color Conversion Films. Nano Res. 2024, 17, 10127–101330. [Google Scholar] [CrossRef]
- Zhang, Y.; Clapp, A. Overview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals. Sensors 2011, 11, 11036–11055. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://clinicaltrials.gov/search?term=quantum%20dots (accessed on 18 January 2025).
- Intravitreal Quantum Dots (QD) for Advanced Retinitis Pigmentosa (RP) (QUANTUM), NCT05841862. Available online: https://clinicaltrials.gov/study/NCT05841862?term=quantum%20dots&rank=2 (accessed on 18 January 2025).
- Clinical Trails of Photoelectrochemical Immunosensor for Early Diagnosis of Acute Myocardial Infarction, NCT04390490. Available online: https://clinicaltrials.gov/study/NCT04390490?term=quantum%20dots&rank=5 (accessed on 18 January 2025).
- Topical Fluorescent Nanoparticles Conjugated Somatostatin Analog for Suppression and Bioimaging Breast Cancer, NCT04138342. Available online: https://clinicaltrials.gov/study/NCT04138342?term=quantum%20dots&rank=6 (accessed on 18 January 2025).
- Diabetes Autoimmunity Withdrawn in New Onset and in Established Patients (SUNRISE), NCT03895437. Available online: https://clinicaltrials.gov/study/NCT03895437?term=quantum%20dots&rank=7 (accessed on 18 January 2025).
- Diabetes Autoimmunity Withdrawn in New Onset Patients (DAWN), NCT03794973. Available online: https://clinicaltrials.gov/study/NCT03794973?term=quantum%20dots&rank=8 (accessed on 18 January 2025).
- Diabetes AutoimmunitY Withdrawn in Established Patients (DAY), NCT03794960. Available online: https://clinicaltrials.gov/study/NCT03794960?term=quantum%20dots&rank=9 (accessed on 18 January 2025).
- Smith, L.S.; Haidari, H.; Amsalu, A.; Howarth, G.S.; Bryant, S.J.; Walia, S.; Elbourne, A.; Kopecki, Z. Black Phosphorus Nanoflakes: An Emerging Nanomaterial for Clinical Wound Management and Biomedical Applications. Int. J. Mol. Sci. 2024, 25, 12824. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Hu, P.; Wang, M.; Qi, G.; Huang, H.; Zeng, D.; Jintao, G.; Lv, P.; Liu, L. Utilization of Chitosan Nanocomposites with Quantum Dots Enables efficient and Traceable DNA Delivery. Colloids Surf. B Biointerfaces 2025, 245, 11421. [Google Scholar] [CrossRef]
S.No. | Type of QDs | Drug | Target Disease | Inference | Reference |
---|---|---|---|---|---|
1. | Ag QDs | Methotrexate | Cervical cancer |
| [127] |
2. | Ag QDs | Doxorubicin | Cervical cancer |
| [128] |
3. | Ag QDs | Doxorubicin | Lung Cancer |
| [130] |
4. | Ag QDs | Etoposide + methotrexate | Skin Cancer |
| [134] |
5. | Ag-In-Zn QDs | Compound C-2028 | Lung and prostate cancer |
| [132] |
6. | BPQDs | Doxorubicin | Osteosarcoma |
| [135] |
7. | CdSe QDs | Methotrexate | Throat cancer |
| [133] |
8. | ZnO QDs | Paclitaxel | Lung Cancer |
| [131] |
9. | CDs | Doxorubicin | Lung Cancer |
| [120] |
10. | CDs | Epirubicin and Temozolomide | Brain Tumour |
| [110] |
11. | CDs | Doxorubicin | Breast Cancer |
| [111] |
12. | CDs | Doxorubicin | Breast Cancer |
| [112] |
13. | CDs | Doxorubicin | Cervical and kidney cancer |
| [113] |
14. | CDs | Mitoxantrone | Cervical cancer |
| [114] |
15. | CDs | Doxorubicin | Cervical cancer and liver cancer |
| [115] |
16. | CDs | Doxorubicin | Liver cancer |
| [116] |
17. | CDs | Doxorubicin | Liver cancer |
| [117] |
18. | CDs | Oxaliplatin | Liver Cancer |
| [118] |
19. | CDs | Doxorubicin | Adenoid Cystic Carcinoma |
| [119] |
20. | CQDs | 5-fluorouracil | Breast Cancer |
| [121] |
21. | CQDs | Curcumin | Breast Cancer |
| [122] |
22. | CQDs | Camptothecin | Breast Cancer |
| [123] |
23 | CQDs | Doxorubicin | Breast Cancer |
| [124] |
24. | CQDs | Gemcitabine | Breast Cancer |
| [125] |
25. | CQDs | Doxorubicin | Cervical Cancer |
| [126] |
26. | CQDs | Curcumin | Cervical cancer |
| [126] |
27. | GQDs | Doxorubicin/Curcumin | Colorectal and breast cancer |
| [106] |
28. | GQDs | Gefitinib | Lung cancer |
| [102] |
29. | GQDs | Doxorubicin | Blood Cancer |
| [95] |
30. | GQDs | Imatinib | Blood Cancer |
| [107] |
31. | GQDs | Doxorubicin | Breast Cancer |
| [96] |
32. | GQDs | Methotrexate | Breast Cancer |
| [97] |
33. | GQDs | Doxorubicin | Breast Cancer |
| [98] |
34. | GQDS | Doxorubicin | Breast Cancer |
| [99] |
35. | GQDs | Curcumin | Breast Cancer |
| [100] |
36. | GQDs | Curcumin | Cervical cancer |
| [109] |
37. | GQDs | Doxorubicin | Colorectal cancer |
| [101] |
38. | GQDs | Gemcitabine | Pancreatic cancer |
| [104] |
39. | GQDs | 5-fluorouracil | Pancreatic cancer |
| [105] |
40. | GQDs | Doxorubicin | Lung cancer |
| [103] |
S.No. | Study Title | Purpose | Study Design | Status | Trial Number | Reference |
---|---|---|---|---|---|---|
1. | Intravitreal quantum dots (QD) for advanced retinitis pigmentosa (RP) (QUANTUM) | Retinitis Pigmentosa |
| Active | NCT05841862 | [150] |
2. | Clinical trails of photoelectrochemical immunosensor for early diagnosis of acute myocardial infarction | Acute myocardial infarction |
| Unknown | NCT04390490 | [151] |
3. | Topical fluorescent nanoparticles conjugated somatostatin analogue for suppression and bioimaging breast cancer | Breast cancer |
| Unknown | NCT04138342 | [152] |
4. | Diabetes autoimmunity withdrawn in new onset and in established patients | Diabetes mellitus, Type 1 |
| Active | NCT03895437 | [153] |
5. | Diabetes autoimmunity withdrawn in new-onset patients (DAWN) | Diabetes mellitus, Type 1 |
| Withdrawn | NCT03794973 | [154] |
6. | Diabetes autoimmunitY withdrawn in established patients (DAY) | Diabetes mellitus, Type 1 |
| Withdrawn | NCT03794960 | [155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pareek, A.; Kumar, D.; Pareek, A.; Gupta, M.M. Advancing Cancer Therapy with Quantum Dots and Other Nanostructures: A Review of Drug Delivery Innovations, Applications, and Challenges. Cancers 2025, 17, 878. https://doi.org/10.3390/cancers17050878
Pareek A, Kumar D, Pareek A, Gupta MM. Advancing Cancer Therapy with Quantum Dots and Other Nanostructures: A Review of Drug Delivery Innovations, Applications, and Challenges. Cancers. 2025; 17(5):878. https://doi.org/10.3390/cancers17050878
Chicago/Turabian StylePareek, Ashutosh, Deepanjali Kumar, Aaushi Pareek, and Madan Mohan Gupta. 2025. "Advancing Cancer Therapy with Quantum Dots and Other Nanostructures: A Review of Drug Delivery Innovations, Applications, and Challenges" Cancers 17, no. 5: 878. https://doi.org/10.3390/cancers17050878
APA StylePareek, A., Kumar, D., Pareek, A., & Gupta, M. M. (2025). Advancing Cancer Therapy with Quantum Dots and Other Nanostructures: A Review of Drug Delivery Innovations, Applications, and Challenges. Cancers, 17(5), 878. https://doi.org/10.3390/cancers17050878