Immune Checkpoint Blockade Therapy for Advanced Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients, Transplant Recipients, and Individuals with Hereditary Syndromes: A Narrative Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. High-Risk Populations Predisposed to Advanced cSCC
4. Immunotherapy, Immunosuppression and Advanced cSCC
5. Immunotherapy in cSCC Arising in Chronically Damaged Skin (Marjolin’s Ulcer)
6. Immunotherapy in cSCC Developing in Patient with Certain Hereditary Syndromes
7. Emerging Biomarkers and Molecular Predictors
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Que, S.K.T.; Zwald, F.O.; Schmults, C.D. Cutaneous squamous cell carcinoma: Incidence, risk factors, diagnosis, and staging. J. Am. Acad. Dermatol. 2018, 78, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Ciążyńska, M.; Kamińska-Winciorek, G.; Lange, D.; Lewandowski, B.; Reich, A.; Sławińska, M.; Pabianek, M.; Szczepaniak, K.; Hankiewicz, A.; Ułańska, M.; et al. The incidence and clinical analysis of non-melanoma skin cancer. Sci. Rep. 2021, 11, 4337. [Google Scholar] [CrossRef] [PubMed]
- Ciążyńska, M.; Pabianek, M.; Sławińska, M.; Reich, A.; Lewandowski, B.; Szczepaniak, K.; Ułańska, M.; Nejc, D.; Brodowski, R.; Sobjanek, M.; et al. Risk Factors and Clinicopathological Features for Developing a Subsequent Primary Cutaneous Squamous and Basal Cell Carcinomas. Cancers 2022, 14, 3069. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Fritz, M.; Que, S.K.T. Cutaneous Squamous Cell Carcinoma: An Updated Review. Cancers 2024, 16, 1800. [Google Scholar] [CrossRef]
- Skulsky, S.L.; O’Sullivan, B.; McArdle, O.; Leader, M.; Roche, M.; Conlon, P.J.; O’Neill, J.P. Review of high-risk features of cutaneous squamous cell carcinoma and discrepancies between the American Joint Committee on Cancer and NCCN Clinical Practice Guidelines in Oncology. Head. Neck 2017, 39, 578–594. [Google Scholar] [CrossRef]
- Kim, J.Y.S.; Kozlow, J.H.; Mittal, B.; Moyer, J.; Olenecki, T.; Rodgers, P. Guidelines of care for the management of cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 2018, 78, 560–578. [Google Scholar] [CrossRef]
- Karia, P.S.; Han, J.; Schmults, C.D. Cutaneous squamous cell carcinoma: Estimated incidence of disease, nodal metastasis, and deaths from disease in the United States, 2012. J. Am. Acad. Dermatol. 2013, 68, 957–966. [Google Scholar] [CrossRef]
- Hughes, B.G.; Guminski, A.; Bowyer, S.; Migden, M.R.; Schmults, C.D.; Khushalani, N.I.; Chang, A.L.S.; Grob, J.-J.; Lewis, K.D.; Ansstas, G.; et al. A phase 2 open-label study of cemiplimab in patients with advanced cutaneous squamous cell carcinoma (EMPOWER-CSCC-1): Final long-term analysis of groups 1, 2, and 3, and primary analysis of fixed-dose treatment group 6. J. Am. Acad. Dermatol. 2024, 92, 68–77. [Google Scholar] [CrossRef]
- Grob, J.-J.; Gonzalez, R.; Basset-Seguin, N.; Vornicova, O.; Schachter, J.; Joshi, A.; Meyer, N.; Grange, F.; Piulats, J.M.; Bauman, J.R.; et al. Pembrolizumab Monotherapy for Recurrent or Metastatic Cutaneous Squamous Cell Carcinoma: A Single-Arm Phase II Trial (KEYNOTE-629). J. Clin. Oncol. 2020, 38, 2916–2925. [Google Scholar] [CrossRef]
- Stratigos, A.J.; Garbe, C.; Dessinioti, C.; Lebbe, C.; van Akkooi, A.; Bataille, V.; Bastholt, L.; Dreno, B.; Dummer, R.; Fargnoli, M.C.; et al. European consensus-based interdisciplinary guideline for invasive cutaneous squamous cell carcinoma. Part 1: Diagnostics and prevention-Update 2023. Eur. J. Cancer 2023, 193, 113251. [Google Scholar] [CrossRef]
- Mora, R.G.; Perniciaro, C. Cancer of the skin in blacks. I. A review of 163 black patients with cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 1981, 5, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Massey, P.R.; Schmults, C.D.; Li, S.J.; Arron, S.T.; Asgari, M.M.; Bavinck, J.N.B.; Billingsley, E.; Blalock, T.W.; Blasdale, K.; Carroll, B.T.; et al. Consensus-Based Recommendations on the Prevention of Squamous Cell Carcinoma in Solid Organ Transplant Recipients: A Delphi Consensus Statement. JAMA Dermatol. 2021, 157, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Zavdy, O.; Coreanu, T.; Bar-On, D.Y.; Ritter, A.; Bachar, G.; Shpitzer, T.; Kurman, N.; Mansour, M.; Ad-El, D.; Rozovski, U.; et al. Cutaneous Squamous Cell Carcinoma in Immunocompromised Patients-A Comparison between Different Immunomodulating Conditions. Cancers 2023, 15, 1764. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.Y.; Doiron, P.; Maurer, T. Cutaneous malignancies in HIV. Curr. Opin. HIV AIDS 2017, 12, 57–62. [Google Scholar] [CrossRef]
- Khaddour, K.; Murakami, N.; Ruiz, E.S.; Silk, A.W. Cutaneous Squamous Cell Carcinoma in Patients with Solid-Organ-Transplant-Associated Immunosuppression. Cancers 2024, 16, 3083. [Google Scholar] [CrossRef]
- Lopez, A.; Babadzhanov, M.; Cheraghlou, S.; Canavan, T.; Doudican, N.; Stevenson, M.; Carucci, J.A. Immunosuppressed patients are at increased risk of local recurrence, metastasis, and disease specific death from cutaneous squamous cell carcinoma. Arch. Dermatol. Res. 2023, 315, 1429–1433. [Google Scholar] [CrossRef]
- Manyam, B.V.; Garsa, A.A.; Chin, R.; Reddy, C.A.; Gastman, B.; Thorstad, W.; Yom, S.S.; Nussenbaum, B.; Wang, S.J.; Vidimos, A.T.; et al. A multi-institutional comparison of outcomes of immunosuppressed and immunocompetent patients treated with surgery and radiation therapy for cutaneous squamous cell carcinoma of the head and neck. Cancer 2017, 123, 2054–2060. [Google Scholar] [CrossRef]
- Kowal-Vern, A.; Criswell, B.K. Burn scar neoplasms: A literature review and statistical analysis. Burns 2005, 31, 403–413. [Google Scholar] [CrossRef]
- Kerr-Valentic, M.A.; Samimi, K.; Rohlen, B.H.; Agarwal, J.P.; Rockwell, W.B. Marjolin’s ulcer: Modern analysis of an ancient problem. Plast. Reconstr. Surg. 2009, 123, 184–191. [Google Scholar] [CrossRef]
- Caviggioli, F.; Klinger, M.; Villani, F.; Fossati, C.; Vinci, V.; Klinger, F. Marjolin’s ulcer of the scalp after electrical burn: Case report and review of the literature. Ann. Burn. Fire Disasters 2006, 19, 154–157. [Google Scholar]
- Pekarek, B.; Buck, S.; Osher, L. A Comprehensive Review on Marjolin’s Ulcers: Diagnosis and Treatment. J. Am. Coll. Certif. Wound Spec. 2011, 3, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Ashford, B.G.; Clark, J.; Gupta, R.; Iyer, N.G.; Yu, B.; Ranson, M. Reviewing the genetic alterations in high-risk cutaneous squamous cell carcinoma: A search for prognostic markers and therapeutic targets. Head Neck 2017, 39, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
- Kuraitis, D.; Murina, A. Squamous Cell Carcinoma Arising in Chronic Inflammatory Dermatoses. Cutis 2024, 113, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Townes, T.; Na’ara, S. Current Advances and Challenges in the Management of Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients. Cancers 2024, 16, 3118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanna, G.J.; Dharanesswaran, H.; Giobbie-Hurder, A.; Harran, J.J.; Liao, Z.; Pai, L.; Tchekmedyian, V.; Ruiz, E.S.; Waldman, A.H.; Schmults, C.D.; et al. Cemiplimab for Kidney Transplant Recipients with Advanced Cutaneous Squamous Cell Carcinoma. J. Clin. Oncol. 2024, 42, 1021–1030. [Google Scholar] [CrossRef]
- Joo, V.; Abdelhamid, K.; Noto, A.; Latifyan, S.; Martina, F.; Daoudlarian, D.; De Micheli, R.; Pruijm, M.; Peters, S.; Hullin, R.; et al. Primary prophylaxis with mTOR inhibitor enhances T cell effector function and prevents heart transplant rejection during talimogene laherparepvec therapy of squamous cell carcinoma. Nat. Commun. 2024, 15, 3664. [Google Scholar] [CrossRef]
- Ali, S.A.; Arman, H.E.; Patel, A.A.; Birhiray, R.E. Successful Administration of Cemiplimab to a Patient with Advanced Cutaneous Squamous Cell Carcinoma after Renal Transplantation. JCO Oncol. Pract. 2020, 16, 137–138. [Google Scholar] [CrossRef]
- Rabinowits, G.; Park, S.J.; Ellison, D.M.; Worden, F.P.; Gentry, R.W.; Strasswimmer, J.; Venna, S.S.; Migden, M.R.; Chandra, S.; Ruiz, E.S.; et al. Checkpoint inhibition in immunosuppressed or immunocompromised patients with advanced cutaneous squamous cell carcinoma (CSCC): Data from prospective CemiplimAb-rwlc Survivorship and Epidemiology (C.A.S.E.) study. J. Clin. Oncol. 2021, 39 (Suppl. S15), 9547. [Google Scholar] [CrossRef]
- Park, S.J.; Ellison, D.M.; Weight, R.; Homsi, J.; Rabinowits, G.; Ruiz, E.S.; Strasswimmer, J.; Simmons, J.; Panella, T.; Quek, R.G.; et al. CASE (CemiplimAb-rwlc Survivorship and Epidemiology): A study in advanced basal cell carcinoma. Future Oncol. 2025, 21, 431–436. [Google Scholar] [CrossRef]
- Dunlap, G.S.; DiToro, D.; Henderson, J.; Shah, S.I.; Manos, M.; Severgnini, M.; Weins, A.; Guleria, I.; Ott, P.A.; Murakami, N.; et al. Clonal dynamics of alloreactive T cells in kidney allograft rejection after anti-PD-1 therapy. Nat. Commun. 2023, 14, 1549. [Google Scholar] [CrossRef]
- Esfahani, K.; Al-Aubodah, T.A.; Thebault, P.; Lapointe, R.; Hudson, M.; Johnson, N.A.; Baran, D.; Bhulaiga, N.; Takano, T.; Cailhier, J.-F.; et al. Targeting the mTOR pathway uncouples the efficacy and toxicity of PD-1 blockade in renal transplantation. Nat. Commun. 2019, 10, 4712. [Google Scholar] [CrossRef]
- Lipson, E.J.; Bodell, M.A.; Kraus, E.S.; Sharfman, W.H. Successful administration of ipilimumab to two kidney transplantation patients with metastatic melanoma. J. Clin. Oncol. 2014, 32, e69–e71. [Google Scholar] [CrossRef]
- Lipson, E.J.; Bagnasco, S.M.; Moore, J., Jr.; Jang, S.; Patel, M.J.; Zachary, A.A.; Pardoll, D.M.; Taube, J.M.; Drake, C.G. Tumor Regression and Allograft Rejection after Administration of Anti-PD-1. N. Engl. J. Med. 2016, 374, 896–898. [Google Scholar] [CrossRef]
- Barnett, R.; Barta, V.S.; Jhaveri, K.D. Preserved Renal-Allograft Function and the PD-1 Pathway Inhibitor Nivolumab. N. Engl. J. Med. 2017, 376, 191–192. [Google Scholar] [CrossRef]
- Schenk, K.M.; Deutsch, J.S.; Chandra, S.; Eroglu, Z.; Khushalani, N.I.; Luke, J.J.; Ott, P.A.; Sosman, J.A.; Vikram Aggarwal, V.; Schollenberger, M.D.; et al. Nivolumab + Tacrolimus + Prednisone +/− Ipilimumab for Kidney Transplant Recipients with Advanced Cutaneous Cancers. J. Clin. Oncol. 2024, 42, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Alloghbi, A.; Ninia, J.; Alshare, B.; Hotaling, J.; Raza, S.; Sukari, A. Anti-PD-1 therapy using cemiplimab for advanced cutaneous squamous cell carcinoma in HIV patient: A case report. Clin. Case Rep. 2021, 9, 5228. [Google Scholar] [CrossRef] [PubMed]
- Brereton, C.; Bravo, A.; Hovenic, W. Metastatic Squamous Cell Carcinoma Presenting as Symptom of AIDS. J. Investig. Med. High Impact Case Rep. 2022, 10, 23247096211068271. [Google Scholar] [CrossRef] [PubMed]
- Lakhani, L.; Alasfar, S.; Bhalla, A.; Aala, A.; Rosenberg, A.; Ostrander, D.; Schollenberger, M.D.C.; Brennan, D.C.; Lipson, E.J. Utility of serial donor-derived cell-free DNA measurements for detecting allograft rejection in a kidney transplant recipient after PD-1 checkpoint inhibitor administration. Transpl. Direct. 2021, 7, e656. [Google Scholar] [CrossRef]
- Tsung, I.; Worden, F.P.; Fontana, R.J. A pilot study of checkpoint inhibitors in solid organ transplant recipients with metastatic cutaneous squamous cell carcinoma. Oncologist 2021, 26, 133–138. [Google Scholar] [CrossRef]
- Kumar, V.; Shinagare, A.B.; Rennke, H.G.; Ghai, S.; Lorch, J.H.; Ott, P.A.; Rahma, O.E. The safety and efficacy of checkpoint inhibitors in transplant recipients: A case series and systematic review of literature. Oncologist 2020, 25, 505–514. [Google Scholar] [CrossRef]
- Venkatachalam, K.; Malone, A.F.; Heady, B.; Santos, R.D.; Alhamad, T. Poor outcomes with the use of checkpoint inhibitors in kidney transplant recipients. Transplantation 2020, 104, 1041–1047. [Google Scholar] [CrossRef]
- Carroll, R.P.; Boyer, M.; Gebski, V.; Hockley, B.; Johnston, J.K.; Kireta, S.; Tan, H.; Taylor, A.; Wyburn, K.; Zalcberg, J.R. Immune checkpoint inhibitors in kidney transplant recipients: A multicentre, single-arm, phase 1 study. Lancet Oncol. 2022, 23, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Rajdev, L.; Wang, C.J.; Joshi, H.; Lensing, S.; Lee, J.; Ramos, J.C.; Baiocchi, R.; Ratner, L.; Rubinstein, P.G.; Ambinder, R.; et al. Assessment of the safety of nivolumab in people living with HIV with advanced cancer on antiretroviral therapy: The AIDS Malignancy Consortium 095 Study. Cancer 2024, 130, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Murakami, N.; Mulvaney, P.; Danesh, M.; Abudayyeh, A.; Diab, A.; Abdel-Wahab, N.; Abdelrahim, M.; Khairallah, P.; Shirazian, S.; Kukla, A.; et al. A multi-center study on safety and efficacy of immune checkpoint inhibitors in cancer patients with kidney transplant. Kidney Int. 2021, 100, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.; Welponer, T.; Richtig, E.; Wolf, I.; Hoeller, C.; Hafner, C.; Nguyen, V.A.; Kofler, J.; Barta, M.; Koelblinger, P.; et al. Nivolumab for locally advanced and metastatic cutaneous squamous cell carcinoma (NIVOSQUACS study)-Phase II data covering impact of concomitant haematological malignancies. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 1799–1810. [Google Scholar] [CrossRef]
- Leiter, U.; Loquai, C.; Reinhardt, L.; Rafei-Shamsabadi, D.; Gutzmer, R.; Kaehler, K.; Heinzerling, L.; Hassel, J.C.; Glutsch, V.; Sirokay, J.; et al. Immune checkpoint inhibition therapy for advanced skin cancer in patients with concomitant hematological malignancy: A retrospective multicenter DeCOG study of 84 patients. J. Immunother. Cancer 2020, 8, e000897. [Google Scholar] [CrossRef]
- Kim, C.; Cook, M.R. Safety and Efficacy of Immune Checkpoint Inhibitor Therapy in Patients with HIV Infection and Advanced-Stage Cancer: A Systematic Review. JAMA Oncol. 2019, 5, 1049–1053. [Google Scholar] [CrossRef]
- Babey, H.; Quéré, G.; Descourt, R.; Le Calloch, R.; Lanfranco, L.; Nousbaum, J.-B.; Cornec, D.; Tison, A.; Chouaid, C. Immune-checkpoint inhibitors to treat cancers in specific immunocompromised populations: A critical review. Expert Rev. Anticancer Ther. 2018, 18, 981–989. [Google Scholar] [CrossRef]
- Bostwick, J.; Pendergrast, W.J.; Vasconez, L.O. Marjolin’s ulcer: An immunologically privileged tumor? Plast. Reconstr. Surg. 1976, 57, 66–69. [Google Scholar] [CrossRef]
- Miodovnik, M.; Dolev, Y.; Buchen, R.; Brezis, M.R.; Nikolaevski-Berlin, A.; Finkel, I.; Wolf, I.; Ospovat, I.; Gutfeld, O.; Leshem, Y. Squamous cell carcinoma arising in chronically damaged skin (Marjolin’s Ulcer): Still an unmet need in the era of immunotherapy. Oncologist 2024, 4, oyae326. [Google Scholar] [CrossRef]
- Miodovnik, M.; Ospovat, I.; Gutfeld, O.; Finkel, I.; Dolev, Y.; Leshem, Y. Ulcer-related cutaneous squamous cell carcinoma: New kid on the block. J. Clin. Oncol. 2024, 42, e21559. [Google Scholar] [CrossRef]
- Shalhout, S.Z.; Kaufman, H.L.; Sullivan, R.J.; Lawrence, D.; Miller, D.M. Immune Checkpoint Inhibition in Marjolin Ulcer: A Case Series. J. Immunother. 2021, 44, 234–238. [Google Scholar] [CrossRef]
- Ackerman, Z. Letter to the Editor in response to the article: “Squamous cell carcinoma arising in chronically damaged skin (Marjolijn’s Ulcer)”. Oncologist 2025, 30, oyaf160. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, Z.; Seidenbaum, M.; Loewenthal, E.; Rubinow, A. Overload of iron in the skin of patients with varicose ulcers: Possible contributing role of iron accumulation in progression of the disease. Arch Dermatol. 1988, 124, 1376–1378. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, Z. Local iron overload in chronic leg ulcers. Isr. Med. Assoc. J. 2011, 13, 647. [Google Scholar]
- Ferris, A.E.; Harding, K.G. An overview of the relationship between anaemia, iron, and venous leg ulcers. Int. Wound J. 2019, 16, 1323–1329. [Google Scholar] [CrossRef]
- Badran, O.; Cohen, I.; Bar-Sela, G. The impact of iron on cancer-related immune functions in oncology: Molecular mechanisms and clinical evidence. Cancers 2024, 16, 4156. [Google Scholar] [CrossRef]
- Cianfarani, F.; Zambruno, G.; Castiglia, D.; Odorisio, T. Pathomechanisms of altered wound healing in recessive dystrophic epidermolysis bullosa. Am. J. Pathol. 2017, 187, 1445–1453. [Google Scholar] [CrossRef]
- Schäfer, M.; Werner, S. Cancer as an overhealing wound: An old hypothesis revisited. Nat. Rev. Mol. Cell Biol. 2008, 9, 628. [Google Scholar] [CrossRef]
- Condorelli, A.G.; Dellambra, E.; Logli, E.; Zambruno, G.; Castiglia, D. Epidermolysis bullosa-associated squamous cell carcinoma: From pathogenesis to therapeutic perspectives. Int. J. Mol. Sci. 2019, 20, 5707. [Google Scholar] [CrossRef]
- Chambon, F.; Osdoit, S.; Bagny, K.; Morro, A.; Nguyen, J.; Réguerre, Y. Dramatic response to nivolumab in xeroderma pigmentosum skin tumor. Pediatr. Blood Cancer 2018, 65, e26837. [Google Scholar] [CrossRef]
- Gambichler, T.; Hyun, J.; Oellig, F.; Becker, J.C.; Kreuter, A. Immune checkpoint inhibitors for children with xeroderma pigmentosum and advanced cutaneous squamous cell carcinoma: A case presentation and brief review. J. Der Dtsch. Dermatol. Ges. 2025, 23, 303–308. [Google Scholar] [CrossRef]
- Deinlein, T.; Lax, S.F.; Schwarz, T.; Giuffrida, R.; Schmid-Zalaudek, K.; Zalaudek, I. Rapid response of metastatic cutaneous squamous cell carcinoma to pembrolizumab in a patient with xeroderma pigmentosum: Case report and review of the literature. Eur. J. Cancer 2017, 83, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Ameri, A.H.; Mooradian, M.J.; Emerick, K.S.; Park, J.C.; Wirth, L.J.; Asgari, M.M.; Tsao, H.; Lawrence, D.; Sullivan, R.J.; Demehri, S. Immunotherapeutic strategies for cutaneous squamous cell carcinoma prevention in xeroderma pigmentosum. Br. J. Dermatol. 2019, 181, 1095–1097. [Google Scholar] [CrossRef] [PubMed]
- Fine, J.-D.; Johnson, L.B.; Weiner, M.; Li, K.-P.; Suchindran, C. Epidermolysis bullosa and the risk of life-threatening cancers: The National EB Registry experience, 1986–2006. J. Am. Acad. Dermatol. 2009, 60, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Montaudié, H.; Chiaverini, C.; Sbidian, E.; Charlesworth, A.; Lacour, J.-P. Inherited epidermolysis bullosa and squamous cell carcinoma: A systematic review of 117 cases. Orphanet J. Rare Dis. 2016, 11, 117. [Google Scholar] [CrossRef]
- Mallipeddi, R. Epidermolysis bullosa and cancer. Clin. Exp. Dermatol. 2002, 27, 616–623. [Google Scholar] [CrossRef]
- Mellerio, J.; Robertson, S.; Bernardis, C.; Diem, A.; Fine, J.; George, R.; Goldberg, D.; Halmos, G.; Harries, M.; Jonkman, M.; et al. Management of cutaneous squamous cell carcinoma in patients with epidermolysis bullosa: Best clinical practice guidelines. Br. J. Dermatol. 2016, 174, 56–67. [Google Scholar] [CrossRef]
- Robertson, S.; Orrin, E.; Lakhan, M.; O’sullivan, G.; Felton, J.; Robson, A.; Greenblatt, D.; Bernardis, C.; McGrath, J.; Martinez, A.; et al. Cutaneous squamous cell carcinoma in epidermolysis bullosa: A 28-year retrospective study. Acta Derm. Venereol. 2021, 101, adv00523. [Google Scholar] [CrossRef]
- Harrs, C.; Akker, P.C.v.D.; Baardman, R.; Duipmans, J.C.; Horváth, B.; van Kester, M.S.; Lemmink, H.H.; Rácz, E.; Bolling, M.C.; Diercks, G.F. The aggressive behaviour of squamous cell carcinoma in epidermolysis bullosa: Analysis of clinical outcomes and tumour characteristics in the Dutch EB Registry. Br. J. Dermatol. 2022, 187, 824–826. [Google Scholar] [CrossRef]
- Hoste, E.; Arwert, E.N.; Lal, R.; South, A.P.; Salas-Alanis, J.C.; Murrell, D.F.; Donati, G.; Watt, F.M. Innate sensing of microbial products promotes wound-induced skin cancer. Nat. Commun. 2015, 6, 5932. [Google Scholar] [CrossRef] [PubMed]
- Cho, R.J.; Alexandrov, L.B.; Breems, N.Y.D.; Atanasova, V.S.; Farshchian, M.; Purdom, E.; Nguyen, T.N.; Coarfa, C.; Rajapakshe, K.; Prisco, M.; et al. APOBEC mutation drives early-onset squamous cell carcinomas in recessive dystrophic epidermolysis bullosa. Sci. Transl. Med. 2018, 10, eaas9668. [Google Scholar] [CrossRef] [PubMed]
- Reimer, A.; Lu, S.; He, Y.; Bruckner-Tuderman, L.; Technau-Hafsi, K.; Meiss, F.; Has, C.; von Bubnoff, D. Combined anti-inflammatory and low-dose antiproliferative therapy for squamous cell carcinomas in recessive dystrophic epidermolysis bullosa. J. Eur. Acad. Dermatol. Venereol. 2020, 34, e1–e3. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Li, M.; Intong, L.; Tran, K.; Melbourne, W.; Marucci, D.; Bucci, J.; de Souza, P.; Mallesara, G.; Murrell, D. Use of cetuximab as an adjuvant agent to radiotherapy and surgery in recessive dystrophic epidermolysis bullosa with squamous cell carcinoma. Br. J. Dermatol. 2013, 169, 208–210. [Google Scholar] [CrossRef]
- Medek, K.; Koelblinger, P.; Koller, J.; Diem, A.; Ude-Schoder, K.; Bauer, J.W.; Laimer, M. Wundheilungsstörungen während der antitumorösen Therapie mit Cetuximab bei schwerer generalisierter dystropher Epidermolysis bullosa. J. Dtsch. Dermatol. Ges. J. Ger. Soc. Dermatol. 2019, 17, 448–450. [Google Scholar] [CrossRef]
- Piccerillo, A.; El Hachem, M.; De Vito, R.; De Luca, E.V.; Peris, K. Pembrolizumab for treatment of a patient with multiple cutaneous squamous cell carcinomas and recessive dystrophic epidermolysis bullosa. JAMA Dermatol. 2020, 156, 708–710. [Google Scholar] [CrossRef]
- Duong, T.; Wong, D.; Barrett, A.; Price, H. Successful use of immunotherapy to treat advanced cutaneous squamous cell carcinoma in recessive dystrophic epidermolysis bullosa. BMJ Case Rep. 2021, 14, e238966. [Google Scholar] [CrossRef]
- O’Sullivan, G.M.; Clapham, J.; Mackenzie, C.; Greenblatt, D.T.; Bernardis, C.; Ross, A.D.; Mellerio, J.E. Electrochemotherapy for metastatic squamous cell carcinoma in epidermolysis bullosa [abstract]. Acta Derm. Venereol. 2020, 100 (Suppl. S220), 40–41. [Google Scholar]
- Khaddour, K.; Gorell, E.S.; Dehdashti, F.; Tang, J.Y.; Ansstas, G. Induced Remission of Metastatic Squamous Cell Carcinoma with an Immune Checkpoint Inhibitor in a Patient with Recessive Dystrophic Epidermolysis Bullosa. Case Rep. Oncol. 2020, 13, 911–915. [Google Scholar] [CrossRef]
- Trefzer, L.; Hess, M.E.; Scholten, L.; Technau-Hafsi, K.; Meiss, F.; Boerries, M.; Has, C.; Rafei-Shamsabadi, D. Variable Outcome of Immunotherapy in Advanced Multiple Cutaneous Squamous Cell Carcinomas in Two Patients with Recessive Dystrophic Epidermolysis Bullosa. Acta Derm. Venereol. 2023, 103, adv4870. [Google Scholar] [CrossRef]
- Vasilev, P.; Kalev, D.; Karamanliev, M.; Dimitrov, D.; Troyanova, P.; Yordanova, I. Cemiplimab treatment of squamous cell carcinoma in a patient with severe recessive dystrophic epidermolysis bullosa. J. Dtsch. Dermatol. Ges. 2023, 21, 295–297. [Google Scholar] [CrossRef]
- Bruckner, A. Case report: A woman with rdeb and metastatic SCC managed with nivolumab. Acta Derm. Venereol. 2020, 100 (Suppl. S220), 19. [Google Scholar]
- Berneburg, M.; Lehmann, A.R. Xeroderma pigmentosum and related disorders: Defects in DNA repair and transcription. Adv. Genet. 2001, 43, 71–102. [Google Scholar] [PubMed]
- Knoch, J.; Kamenisch, Y.; Kubisch, C.; Berneburg, M. Rare hereditary diseases with defects in DNA-repair. Eur. J. Dermatol. 2012, 22, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Brambullo, T.; Colonna, M.R.; Vindigni, V.; Piaserico, S.; Masciopinto, G.; Galeano, M.; Costa, A.L.; Bassetto, F. Xeroderma Pigmentosum: A Genetic Condition Skin Cancer Correlated-A Systematic Review. Biomed. Res. Int. 2022, 2022, 8549532. [Google Scholar] [CrossRef]
- Martens, M.C.; Emmert, S.; Boeckmann, L. Xeroderma Pigmentosum: Gene Variants and Splice Variants. Genes 2021, 12, 1173. [Google Scholar] [CrossRef]
- Sharma, N.; Mazumder, R.; Rai, P. Revolutionizing Skin Cancer Treatment: The Rise of PD-1/PDL-1 and CTLA-4 as Key Therapeutic Targets. Curr. Drug Targets 2024, 25, 1012–1026. [Google Scholar] [CrossRef]
- Wessely, A.; Steeb, T.; Leiter, U.; Garbe, C.; Berking, C.; Heppt, M.V. Immune Checkpoint Blockade in Advanced Cutaneous Squamous Cell Carcinoma: What Do We Currently Know in 2020? Int. J. Mol. Sci. 2020, 21, 9300. [Google Scholar] [CrossRef]
- Şahin, E.A.; Taşkıran, E.Z.; Kiper, P.Ö.Ş.; Aydın, B.; Utine, E. Recurrent squamous cell Carcinoma and a novel mutation nina patient with xeroderma pigmentosum: A case report. J. Med. Case Rep. 2022, 16, 306. [Google Scholar] [CrossRef]
- Steineck, A.; Krumm, N.; Sarthy, J.F.; Pritchard, C.C.; Chapman, T.; Stacey, A.W.; Vitanza, N.A.; Cole, B. Response to Pembrolizumab in a Patient with Xeroderma Pigmentosum and Advanced Squamous Cell Carcinoma. JCO Precis. Oncol. 2019, 3, PO.19.00028. [Google Scholar] [CrossRef]
- Zhang, H.; Zhong, A.; Chen, J. Immunecheckpoint inhibitors in advanced cutaneous squamous cell carcinoma: A systemic review and metaanalysis. Skin Res. Technol. 2023, 29, e13229. [Google Scholar] [CrossRef] [PubMed]
- Lorini, L.; Alberti, A.; Bossi, P. Advanced Cutaneous Squamous Cell Carcinoma Management in Immunotherapy Era: Achievements and New Challenges. Dermatol. Pract. Concept. 2023, 13, e2023251. [Google Scholar] [CrossRef]
- Gambichler, T.; Gnielka, M.; Rüddel, I.; Stockfleth, E.; Stücker, M.; Schmitz, L. Expression of PD-L1 in keratoacanthoma and different stages of progression in cutaneous squamous cell carcinoma. Cancer Immunol. Immunother. 2017, 66, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Momen, S.; Fassihi, H.; Davies, H.R.; Nikolaou, C.; Degasperi, A.; Stefanato, C.M.; Dias, J.M.L.; Dasgupta, D.; Craythorne, E.; Sarkany, R.; et al. Dramatic response of metastatic cutaneous angiosarcoma to an immune checkpoint inhibitor in a patient with xeroderma pigmentosum: Whole-genome sequencing aids treatment decision in end-stage disease. Cold Spring Harb. Mol. Case Stud. 2019, 5, a004408. [Google Scholar] [CrossRef] [PubMed]
- Hauschild, A.; Eichstaedt, J.; Möbus, L.; Kähler, K.; Weichenthal, M.; Schwarz, T.; Weidinger, S. Regression of melanoma metastases and multiple non-melanoma skin cancers in xeroderma pigmentosum by the PD1-antibody pembrolizumab. Eur. J. Cancer 2017, 77, 84–87. [Google Scholar] [CrossRef]
- Fernandez, E.R.; Tamura, D.; Khan, S.G.; Momen, S.; Fassihi, H.; Sarkany, R.; DiGiovanna, J.J.; Kraemer, K.H. Retrospective study of efficacy and adverse events of immune checkpoint inhibitors in 22 xeroderma pigmentosum patients with metastatic or unresectable cancers. Front. Oncol. 2023, 13, 1282823. [Google Scholar] [CrossRef]
- Boziou, M.; Dionyssiou, D.; Dionyssopoulos, D.; Lazaridou, E.; Lallas, A.; Apalla, Z. Can Cemiplimab Become a Life-Changer in Xeroderma Pigmentosum? Dermatol. Pract. Concept. 2023, 13, e2023160. [Google Scholar] [CrossRef]
- Rubatto, M.; Merli, M.; Avallone, G.; Agostini, A.; Mastorino, L.; Caliendo, V.; Barcellini, A.; Vitolo, V.; Valvo, F.; Fierro, M.T.; et al. Immunotherapy in Xeroderma Pigmentosum: A case of advanced cutaneous squamous cell carcinoma treated with cemiplimab and a literature review. Oncotarget 2021, 12, 1116–1121. [Google Scholar] [CrossRef]
- Antonov, N.K.; Nair, K.G.; Halasz, C.L. Transient eruptive keratoacanthomas associated with nivolumab. JAAD Case Rep. 2019, 5, 342–345. [Google Scholar] [CrossRef]
- Olsen, E.; Svoboda, S.A.; Montanez-Wiscovich, M.; Saikaly, S.K. Multiple Eruptive Keratoacanthomas Secondary to Nivolumab Immunotherapy. J. Immunother. 2024, 47, 98–100. [Google Scholar] [CrossRef]
- Kang, B.Y.; Khanna, R.; Patel, M.H.; Glembocki, D.J.; Jeffy, B.G.; Thosani, M.K.; Patel, N.B. Cemiplimab-Associated Eruption of Generalized Eruptive Keratoacanthoma of Grzybowski. Cutis 2024, 113, E8–E10. [Google Scholar] [CrossRef]
- Yurchenko, A.A.; Rajabi, F.; Braz-Petta, T.; Fassihi, H.; Lehmann, A.; Nishigori, C.; Wang, J.; Padioleau, I.; Gunbin, K.; Panunzi, L.; et al. Genomic mutation landscape of skin cancers from DNA repair-deficient xeroderma pigmentosum patients. Nat. Commun. 2023, 14, 2561. [Google Scholar] [CrossRef]
- Corradi, C.; Vilar, J.B.; Buzatto, V.C.; A de Souza, T.; Castro, L.P.; Munford, V.; De Vecchi, R.; Galante, P.A.F.; Orpinelli, F.; A Miller, T.L.; et al. Mutational signatures and increased retrotransposon insertions in xeroderma pigmentosum variant skin tumors. Carcinogenesis 2023, 44, 511–524. [Google Scholar] [CrossRef]
- Yurchenko, A.A.; Fresneau, B.; Borghese, B.; Rajabi, F.; Tata, Z.; Genestie, C.; Sarasin, A.; Nikolaev, S.I. Early-onset gynecological tumors in DNA repair-deficient xeroderma pigmentosum group C patients: A case series. Commun. Med. 2023, 3, 109. [Google Scholar] [CrossRef]
| Study Design | Cohort | Treatment | Results | Author |
|---|---|---|---|---|
| Nonrandomized trial | 12 renal transplant recipients | Cemiplimab | 46% response rate to the treatment with no kidney rejection or loss | Hanna et al. [25] |
| Case study | 1 heart transplant recipient | mTOR inhibitor prophylaxis + talimogene laherparepvec (T-VEC) injection | No allograft rejection occurred after treatment | Joo et al. [26] |
| Case study | 1 renal transplant recipient | Cemiplimab | Complete disease remission with no allograft rejection after treatment | Ali et al. [27] |
| Prospective trial | 12 renal transplant recipients | Nivolumab + tacrolimus + prednisone ± ipilimumab | Tacrolimus and prednisone failed to provide sufficient allograft protection | Schenk et al. [35] |
| Case study | 1 HIV patient | Cemiplimab | Complete response with no toxicities | Alloghbi et al. [36] |
| Case study | 1 AIDS patient | Cemiplimab-rwlc | No signs or symptoms of metastatic disease | Brereton et al. [37] |
| Case study | 1 kidney transplant recipient | Pembrolizumab | No rejection, stable disease | Lakhani et al. (2021) [38] |
| Retrospective review study | 2 kidney transplant recipients | Pembrolizumab | No rejection, progression disease | Tsung et al. (2021) [39] |
| Case Series | 1 kidney transplant recipient | Pembrolizumab | Rejected, reacted pulse | Kumar et al. (2020) [40] |
| Retrospective review | 1 kidney transplant recipient | Pembrolizumab | Rejected, progression disease | Venkatachalam et al. (2020) [41] |
| Age (yr)/Sex | Site(s) of SCC Under Treatment/ Tumor Size (cm) | Site(s) of Metastases | Treatment → Outcome | Adverse Events | Reference |
|---|---|---|---|---|---|
| 33 F | Forearm | Axillary and infraclavicular lymph nodes, in-transit cutaneous and subcutaneous metastases on right upper limb | 1. Exc → Metastasis 2. Cet → RC/RL + RC/RL + Metastasis 3. ECT + MTX → PR 4. Pem + T-VEC + Pan → Death from SCC | (Cet) Impaired wound healing; grade 2 allergic reaction with circulatory collapse, tightness in chest, erythema, fever, and chills | Medek et al. [75] |
| 40 F | Forearm | Axillary and cervical lymph nodes; chest wall; pathologic fracture of left humerus due to metastatic SCC | 1. Cet + RT → RC/RL 2. Amp → Metastasis 3. Niv → SD | (Cet) Impaired wound healing, lymphedema (Niv) Fatigue | Bruckner et al. [82] |
| 32 M | Upper arm, > 5 | Axillary lymph nodes | 1. Res → RC/RL 2. 5-FU + MTX + Imi → Metastasis 3. Cem + RT → CR | Fatigue; nausea | Khaddour et al. [79] |
| 28 F | Chest, 2–5 | Subcutaneous SCC on right upper chest wall | 1. Debulking surgery → PD 2. ECT → PD 3. Cem → PD | None | O’Sullivan et al. [78] |
| 45 F | Head/neck; Lower leg; Foot | N/A | 1. Exc → RC/RL 2. ECT → PR 3. Amp → PD 4. Pem → PR | (Pem) Immune-related thyroiditis | Piccerillo et al. [76] |
| 51 F | Forearm, Hand, Knee | Inguinal lymph nodes | 1. Amp → Metastasis 2. Pem → PD 3. Cet → SD | (Pem), development of new SCCs with reduced PD-L1 expression | Reimer et al. [73] |
| 24 F | Unknown | N/A | 1. Exc 2. Imi 3. Systemic retinoid 4. Cem Outcome unknown | N/A | Robertson et al. [69] |
| 30 F | Back | N/A | 1. Res → PD 2. MTX → PD 3. Cem → SD | Mild fatigue; worsening pruritus | Duong et al. [77] |
| 34 M | Hand, > 5 | N/A | 1. Exc → PD 2. RT → PD 3. Cem → CR | Pruritus | Vasilev et al. [81] |
| 16 M | Forearm, Upper leg, Foot | Inguinal lymph nodes | 1. Exc → PD 2. Cem → PD 3. Amp → SD 4. Cet → PD | N/A | Trefzer et al. [80] |
| 36 M | Head, Upper arm, Forearm, Hand, Foot, < 2 | N/A | 1. Exc → PD 2. Cem + RT → SD | N/A | Trefzer 2023 [80] |
| Age | Sex | Treated Tumor | Localization | Treatment | Outcome | Non-Target Lesions | Reference |
|---|---|---|---|---|---|---|---|
| 6 y | F | Sarcomatoid cSCC | Scalp | Nivolumab 3 mg/kg BW, 16 cycles in total | Complete remission | - | Chambon et al. [61] |
| 6 y | M | Metastatic cSCC | Nose | Nivolumab, first pass with 6 cycles, second pass with 16 cycles | Complete remission | - | Sahin et al. [89] |
| 7 y | F | Metastatic cSCC | left lower eyelid, right conjunctiva and cornea | Pembrolizumab 2 mg/kg BW, 9 cycles in total | Remission, except for cornea lesions finally treated with topical 5- fluorouracil | - | Steineck et al. [90] |
| 7 y | M | Huge cSCC | the face with lymph nodes metastases of the neck | Cemiplimab initial 3 mg/kg BW, 24 cycles in total, therapy still ongoing | Complete remission | Gambichler et al. [62] | |
| 48 y | F | Metastatic SCC | Left tight with lymph node metastases | Pembrolizumab 2 mg/kg every 3 weeks | Partial response with regression of all metastases after 3 cycles | - | Deinlein et al. [63] |
| 18 y | F | Unresectable SCC | Limbus of right eye | Pembrolizumab 2 mg/kg every 3 weeks | Complete regression after 8 months of therapy | Not response of BCCs on the face surgically removed | Ameri et al. [64] |
| 19 y | M | Unresectable SCC | Right nasal cavity and orbit | Pembrolizumab 2 mg/kg every 3 weeks | Partial radiographic regression | - | Ameri et al. [64] |
| 20 y | F | (i) Metastatic melanoma; (ii) unresectable SCC | (i) Unknown primary origin; (ii) maxillary sinus | (i) Ipilimumab 10 mg/kg every 3 weeks; (ii) Pembrolizumab 140 mg once a month | (i) Remarkable response; (ii) well response for 31 months until radiographic progression | Development of one BCC on right eyebrow treated with Mohs surgery | Ameri et al. [64] |
| 7 y | F | Metastatic SCC | Right side of the face with, at first, the involvement of the right sphenoid bone, the cavernous sinus and the right carotid artery, and then the extension to surrounding tissues with lymph node metastases and leptomeningeal spread | Pembrolizumab 2 mg/kg every 3 weeks | A considerable decrease in tumor bulk and the resolution of leptomeningeal disease after five cycles; a long-term sustained stable disease | - | Steineck et al. [90] |
| High-Risk Population | Mechanisms (Pathogenic/Immune) | Clinical Challenges | Potential Strategies |
|---|---|---|---|
| Solid organ transplant recipients (SOTR)/immunosuppressed patients |
|
|
|
| Chronic wounds/Marjolin’s ulcer |
|
|
|
| Hereditary syndromes (RDEB, XP) |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pabianek, M.; Lesiak, A.; Narbutt, J.; Marinovic, B.; Ciazynska, M. Immune Checkpoint Blockade Therapy for Advanced Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients, Transplant Recipients, and Individuals with Hereditary Syndromes: A Narrative Review. Cancers 2025, 17, 3681. https://doi.org/10.3390/cancers17223681
Pabianek M, Lesiak A, Narbutt J, Marinovic B, Ciazynska M. Immune Checkpoint Blockade Therapy for Advanced Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients, Transplant Recipients, and Individuals with Hereditary Syndromes: A Narrative Review. Cancers. 2025; 17(22):3681. https://doi.org/10.3390/cancers17223681
Chicago/Turabian StylePabianek, Marta, Aleksandra Lesiak, Joanna Narbutt, Branka Marinovic, and Magdalena Ciazynska. 2025. "Immune Checkpoint Blockade Therapy for Advanced Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients, Transplant Recipients, and Individuals with Hereditary Syndromes: A Narrative Review" Cancers 17, no. 22: 3681. https://doi.org/10.3390/cancers17223681
APA StylePabianek, M., Lesiak, A., Narbutt, J., Marinovic, B., & Ciazynska, M. (2025). Immune Checkpoint Blockade Therapy for Advanced Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients, Transplant Recipients, and Individuals with Hereditary Syndromes: A Narrative Review. Cancers, 17(22), 3681. https://doi.org/10.3390/cancers17223681

