Cutaneous Squamous Cell Carcinoma in Immunocompromised Patients
Simple Summary
Abstract
1. Introduction
2. Defining Immunosuppression
3. Pathogenesis of cSCC
4. Role of the Immune System in cSCC Pathogenesis
5. Clinical Implications of Immunosuppressive Drugs in cSCC
6. Staging of cSCC
7. Prevention and Prophylaxis
8. Treatment of cSCC in Immunosuppressed Patients
9. Systemic Therapy and Future Directions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciążyńska, M.; Kamińska-Winciorek, G.; Lange, D.; Lewandowski, B.; Reich, A.; Sławińska, M.; Pabianek, M.; Szczepaniak, K.; Hankiewicz, A.; Ułańska, M.; et al. The incidence and clinical analysis of non-melanoma skin cancer. Sci. Rep. 2021, 11, 4337. [Google Scholar] [CrossRef]
- Scotto, J. Incidence of Nonmelanoma Skin Cancer in the United States; NIH Publication No. 83-2433; U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute: Bethesda, MD, USA, 1983.
- Rogers, H.W.; Weinstock, M.A.; Feldman, S.R.; Coldiron, B.M. Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012. JAMA Dermatol. 2015, 151, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Muzic, J.G.; Schmitt, A.R.; Wright, A.C.; Alniemi, D.T.; Zubair, A.S.; Lourido, J.M.O.; Seda, I.M.S.; Weaver, A.L.; Baum, C.L. Incidence and Trends of Basal Cell Carcinoma and Cutaneous Squamous Cell Carcinoma: A Population-Based Study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin. Proc. 2017, 92, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Kosmadaki, M.G.; Gilchrest, B.A. The Demographics of Aging in the United States: Implications for Dermatology. Arch. Dermatol. 2002, 138, 1427–1428. [Google Scholar] [CrossRef]
- Gray, D.T.; Suman, V.J.; Su, W.P.D.; Clay, R.P.; Harmsen, W.S.; Roenigk, R.K. Trends in the Population-Based Incidence of Squamous Cell Carcinoma of the Skin First Diagnosed Between 1984 and 1992. Arch. Dermatol. 1997, 133, 735–740. [Google Scholar] [CrossRef]
- Murad, A.; Désirée, R. Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2001, 344, 975–983. [Google Scholar]
- Gonzalez, J.L.; Cunningham, K.; Silverman, R.; Madan, E.; Nguyen, B.M. Comparison of the American Joint Committee on Cancer Seventh Edition and Brigham and Women’s Hospital Cutaneous Squamous Cell Carcinoma Tumor Staging in Immunosup-pressed Patients. Dermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. 2017, 43, 784–791. [Google Scholar] [CrossRef]
- Gonzalez, J.L.; Cunningham, K.; Silverman, R.; Madan, E.; Nguyen, B.M. Case–Control Study of Tumor Stage–Dependent Outcomes for Cutaneous Squamous Cell Carcinoma in Immunosuppressed and Immunocompetent Patients. Dermatol. Surg. 2019, 45, 1467–1476. [Google Scholar] [CrossRef]
- Gonzalez, J.L.; Reddy, N.D.; Cunningham, K.; Silverman, R.; Madan, E.; Nguyen, B.M. Multiple Cutaneous Squamous Cell Carcinoma in Immunosuppressed vs. Immunocompetent Patients. JAMA Dermatol. 2019, 155, 625–627. [Google Scholar] [CrossRef]
- Manyam, B.V.; Garsa, A.A.; Chin, R.I.; Reddy, C.A.; Gastman, B.; Thorstad, W.; Yom, S.S.; Nussenbaum, B.; Wang, S.J.; Vidimos, A.T.; et al. A multi-institutional comparison of outcomes of immunosuppressed and immunocompetent patients treated with surgery and radiation therapy for cutaneous squamous cell carcinoma of the head and neck. Cancer 2017, 123, 2054–2060. [Google Scholar] [CrossRef]
- Rosenthal, A.; Conde, G.B.; Dodson, J.; Juhasz, M.; Gharavi, N. Immunosuppression as an Independent Risk Factor for Poor Outcomes in Cutaneous Squamous Cell Carcinoma: A Prospective Study. Dermatol. Surg. 2025, 51, 852–858. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly Zwald, F.; Brown, M. Skin cancer in solid organ transplant recipients: Advances in therapy and management: Part I. Epidemiology of skin cancer in solid organ transplant recipients. J. Am. Acad. Dermatol. 2011, 65, 253–261. [Google Scholar] [CrossRef]
- Pritchett, E.N.; Doyle, A.; Shaver, C.M.; Miller, B.; Abdelmalek, M.; Cusack, C.A.; Malat, G.E.; Chung, C.L. Nonmelanoma Skin Cancer in Nonwhite Organ Transplant Recipients. JAMA Dermatol. 2016, 152, 1348–1353. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.L.; Cook, J.L. Cutaneous Squamous Cell Carcinoma in Patients with Chronic Lymphocytic Leukemia. SKINmed Dermatol. Clin. 2005, 4, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Euvrard, S.; Kanitakis, J.; Claudy, A. Skin Cancers after Organ Transplantation. N. Engl. J. Med. 2003, 348, 1681–1691. [Google Scholar] [CrossRef]
- Tam, S.; Gross, N.D. Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients. Curr. Oncol. Rep. 2019, 21, 82. [Google Scholar] [CrossRef]
- Lindelöf, B.; Sigurgeirsson, B.; Gäbel, H.; Stern, R. Incidence of skin cancer in 5356 patients following organ transplantation. Br. J. Dermatol. 2000, 143, 513–519. [Google Scholar] [CrossRef]
- Kempf, W.; Mertz, K.D.; Hofbauer, G.F.L.; Tinguely, M. Skin cancer in organ transplant recipients. Pathobiol. J. Immunopathol. Mol. Cell. Biol. 2013, 80, 302–309. [Google Scholar] [CrossRef]
- McLean, T.; Brunner, M.; Ebrahimi, A.; Gao, K.; Ch’Ng, S.; Veness, M.J.; Clark, J.R. Concurrent primary and metastatic cutaneous head and neck squamous cell carcinoma: Analysis of prognostic factors. Head Neck 2012, 35, 1144–1148. [Google Scholar] [CrossRef]
- Elghouche, A.N.; Pflum, Z.E.; Schmalbach, C.E. Immunosuppression Impact on Head and Neck Cutaneous Squamous Cell Carcinoma: A Systematic Review with Meta-analysis. Otolaryngol. Neck Surg. 2018, 160, 439–446. [Google Scholar] [CrossRef]
- Ruiz, E.S.; Karia, P.S.; Besaw, R.; Schmults, C.D. Performance of the American Joint Committee on Cancer Staging Manual, 8th Edition vs. the Brigham and Women’s Hospital Tumor Classification System for Cutaneous Squamous Cell Carcinoma. JAMA Dermatol. 2019, 155, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Plasmeijer, E.; Sachse, M.; Gebhardt, C.; Geusau, A.; Bavinck, J.B. Cutaneous squamous cell carcinoma (cSCC) and immunosurveillance—The impact of immunosuppression on frequency of cSCC. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 33–37. [Google Scholar] [CrossRef]
- Martinson, M.L.; Lapham, J. Prevalence of Immunosuppression Among US Adults. JAMA 2024, 331, 880. [Google Scholar] [CrossRef]
- Yan, F.; Tillman, B.N.; Nijhawan, R.I.; Srivastava, D.; Sher, D.J.; Avkshtol, V.; Homsi, J.; Bishop, J.A.; Wynings, E.M.; Lee, R.; et al. High-Risk Cutaneous Squamous Cell Carcinoma of the Head and Neck: A Clinical Review. Ann. Surg. Oncol. 2021, 28, 9009–9030. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, C.; Arnold, R.; Frei, U.; Hetzer, R.; Neuhaus, P.; Stockfleth, E. Skin changes following organ transplantation: An interdisci-plinary challenge. Dtsch. Arztebl. Int. 2014, 111, 188–194. [Google Scholar]
- Mansh, M.; Binstock, M.; Williams, K.; Hafeez, F.; Kim, J.; Glidden, D.; Boettger, R.; Hays, S.; Kukreja, J.; Golden, J.; et al. Voriconazole Exposure and Risk of Cutaneous Squamous Cell Carcinoma, Aspergillus Colonization, Invasive Aspergillosis and Death in Lung Transplant Recipients. Am. J. Transplant. 2015, 16, 262–270. [Google Scholar] [CrossRef]
- Adami, J.; Frisch, M.; Yuen, J.; Glimelius, B.; Melbye, M. Evidence of an association between non-Hodgkin’s lymphoma and skin cancer. BMJ 1995, 310, 1491–1495. [Google Scholar] [CrossRef]
- Zilberg, C.; Ferguson, A.L.; Lyons, J.G.; Gupta, R.; Fuller, S.J.; Damian, D.L. Cutaneous malignancies in chronic lymphocytic leukemia. J. Dermatol. 2024, 51, 353–364. [Google Scholar] [CrossRef]
- Hock, B.D.; McIntosh, N.D.; McKenzie, J.L.; Pearson, J.F.; Simcock, J.W.; MacPherson, S.A. Incidence of cutaneous squamous cell carcinoma in a New Zealand population of chronic lymphocytic leukaemia patients. Intern. Med. J. 2016, 46, 1414–1421. [Google Scholar] [CrossRef]
- Brenner, H.; Gondos, A.; Pulte, D. Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood 2008, 111, 2521–2526. [Google Scholar] [CrossRef]
- Robinson, A.A.; Wang, J.; Vardanyan, S.; Madden, E.K.; Hebroni, F.; Udd, K.A.; Spektor, T.M.; Nosrati, J.D.; Kitto, A.Z.; Zahab, M.; et al. Risk of skin cancer in multiple myeloma patients: A retrospective cohort study. Eur. J. Haematol. 2016, 97, 439–444. [Google Scholar] [CrossRef]
- Thomas, A.; Mailankody, S.; Korde, N.; Kristinsson, S.Y.; Turesson, I.; Landgren, O. Second malignancies after multiple myeloma: From 1960s to 2010s. Blood 2012, 119, 2731–2737. [Google Scholar] [CrossRef]
- Wolfe, F.; Michaud, K. Biologic treatment of rheumatoid arthritis and the risk of malignancy: Analyses from a large US observational study. Arthritis Rheum. 2007, 56, 2886–2895. [Google Scholar] [CrossRef]
- Asgari, M.M.; Ray, G.T.; Geier, J.L.; Quesenberry, C.P. Malignancy rates in a large cohort of patients with systemically treated psoriasis in a managed care population. J. Am. Acad. Dermatol. 2017, 76, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, J.P.; Leslie, K.S. Skin cancer risk in people living with HIV: A call for action. Lancet HIV 2023, 11, e60–e62. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, M.J.; Leyden, W.; Warton, E.M.; Quesenberry, C.P.; Engels, E.A.; Asgari, M.M. HIV Infection Status, Immunodeficiency, and the Incidence of Non-Melanoma Skin Cancer. JNCI J. Natl. Cancer Inst. 2013, 105, 350–360. [Google Scholar] [CrossRef]
- Omland, S.H.; Ahlström, M.G.; Gerstoft, J.; Pedersen, G.; Mohey, R.; Pedersen, C.; Kronborg, G.; Larsen, C.S.; Kvinesdal, B.; Gniadecki, R.; et al. Risk of skin cancer in patients with HIV: A Danish nationwide cohort study. J. Am. Acad. Dermatol. 2018, 79, 689–695. [Google Scholar] [CrossRef]
- Asgari, M.M.; Ray, G.T.; Quesenberry, C.P.; Katz, K.A.; Silverberg, M.J. Association of Multiple Primary Skin Cancers with Human Immunodeficiency Virus Infection, CD4 Count, and Viral Load. JAMA Dermatol. 2017, 153, 892–896. [Google Scholar] [CrossRef] [PubMed]
- Clifford, G.M.; Polesel, J.; Rickenbach, M.; Dal Maso, L.; Keiser, O.; Kofler, A.; Rapiti, E.; Levi, F.; Jundt, G.; Fisch, T.; et al. Cancer risk in the Swiss HIV Cohort Study: As-sociations with immunodeficiency, smoking, and highly active antiretroviral therapy. J. Natl. Cancer Inst. 2005, 97, 425–432. [Google Scholar] [CrossRef]
- Engels, E.A.; Frisch, M.; Goedert, J.J.; Biggar, R.J.; Miller, R.W. Merkel cell carcinoma and HIV infection. Lancet 2002, 359, 497–498. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhao, G.; Okoro, C.A.; Wen, X.-J.; Ford, E.S.; Balluz, L.S. Prevalence of Diagnosed Cancer According to Duration of Diagnosed Diabetes and Current Insulin Use Among U.S. Adults with Diagnosed Diabetes. Diabetes Care 2013, 36, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Dobrică, E.-C.; Banciu, M.L.; Kipkorir, V.; Tabari, M.A.K.; Cox, M.J.; Kutikuppala, L.V.S.; Găman, M.-A. Diabetes and skin cancers: Risk factors, molecular mechanisms and impact on prognosis. World J. Clin. Cases 2022, 10, 11214–11225. [Google Scholar] [CrossRef]
- Tseng, H.W.; Shiue, Y.L.; Tsai, K.W.; Huang, W.C.; Tang, P.L.; Lam, H.C. Risk of skin cancer in patients with diabetes mellitus: A na-tionwide retrospective cohort study in Taiwan. Medicine 2016, 95, e4070. [Google Scholar] [CrossRef] [PubMed]
- Palme, C.E.; O’Brien, C.J.; Veness, M.J.; McNeil, E.B.; Bron, L.P.; Morgan, G.J. Extent of Parotid Disease Influences Outcome in Patients with Metastatic Cutaneous Squamous Cell Carcinoma. Arch. Otolaryngol. Neck Surg. 2003, 129, 750–753. [Google Scholar] [CrossRef]
- Givi, B.; Andersen, P.E.; Diggs, B.S.; Wax, M.K.; Gross, N.D. Outcome of patients treated surgically for lymph node metastases from cutaneous squamous cell carcinoma of the head and neck. Head Neck 2011, 33, 999–1004. [Google Scholar] [CrossRef]
- Manyam, B.V.; Gastman, B.; Zhang, A.Y.; Reddy, C.A.; Burkey, B.B.; Scharpf, J.; Alam, D.S.; Fritz, M.A.; Vidimos, A.T.; Koyfman, S.A. Inferior outcomes in immunosuppressed patients with high-risk cutaneous squamous cell carcinoma of the head and neck treated with surgery and radiation therapy. J. Am. Acad. Dermatol. 2015, 73, 221–227. [Google Scholar] [CrossRef]
- Schmidt, C.; Martin, J.M.; Khoo, E.; Plank, A.; Grigg, R. Outcomes of nodal metastatic cutaneous squamous cell carcinoma of the head and neck treated in a regional center. Head Neck 2014, 37, 1808–1815. [Google Scholar] [CrossRef]
- Oddone, N.; Morgan, G.J.; Palme, C.E.; Perera, L.; Shannon, J.; Wong, E.; Gebski, V.; Veness, M.J. Metastatic cutaneous squamous cell carcinoma of the head and neck: The Immunosuppression, Treatment, Extranodal spread, and Margin status (ITEM) prognostic score to predict outcome and the need to improve survival. Cancer 2009, 115, 1883–1891. [Google Scholar] [CrossRef]
- Tseros, E.A.; Gebski, V.; Morgan, G.J.; Veness, M.J. Prognostic Significance of Lymph Node Ratio in Metastatic Cutaneous Squamous Cell Carcinoma of the Head and Neck. Ann. Surg. Oncol. 2016, 23, 1693–1698. [Google Scholar] [CrossRef]
- Shao, A.; Wong, D.K.C.; McIvor, N.P.; Mylnarek, A.M.; Chaplin, J.M.; Izzard, M.E.; Patel, R.S.; Morton, R.P. Parotid metastatic disease from cutaneous squamous cell carcinoma: Prognostic role of facial nerve sacrifice, lateral temporal bone resection, immune status and P-stage. Head Neck 2013, 36, 545–550. [Google Scholar] [CrossRef]
- Southwell, K.E.; Chaplin, J.M.; Eisenberg, R.L.; McIvor, N.P.; Morton, R.P. Effect of immunocompromise on metastatic cutaneous squamous cell carcinoma in the parotid and neck. Head Neck 2006, 28, 244–248. [Google Scholar] [CrossRef]
- Ratushny, V.; Gober, M.D.; Hick, R.; Ridky, T.W.; Seykora, J.T. From keratinocyte to cancer: The pathogenesis and modeling of cu-taneous squamous cell carcinoma. J. Clin. Investig. 2012, 122, 464–472. [Google Scholar] [CrossRef]
- Pfeifer, G.P. Mechanisms of UV-induced mutations and skin cancer. Genome Instab. Dis. 2020, 1, 99–113. [Google Scholar] [CrossRef]
- Campbell, C.; Quinn, A.G.; Ro, Y.-S.; Angus, B.; Rees, J.L. p53 Mutations Are Common and Early Events that Precede Tumor Invasion in Squamous Cell Neoplasia of the Skin. J. Investig. Dermatol. 1993, 100, 746–748. [Google Scholar] [CrossRef]
- Nakazawa, H.; English, D.; Randell, P.L.; Martel, N.; Armstrong, B.K.; Yamasaki, H. UV and skin cancer: Specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc. Natl. Acad. Sci. USA 1994, 91, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Glogau, R.G. The risk of progression to invasive disease. J. Am. Acad. Dermatol. 2000, 42 Pt 2, 23–24. [Google Scholar] [CrossRef] [PubMed]
- Marks, R.; Rennie, G.; Selwood, T. Malignant transformation of solar keratoses to squamous cell carcinoma. Lancet 1988, 331, 795–797. [Google Scholar] [CrossRef]
- Hedberg, M.L.; Berry, C.T.; Moshiri, A.S.; Xiang, Y.; Yeh, C.J.; Attilasoy, C.; Capell, B.C.; Seykora, J.T. Molecular Mechanisms of Cutaneous Squamous Cell Carcinoma. Int. J. Mol. Sci. 2022, 23, 3478. [Google Scholar] [CrossRef]
- Lefort, K.; Mandinova, A.; Ostano, P.; Kolev, V.; Calpini, V.; Kolfschoten, I.; Devgan, V.; Lieb, J.; Raffoul, W.; Hohl, D.; et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKα kinases. Genes Dev. 2007, 21, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Soufir, N.; Molès, J.P.; Vilmer, C.; Moch, C.; Verola, O.; Rivet, J.; Tesniere, A.; Dubertret, L.; Basset-Seguin, N. P16 UV mutations in human skin epithelial tumors. Oncogene 1999, 18, 5477–5481. [Google Scholar] [CrossRef]
- van der Schroeff, J.G.; Evers, L.M.; Boot, A.J.; Bos, J.L. Ras oncogene mutations in basal cell carcinomas and squamous cell carcinomas of human skin. J. Investig. Dermatol. 1990, 94, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.R.; Zhou, J.H.; Lee, J.J.; Drummond, J.A.; Peng, S.A.; Saade, R.E.; Tsai, K.Y.; Curry, J.L.; Tetzlaff, M.T.; Lai, S.Y.; et al. Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 6582–6592. [Google Scholar] [CrossRef] [PubMed]
- Munhoz, R.R.; Nader-Marta, G.; de Camargo, V.P.; Queiroz, M.M.; Cury-Martins, J.; Ricci, H.; de Mattos, M.R.; de Menezes, T.A.F.; Machado, G.U.C.; Bertolli, E.; et al. A phase 2 study of first-line nivolumab in patients with locally advanced or metastatic cutaneous squamous-cell carcinoma. Cancer 2022, 128, 4223–4231. [Google Scholar] [CrossRef] [PubMed]
- Bommakanti, K.K.; Kosaraju, N.; Tam, K.; Chai-Ho, W.; John, M.S. Management of Cutaneous Head and Neck Squamous and Basal Cell Carcinomas for Immunocompromised Patients. Cancers 2023, 15, 3348. [Google Scholar] [CrossRef]
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; et al. PD-1 Blockade with Cemiplimab in Ad-vanced Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef]
- Grob, J.-J.; Gonzalez, R.; Basset-Seguin, N.; Vornicova, O.; Schachter, J.; Joshi, A.; Meyer, N.; Grange, F.; Piulats, J.M.; Bauman, J.R.; et al. Pembrolizumab Monotherapy for Recurrent or Metastatic Cutaneous Squamous Cell Carcinoma: A Single-Arm Phase II Trial (KEYNOTE-629). J. Clin. Oncol. 2020, 38, 2916–2925. [Google Scholar] [CrossRef]
- Hughes, B.G.M.; Munoz-Couselo, E.; Mortier, L.; Bratland, Å.; Gutzmer, R.; Roshdy, O.; Mendoza, R.G.; Schachter, J.; Arance, A.; Grange, F.; et al. Pembrolizumab for locally advanced and recurrent/metastatic cutaneous squamous cell carcinoma (KEYNOTE-629 study): An open-label, nonrandomized, multicenter, phase II trial. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 1276–1285. [Google Scholar] [CrossRef]
- Wisco, O.J.; Marson, J.W.; Litchman, G.H.; Brownstone, N.; Covington, K.R.; Martin, B.J.; Quick, A.P.; Siegel, J.J.; Caruso, H.G.; Cook, R.W.; et al. Improved cutaneous melanoma survival stratification through integration of 31-gene expression profile testing with the American Joint Committee on Cancer 8th Edition Staging. Melanoma Res. 2022, 32, 98–102. [Google Scholar] [CrossRef]
- Wysong, A.; Newman, J.G.; Covington, K.R.; Kurley, S.J.; Ibrahim, S.F.; Farberg, A.S.; Bar, A.; Cleaver, N.J.; Somani, A.-K.; Panther, D.; et al. Validation of a 40-gene expression profile test to predict metastatic risk in localized high-risk cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 2021, 84, 361–369. [Google Scholar] [CrossRef]
- Vesely, M.D.; Schreiber, R.D. Cancer immunoediting: Antigens, mechanisms, and implications to cancer immunotherapy. Ann. N. Y. Acad. Sci. 2013, 1284, 1–5. [Google Scholar] [CrossRef]
- Bottomley, M.J.; Thomson, J.; Harwood, C.; Leigh, I. The Role of the Immune System in Cutaneous Squamous Cell Carcinoma. Int. J. Mol. Sci. 2019, 20, 2009. [Google Scholar] [CrossRef]
- Gentles, A.J.; Newman, A.M.; Liu, C.L.; Bratman, S.V.; Feng, W.; Kim, D.; Nair, V.S.; Xu, Y.; Khuong, A.; Hoang, C.D.; et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 2015, 21, 938–945. [Google Scholar] [CrossRef]
- Ponzoni, M.; Pastorino, F.; Di Paolo, D.; Perri, P.; Brignole, C. Targeting Macrophages as a Potential Therapeutic Intervention: Impact on Inflammatory Diseases and Cancer. Int. J. Mol. Sci. 2018, 19, 1953. [Google Scholar] [CrossRef] [PubMed]
- Nissinen, L.; Farshchian, M.; Riihilä, P.; Kähäri, V.-M. New perspectives on role of tumor microenvironment in progression of cutaneous squamous cell carcinoma. Cell Tissue Res. 2016, 365, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Antsiferova, M.; Piwko-Czuchra, A.; Cangkrama, M.; Wietecha, M.; Sahin, D.; Birkner, K.; Amann, V.C.; Levesque, M.; Hohl, D.; Dummer, R.; et al. Activin promotes skin carcinogenesis by attraction and reprogramming of macrophages. EMBO Mol. Med. 2016, 9, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, K.; Karin, M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol. 2018, 18, 309–324. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Zhang, B.; Qiao, L.; Zhang, Y. T Cell Dysfunction and Exhaustion in Cancer. Front. Cell Dev. Biol. 2020, 8, 17. [Google Scholar] [CrossRef]
- Chraa, D.; Naim, A.; Olive, D.; Badou, A. T lymphocyte subsets in cancer immunity: Friends or foes. J. Leukoc. Biol. 2018, 105, 243–255. [Google Scholar] [CrossRef]
- Asadzadeh, Z.; Mohammadi, H.; Safarzadeh, E.; Hemmatzadeh, M.; Mahdian-Shakib, A.; Jadidi-Niaragh, F.; Azizi, G.; Baradaran, B. The paradox of Th17 cell functions in tumor immunity. Cell. Immunol. 2017, 322, 15–25. [Google Scholar] [CrossRef]
- Suwanpradid, J.; Holcomb, Z.E.; MacLeod, A.S. Emerging Skin T-Cell Functions in Response to Environmental Insults. J. Investig. Dermatol. 2017, 137, 288–294. [Google Scholar] [CrossRef]
- Linedale, R.; Schmidt, C.; King, B.T.; Ganko, A.G.; Simpson, F.; Panizza, B.J.; Leggatt, G.R. Elevated frequencies of CD8 T cells expressing PD-1, CTLA-4 and Tim-3 within tumour from perineural squamous cell carcinoma patients. PLoS ONE 2017, 12, e0175755. [Google Scholar] [CrossRef]
- Slater, N.A.; Googe, P.B. PD-L1 expression in cutaneous squamous cell carcinoma correlates with risk of metastasis. J. Cutan. Pathol. 2016, 43, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Qiu, S.-J.; Fan, J.; Zhou, J.; Wang, X.-Y.; Xiao, Y.-S.; Xu, Y.; Li, Y.-W.; Tang, Z.-Y. Intratumoral Balance of Regulatory and Cytotoxic T Cells Is Associated with Prognosis of Hepatocellular Carcinoma After Resection. J. Clin. Oncol. 2007, 25, 2586–2593. [Google Scholar] [CrossRef]
- Liu, F.; Lang, R.; Zhao, J.; Zhang, X.; Pringle, G.A.; Fan, Y.; Yin, D.; Gu, F.; Yao, Z.; Fu, L. CD8+ cytotoxic T cell and FOXP3+ regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res. Treat. 2011, 130, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Azzimonti, B.; Zavattaro, E.; Provasi, M.; Vidali, M.; Conca, A.; Catalano, E.; Rimondini, L.; Colombo, E.; Valente, G. Intense Foxp3+ CD25+ regulatory T-cell infiltration is associated with high-grade cutaneous squamous cell carcinoma and counterbalanced by CD8+/Foxp3+ CD25+ ratio. Br. J. Dermatol. 2015, 172, 64–73. [Google Scholar] [CrossRef]
- Billups, K.; Neal, J.; Salyer, J. Immunosuppressant-Driven De Novo Malignant Neoplasms after Solid-Organ Transplant. Prog. Transplant. 2015, 25, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Mudigonda, T.; Levender, M.M.; O’Neill, J.L.; West, C.E.; Pearce, D.J.; Feldman, S.R. Incidence, Risk Factors, and Preventative Management of Skin Cancers in Organ Transplant Recipients: A Review of Single- and Multicenter Retrospective Studies from 2006 to 2010. Dermatol. Surg. 2013, 39, 345–364. [Google Scholar] [CrossRef]
- Dantal, J.; Hourmant, M.; Cantarovich, D.; Giral, M.; Blancho, G.; Dreno, B.; Soulillou, J.-P. Effect of long-term immunosuppression in kidney-graft recipients on cancer incidence: Randomised comparison of two cyclosporin regimens. Lancet 1998, 351, 623–628. [Google Scholar] [CrossRef]
- McGeown, M.G.; Douglas, J.F.; Middleton, D. One thousand renal transplants at Belfast City Hospital: Post-graft neoplasia 1968–1999, comparing azathioprine only with cyclosporin-based regimes in a single centre. Clin. Transpl. 2000, 193–202. [Google Scholar] [PubMed]
- Vivarelli, M.; Bellusci, R.; Cucchetti, A.; Cavrini, G.; De Ruvo, N.; Aden, A.A.; La Barba, G.; Brillanti, S.; Cavallari, A. Low recurrence rate of hepatocellular carcinoma after liver transplantation: Better patient selection or lower immunosuppression? Transplantation 2002, 74, 1746–1751. [Google Scholar] [CrossRef] [PubMed]
- Swinnen, L.J.; Costanzo-Nordin, M.R.; Fisher, S.G.; O’Sullivan, E.J.; Johnson, M.R.; Heroux, A.L.; Dizikes, G.J.; Pifarre, R.; Fisher, R.I. Increased Incidence of Lymphoproliferative Disorder after Immunosuppression with the Monoclonal Antibody OKT3 in Cardiac-Transplant Recipients. N. Engl. J. Med. 1990, 323, 1723–1728. [Google Scholar] [CrossRef]
- Kehinde, E.O.; Petermann, A.; Morgan, J.D.; Butt, Z.A.; Donnelly, P.K.; Veitch, P.S.; Bell, P.R.F. Triple therapy and incidence of de novo cancer in renal transplant recipients. Br. J. Surg. 1994, 81, 985–986. [Google Scholar] [CrossRef]
- Cara, C.J.; Pena, A.S.; Sans, M.; Rodrigo, L.; Guerrero-Esteo, M.; Hinojosa, J.; García-Paredes, J.; Guijarro, L.G. Reviewing the mechanism of action of thiopurine drugs: Towards a new paradigm in clinical practice. Med. Sci. Monit. 2004, 10, RA247–RA254. [Google Scholar]
- O’Donovan, P.; Perrett, C.M.; Zhang, X.; Montaner, B.; Xu, Y.-Z.; Harwood, C.A.; McGregor, J.M.; Walker, S.L.; Hanaoka, F.; Karran, P. Azathioprine and UVA Light Generate Mutagenic Oxidative DNA Damage. Science 2005, 309, 1871–1874. [Google Scholar] [CrossRef] [PubMed]
- Inman, G.J.; Wang, J.; Nagano, A.; Alexandrov, L.B.; Purdie, K.J.; Taylor, R.G.; Sherwood, V.; Thomson, J.; Hogan, S.; Spender, L.C.; et al. The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat. Commun. 2018, 9, 3667. [Google Scholar] [CrossRef] [PubMed]
- Coghill, A.E.; Johnson, L.G.; Berg, D.; Resler, A.J.; Leca, N.; Madeleine, M.M. Immunosuppressive Medications and Squamous Cell Skin Carcinoma: Nested Case-Control Study Within the Skin Cancer after Organ Transplant (SCOT) Cohort. Am. J. Transplant. 2016, 16, 565–573. [Google Scholar] [CrossRef]
- Jiyad, Z.; Olsen, C.M.; Burke, M.T.; Isbel, N.M.; Green, A.C. Azathioprine and Risk of Skin Cancer in Organ Transplant Recipients: Systematic Review and Meta-Analysis. Am. J. Transplant. 2016, 16, 3490–3503. [Google Scholar] [CrossRef]
- Oneill, J.; Edwards, L.; Taylor, D. Mycophenolate Mofetil and Risk of Developing Malignancy After Orthotopic Heart Transplantation: Analysis of the Transplant Registry of the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 2006, 25, 1186–1191. [Google Scholar] [CrossRef]
- Vos, M.; Plasmeijer, E.I.; van Bemmel, B.C.; van der Bij, W.; Klaver, N.S.; Erasmus, M.E.; de Bock, G.H.; Verschuuren, E.A.; Rácz, E. Azathioprine to mycophenolate mofetil transition and risk of squamous cell carcinoma after lung transplantation. J. Heart Lung Transplant. 2018, 37, 853–859. [Google Scholar] [CrossRef]
- Gutierrez-Dalmau, A.; Campistol, J.M. Immunosuppressive therapy and malignancy in organ transplant recipients: A systematic review. Drugs 2007, 67, 1167–1198. [Google Scholar] [CrossRef]
- Hojo, M.; Morimoto, T.; Maluccio, M.; Asano, T.; Morimoto, K.; Lagman, M.; Shimbo, T.; Suthanthiran, M. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999, 397, 530–534. [Google Scholar] [CrossRef]
- Teicher, B.A. Malignant Cells, Directors of the Malignant Process: Role of Transforming Growth Factor-beta. Cancer Metastasis Rev. 2001, 20, 133–143. [Google Scholar] [CrossRef]
- Dziunycz, P.J.; Lefort, K.; Wu, X.; Freiberger, S.N.; Neu, J.; Djerbi, N.; Iotzowa-Weiss, G.; French, L.E.; Dotto, G.-P.; Hofbauer, G.F. The Oncogene ATF3 Is Potentiated by Cyclosporine A and Ultraviolet Light A. J. Investig. Dermatol. 2014, 134, 1998–2004. [Google Scholar] [CrossRef]
- Wu, X.; Nguyen, B.-C.; Dziunycz, P.; Chang, S.; Brooks, Y.; Lefort, K.; Hofbauer, G.F.L.; Dotto, G.P. Opposing roles for calcineurin and ATF3 in squamous skin cancer. Nature 2010, 465, 368–372. [Google Scholar] [CrossRef]
- Fuchs, U.; Klein, S.; Zittermann, A.; Ensminger, S.M.; Schulz, U.; Gummert, J.F. Incidence of malignant neoplasia after heart trans-plantation--a comparison between cyclosporine a and tacrolimus. Ann. Transplant. 2014, 23, 300–304. [Google Scholar]
- Kauffman, H.M.; Cherikh, W.S.; Cheng, Y.; Hanto, D.W.; Kahan, B.D. Maintenance Immunosuppression with Target-of-Rapamycin Inhibitors is Associated with a Reduced Incidence of De Novo Malignancies. Transplantation 2005, 80, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Mathew, T.; Kreis, H.; Friend, P. Two-year incidence of malignancy in sirolimus-treated renal transplant recipients: Results from five multicenter studies. Clin. Transplant. 2004, 18, 446–449. [Google Scholar] [CrossRef]
- Campistol, J.M.; Eris, J.; Oberbauer, R.; Friend, P.; Hutchison, B.; Morales, J.M.; Claesson, K.; Stallone, G.; Russ, G.; Rostaing, L.; et al. Sirolimus Therapy after Early Cyclosporine Withdrawal Reduces the Risk for Cancer in Adult Renal Transplantation. J. Am. Soc. Nephrol. 2006, 17, 581–589. [Google Scholar] [CrossRef]
- Alberú, J.; Pascoe, M.D.; Campistol, J.M.; Schena, F.P.; Rial, M.d.C.; Polinsky, M.; Neylan, J.F.; Korth-Bradley, J.; Goldberg-Alberts, R.; Maller, E.S. Lower Malignancy Rates in Renal Allograft Recipients Converted to Sirolimus-Based, Calcineurin Inhibitor-Free Immunotherapy: 24-Month Results from the CONVERT Trial. Transplantation 2011, 92, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Knoll, G.A.; Kokolo, M.B.; Mallick, R.; Beck, A.; Buenaventura, C.D.; Ducharme, R.; Barsoum, R.; Bernasconi, C.; Blydt-Hansen, T.D.; Ekberg, H.; et al. Effect of sirolimus on malignancy and survival after kidney transplantation: Systematic review and meta-analysis of individual patient data. BMJ 2014, 349, g6679. [Google Scholar] [CrossRef]
- Guba, M.; von Breitenbuch, P.; Steinbauer, M.; Koehl, G.; Flegel, S.; Hornung, M.; Bruns, C.J.; Zuelke, C.; Farkas, S.; Anthuber, M.; et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: Involvement of vascular endothelial growth factor. Nat. Med. 2002, 8, 128–135. [Google Scholar] [CrossRef]
- Keller, B.; Braathen, L.R.; Marti, H.P.; Hunger, R.E. Skin cancers in renal transplant recipients: A description of the renal transplant cohort in Bern. Swiss Med. Wkly. 2010, 140, w13036. [Google Scholar] [CrossRef]
- Ingvar, Å.; Smedby, K.E.; Lindelöf, B.; Fernberg, P.; Bellocco, R.; Tufveson, G.; Höglund, P.; Adami, J. Immunosuppressive treatment after solid organ transplantation and risk of post-transplant cutaneous squamous cell carcinoma. Nephrol. Dial. Transplant. 2009, 25, 2764–2771. [Google Scholar] [CrossRef]
- Schmitt, A.R.; Brewer, J.D.; Bordeaux, J.S.; Baum, C.L. Staging for cutaneous squamous cell carcinoma as a predictor of sentinel lymph node biopsy results: Meta-analysis of American Joint Committee on Cancer criteria and a proposed alternative system. JAMA Dermatol. 2014, 150, 19–24. [Google Scholar] [CrossRef]
- Karia, P.S.; Jambusaria-Pahlajani, A.; Harrington, D.P.; Murphy, G.F.; Qureshi, A.A.; Schmults, C.D. Evaluation of American Joint Committee on Cancer, International Union Against Cancer, and Brigham and Women’s Hospital Tumor Staging for Cuta-neous Squamous Cell Carcinoma. J. Clin. Oncol. 2014, 32, 327–334. [Google Scholar] [CrossRef]
- Blechman, A.B.; Carucci, J.A.; Stevenson, M.L. Stratification of Poor Outcomes for Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients Using the American Joint Committee on Cancer Eighth Edition and Brigham and Women’s Hospital Staging Systems. Dermatol. Surg. 2019, 45, 1117–1124. [Google Scholar] [CrossRef]
- Tam, S.; Yao, C.M.K.L.; Amit, M.; Gajera, M.; Luo, X.; Treistman, R.; Khanna, A.; Aashiq, M.; Nagarajan, P.; Bell, D.; et al. Association of Immunosuppression with Outcomes of Patients with Cutaneous Squamous Cell Carcinoma of the Head and Neck. Arch. Otolaryngol. Neck Surg. 2020, 146, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Surber, C.; Ulrich, C.; Hinrichs, B.; Stockfleth, E. Photoprotection in immunocompetent and immunocompromised people. Br. J. Dermatol. 2012, 167, 85–93. [Google Scholar] [CrossRef]
- Thomas, B.R.; Barnabas, A.; Agarwal, K.; Aluvihare, V.; Suddle, A.R.; Higgins, E.M.; O’GRady, J.G.; Heaton, N.D.; Heneghan, M.A. Patient perception of skin-cancer prevention and risk after liver transplantation. Clin. Exp. Dermatol. 2013, 38, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Cronin, A. Photoprotection and skin cancer awareness in kidney transplant recipients living with HIV: A single-centre cross-sectional study. Ski. Health Dis. 2025, 5, 256–262. [Google Scholar] [CrossRef]
- Terhorst, D.; Drecoll, U.; Stockfleth, E.; Ulrich, C. Organ transplant recipients and skin cancer: Assessment of risk factors with focus on sun exposure. Br. J. Dermatol. 2009, 161, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Thet, Z.; Lam, A.K.; Ng, S.; Aung, S.Y.; Han, T.; Ranganathan, D.; Borg, J.; Pepito, C.; Khoo, T.K. Comparison of skin cancer awareness and sun protection behaviours between renal transplant recipients and patients with glomerular disease treated with immunosuppressants. Nephrology 2021, 26, 294–302. [Google Scholar] [CrossRef]
- Haney, M.O.; Ordin, Y.S.; Arkan, G. Skin Cancer-Sun Knowledge and Sun Protection Behaviors of Liver Transplant Recipients in Turkey. J. Cancer Educ. 2017, 34, 137–144. [Google Scholar] [CrossRef]
- Tee, L.Y.; Sultana, R.; Tam, S.Y.C.; Oh, C.C. Chemoprevention of keratinocyte carcinoma and actinic keratosis in solid-organ transplant recipients: Systematic review and meta-analyses. J. Am. Acad. Dermatol. 2021, 84, 528–530. [Google Scholar] [CrossRef]
- Bavinck, J.N.; Tieben, L.M.; Van der Woude, F.J.; Tegzess, A.M.; Hermans, J.; ter Schegget, J.; Vermeer, B.J. Prevention of skin cancer and reduction of keratotic skin lesions during acitretin therapy in renal transplant recipients: A double-blind, placebo-controlled study. J. Clin. Oncol. 1995, 13, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- George, R.; Weightman, W.; Russ, G.R.; Bannister, K.M.; Mathew, T.H. Acitretin for chemoprevention of non-melanoma skin cancers in renal transplant recipients. Australas. J. Dermatol. 2002, 43, 269–273. [Google Scholar] [CrossRef]
- Smit, J.V.; de Sévaux, R.G.L.; Blokx, W.A.M.; van de Kerkhof, P.C.M.; Hoitsma, A.J.; de Jong, E.M.G.J. Acitretin treatment in (pre)malignant skin disorders of renal transplant recipients: Histologic and immunohistochemical effects. J. Am. Acad. Dermatol. 2004, 50, 189–196. [Google Scholar] [CrossRef]
- Jirakulaporn, T.; Endrizzi, B.; Lindgren, B.; Mathew, J.; Lee, P.K.; Dudek, A.Z. Capecitabine for skin cancer prevention in solid organ transplant recipients. Clin. Transplant. 2010, 25, 541–548. [Google Scholar] [CrossRef]
- Endrizzi, B.; Ahmed, R.L.; Ray, T.; Dudek, A.; Lee, P. Capecitabine to Reduce Nonmelanoma Skin Carcinoma Burden in Solid Organ Transplant Recipients. Dermatol. Surg. 2013, 39, 634–645. [Google Scholar] [CrossRef]
- Hasan, Z.-U.; Ahmed, I.; Matin, R.N.; Homer, V.; Lear, J.T.; Ismail, F.; Whitmarsh, T.; Green, A.C.; Thomson, J.; Milligan, A.; et al. Topical treatment of actinic keratoses in organ transplant recipients: A feasibility study for SPOT (Squamous cell carcinoma Prevention in Organ transplant recipients using Topical treatments). Br. J. Dermatol. 2022, 187, 324–337. [Google Scholar] [CrossRef]
- Heppt, M.; Steeb, T.; Niesert, A.; Zacher, M.; Leiter, U.; Garbe, C.; Berking, C. Local interventions for actinic keratosis in organ transplant recipients: A systematic review. Br. J. Dermatol. 2018, 180, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Euvrard, S.; Morelon, E.; Rostaing, L.; Goffin, E.; Brocard, A.; Tromme, I.; Broeders, N.; Del Marmol, V.; Chatelet, V.; Dompmartin, A.; et al. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N. Engl. J. Med. 2012, 367, 329–339. [Google Scholar] [CrossRef]
- Otley, C.; Berg, D.; Ulrich, C.; Stasko, T.; Murphy, G.; Salasche, S.; Christenson, L.; Sengelmann, R.; Loss, G.; Garces, J.; et al. Reduction of immunosuppression for transplant-associated skin cancer: Expert consensus survey. Br. J. Dermatol. 2006, 154, 395–400. [Google Scholar] [CrossRef]
- Massey, P.R.; Schmults, C.D.; Li, S.J.; Arron, S.T.; Asgari, M.M.; Bavinck, J.N.B.; Billingsley, E.; Blalock, T.W.; Blasdale, K.; Carroll, B.T.; et al. Consensus-Based Recommendations on the Prevention of Squamous Cell Carcinoma in Solid Organ Transplant Recipients. JAMA Dermatol. 2021, 157, 1219–1226. [Google Scholar] [CrossRef]
- Alam, M.; Armstrong, A.; Baum, C.; Bordeaux, J.S.; Brown, M.; Busam, K.J.; Eisen, D.B.; Iyengar, V.; Lober, C.; Margolis, D.J.; et al. Guidelines of care for the management of cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 2018, 78, 560–578. [Google Scholar] [CrossRef]
- Mehrany, K.; Byrd, D.R.; Roenigk, R.K.; Weenig, R.H.; Phillips, P.K.; Nguyen, T.H.; Otley, C.C. Lymphocytic infiltrates and subclinical epi-thelial tumor extension in patients with chronic leukemia and solid-organ transplantation. Dermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. 2003, 29, 129–134. [Google Scholar]
- Song, S.S.; Goldenberg, A.; Ortiz, A.; Eimpunth, S.; Oganesyan, G.; Jiang, S.I.B. Nonmelanoma Skin Cancer with Aggressive Sub-clinical Extension in Immunosuppressed Patients. JAMA Dermatol. 2016, 152, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Tejera-Vaquerizo, A.; Gómez-Tomás, Á.; Jaka, A.; Toll, A.; Del Río, M.; Ferrándiz-Pulido, C.; Fuente, M.J.; Carrasco, C.; Almazán-Fernández, F.M.; Toledo-Pastrana, T.; et al. Sentinel lymph node biopsy versus observation in high-risk cutaneous squamous cell carcinoma in immunosuppressed and immunocompetent patients: An inverse probability of treatment weighting study. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 1588–1598. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Townes, T.; Na’ara, S. Current Advances and Challenges in the Management of Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients. Cancers 2024, 16, 3118. [Google Scholar] [CrossRef]
- Jennings, L.; Schmults, C.D. Management of High-Risk Cutaneous Squamous Cell Carcinoma. J. Clin. Aesthet. Dermatol. 2010, 3, 39–48. [Google Scholar]
- Jambusaria-Pahlajani, A.; Miller, C.J.; Quon, H.; Smith, N.; Klein, R.Q.; Schmults, C.D. Surgical monotherapy versus surgery plus adjuvant radiotherapy in high-risk cutaneous squamous cell carcinoma: A systematic review of outcomes. Dermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. 2009, 35, 574–585. [Google Scholar] [CrossRef]
- Burns, C.; Kubicki, S.; Nguyen, Q.-B.; Aboul-Fettouh, N.; Wilmas, K.M.; Chen, O.M.; Doan, H.Q.; Silapunt, S.; Migden, M.R. Advances in Cutaneous Squamous Cell Carcinoma Management. Cancers 2022, 14, 3653. [Google Scholar] [CrossRef]
- Sadek, H.; Azli, N.; Wendling, J.L.; Cvitkovic, E.; Rahal, M.; Mamelle, G.; Guillaume, J.C.; Armand, J.P.; Avril, M.F. Treatment of advanced squamous cell carcinoma of the skin with cisplatin, 5-fluorouracil, and bleomycin. Cancer 1990, 66, 1692–1696. [Google Scholar] [CrossRef]
- Guthrie, T.H.; McElveen, L.J.; Porubsky, E.S.; Harmon, J.D. Cisplatin and doxorubicin. An effective chemotherapy combination in the treatment of advanced basal cell and squamous carcinoma of the skin. Cancer 1985, 55, 1629–1632. [Google Scholar] [CrossRef] [PubMed]
- Merimsky, O.; Neudorfer, M.; Spitzer, E.; Chaitchik, S. Salvage cisplatin and adriamycin for advanced or recurrent basal or squamous cell carcinoma of the face. Anti-Cancer Drugs 1992, 3, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Denic, S. Preoperative Treatment of Advanced Skin Carcinoma with Cisplatin and Bleomycin. Am. J. Clin. Oncol. 1999, 22, 32–34. [Google Scholar] [CrossRef]
- Goldberg, H.; Tsalik, M.; Bernstein, Z.; Haim, N. Cisplatin-based chemotherapy for advanced basal and squamous cell carci-nomas. Harefuah 1994, 127, 217–221, 286. [Google Scholar] [PubMed]
- Guthrie, T.H.; Porubsky, E.S.; Luxenberg, M.N.; Shah, K.J.; Wurtz, K.L.; Watson, P.R. Cisplatin-based chemotherapy in advanced basal and squamous cell carcinomas of the skin: Results in 28 patients including 13 patients receiving multimodality therapy. J. Clin. Oncol. 1990, 8, 342–346. [Google Scholar] [CrossRef]
- Khansur, T.; Kennedy, A. Cisplatin and 5-fluorouracil for advanced locoregional and metastatic squamous cell carcinoma of the skin. Cancer 1991, 67, 2030–2032. [Google Scholar] [CrossRef]
- Wells, J.L.; Shirai, K. Systemic Therapy for Squamous Cell Carcinoma of the Skin in Organ Transplant Recipients. Am. J. Clin. Oncol. 2012, 35, 498–503. [Google Scholar] [CrossRef]
- Aboul-Fettouh, N.; Morse, D.; Patel, J.; Migden, M.R. Immunotherapy and Systemic Treatment of Cutaneous Squamous Cell Carcinoma. Dermatol. Pract. Concept. 2021, 11, e2021169S. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, F.; Forrester, S.J.; Eguchi, S.; Zhang, M.Z.; Harris, R.C. Expression and Function of the Epidermal Growth Factor Re-ceptor in Physiology and Disease. Physiol. Rev. 2016, 96, 1025–1069. [Google Scholar] [CrossRef]
- Galer, C.E.; Corey, C.L.; Wang, Z.; Younes, M.N.; Gomez-Rivera, F.; Jasser, S.A.; Ludwig, D.L.; El-Naggar, A.K.; Weber, R.S.; Myers, J.N. Dual inhibition of epidermal growth factor receptor and insulin-like growth factor receptor I: Reduction of angiogenesis and tumor growth in cutaneous squamous cell carcinoma. Head Neck 2011, 33, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Maubec, E.; Petrow, P.; Scheer-Senyarich, I.; Duvillard, P.; Lacroix, L.; Gelly, J.; Certain, A.; Duval, X.; Crickx, B.; Buffard, V.; et al. Phase II Study of Cetuximab as First-Line Single-Drug Therapy in Patients with Unresectable Squamous Cell Carcinoma of the Skin. J. Clin. Oncol. 2011, 29, 3419–3426. [Google Scholar] [CrossRef]
- Lewis, C.M.; Glisson, B.S.; Feng, L.; Wan, F.; Tang, X.; Wistuba, I.I.; El-Naggar, A.K.; Rosenthal, D.I.; Chambers, M.S.; Lustig, R.A.; et al. A Phase II Study of Gefitinib for Aggressive Cutaneous Squamous Cell Carcinoma of the Head and Neck. Clin. Cancer Res. 2012, 18, 1435–1446. [Google Scholar] [CrossRef] [PubMed]
- William, W.N.; Feng, L.; Ferrarotto, R.; Ginsberg, L.; Kies, M.; Lippman, S.; Glisson, B.; Kim, E.S. Gefitinib for patients with incurable cutaneous squamous cell carcinoma: A single-arm phase II clinical trial. J. Am. Acad. Dermatol. 2017, 77, 1110–1113.e2. [Google Scholar] [CrossRef]
- Foote, M.C.; McGrath, M.; Guminski, A.; Hughes, B.G.M.; Meakin, J.; Thomson, D.; Zarate, D.; Simpson, F.; Porceddu, S.V. Phase II study of single-agent panitumumab in patients with incurable cutaneous squamous cell carcinoma. Ann. Oncol. 2014, 25, 2047–2052. [Google Scholar] [CrossRef]
- Gold, K.A.; Kies, M.S.; William, W.N.; Johnson, F.M.; Lee, J.J.; Glisson, B.S. Erlotinib in the Treatment of Recurrent or Metastatic Cuta-neous Squamous Cell Carcinoma: A Single Arm Phase II Clinical Trial. Cancer 2018, 124, 2169–2173. [Google Scholar] [CrossRef]
- Kreinbrink, P.J.; Mierzwa, M.L.; Huth, B.; Redmond, K.P.; Wise-Draper, T.M.; Casper, K.; Li, J.; Takiar, V. Adjuvant radiation and cetuximab improves local control in head and neck cutaneous squamous cell carcinoma: Phase II study. Head Neck 2021, 43, 3408–3416. [Google Scholar] [CrossRef]
- Zandberg, D.P.; Allred, J.B.; Rosenberg, A.J.; Kaczmar, J.M.; Swiecicki, P.; Julian, R.A.; Poklepovic, A.S.; Bauman, J.R.; Phan, M.D.; Saba, N.F.; et al. Phase II (Alliance A091802) Randomized Trial of Avelumab Plus Cetuximab Versus Avelumab Alone in Advanced Cutaneous Squamous Cell Carcinoma. J. Clin. Oncol. 2025, 43, JCO2500759. [Google Scholar] [CrossRef]
- Montaudié, H.; Viotti, J.; Combemale, P.; Dutriaux, C.; Dupin, N.; Robert, C.; Mortier, L.; Kaphan, R.; Duval-Modeste, A.-B.; Dalle, S.; et al. Cetuximab is efficient and safe in patients with advanced cutaneous squamous cell carcinoma: A retrospective, multicentre study. Oncotarget 2020, 11, 378–385. [Google Scholar] [CrossRef]
- Heath, C.H.; Deep, N.L.; Nabell, L.; Carroll, W.R.; Desmond, R.; Clemons, L.; Spencer, S.; Magnuson, J.S.; Rosenthal, E.L. Phase 1 Study of Erlotinib Plus Radiation Therapy in Patients with Advanced Cutaneous Squamous Cell Carcinoma. Int. J. Radiat. Oncol. 2013, 85, 1275–1281. [Google Scholar] [CrossRef]
- Wherry, E.J. T cell exhaustion. Nat. Immunol. 2011, 12, 492–499. [Google Scholar] [CrossRef]
- Lipson, E.J.; Forde, P.M.; Hammers, H.-J.; Emens, L.A.; Taube, J.M.; Topalian, S.L. Antagonists of PD-1 and PD-L1 in Cancer Treatment. Semin. Oncol. 2015, 42, 587–600. [Google Scholar] [CrossRef]
- Kumar, V.; Shinagare, A.B.; Rennke, H.G.; Ghai, S.; Lorch, J.H.; Ott, P.A.; Rahma, O.E. The Safety and Efficacy of Checkpoint Inhibitors in Transplant Recipients: A Case Series and Systematic Review of Literature. Oncologist 2020, 25, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Clingan, P.; Ladwa, R.; Brungs, D.; Harris, D.L.; McGrath, M.; Arnold, S.; Coward, J.; Fourie, S.; Kurochkin, A.; Malan, D.R.; et al. Efficacy and safety of cosibelimab, an anti-PD-L1 antibody, in metastatic cutaneous squamous cell carcinoma. J. Immunother. Cancer 2023, 11, e007637. [Google Scholar] [CrossRef] [PubMed]
- Idris, O.A.; Westgate, D.; Jahromi, B.S.; Shebrain, A.; Zhang, T.; Ashour, H.M. PD-L1 Inhibitor Cosibelimab for Cutaneous Squamous Cell Carcinoma: Comprehensive Evaluation of Efficacy, Mechanism, and Clinical Trial Insights. Biomedicines 2025, 13, 889. [Google Scholar] [CrossRef]
- Schenk, K.M.; Deutsch, J.S.; Chandra, S.; Davar, D.; Eroglu, Z.; Khushalani, N.I.; Luke, J.J.; Ott, P.A.; Sosman, J.A.; Aggarwal, V.; et al. Nivolumab + Tacrolimus + Prednisone ± Ipilimumab for Kidney Transplant Recipients with Advanced Cutaneous Cancers. J. Clin. Oncol. 2024, 42, 1011–1020. [Google Scholar] [CrossRef]
- Hanna, G.J.; Dharanesswaran, H.; Giobbie-Hurder, A.; Harran, J.J.; Liao, Z.; Pai, L.; Tchekmedyian, V.; Ruiz, E.S.; Waldman, A.H.; Schmults, C.D.; et al. Cemiplimab for Kidney Transplant Recip-ients with Advanced Cutaneous Squamous Cell Carcinoma. J. Clin. Oncol. 2024, 42, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Regeneron Pharmaceuticals. A Phase 1 Study of Pre-Operative Cemiplimab (REGN2810), Administered Intralesionally, for Patients with Cutaneous Squamous Cell Carcinoma (CSCC) or Basal Cell Carcinoma (BCC). Report No.: NCT03889912. 2025. Available online: https://clinicaltrials.gov/study/NCT03889912 (accessed on 21 October 2025).
- Regeneron Pharmaceuticals. A Phase 3 Randomized Study of Intralesional Cemiplimab Versus Primary Surgery in Partici-Pants with Early Stage Cutaneous Squamous Cell Carcinoma (CSCC) Report No.: NCT06585410. 2025. Available online: https://clinicaltrials.gov/study/NCT06585410 (accessed on 21 October 2025).
- Baeza-Hernández, G.; Cañueto, J. Intralesional Treatments for Invasive Cutaneous Squamous Cell Carcinoma. Cancers 2023, 16, 158. [Google Scholar] [CrossRef]
- Dummer, R.; Gyorki, D.E.; Hyngstrom, J.; Berger, A.C.; Conry, R.; Demidov, L.; Sharma, A.; Treichel, S.A.; Radcliffe, H.; Gorski, K.S.; et al. Neoadjuvant talimogene laherparepvec plus surgery versus surgery alone for resectable stage IIIB–IVM1a melanoma: A randomized, open-label, phase 2 trial. Nat. Med. 2021, 27, 1789–1796. [Google Scholar] [CrossRef] [PubMed]
- Andtbacka, R.H.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients with Advanced Melanoma. J. Clin. Oncol. 2015, 33, 2780–2788. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.T.; Wallace, N.; Porceddu, S.; Ferrarotto, R. Top advances of the year: Developments of immunotherapy in cutaneous squamous cell carcinoma, 2023–2024. Cancer 2025, 131, e35920. [Google Scholar] [CrossRef] [PubMed]
- Migden, M.R.; Luke, J.J.; Chai-Ho, W.; Kheterpal, M.; Wise-Draper, T.M.; Poklepovic, A.S.; Bolotin, D.; Verschraegen, C.F.; Collichio, F.A.; Tang, J.; et al. An open-label, multicenter, phase 1b/2 study of RP1, a first-in-class, enhanced potency oncolytic virus in solid organ transplant recipients with advanced cutaneous malignancies (ARTACUS). J. Clin. Oncol. 2022, 40, TPS9597. [Google Scholar] [CrossRef]
- Replimune Inc. An Open-Label, Multicenter, Phase 1B/2 Study of RP1 in Solid Organ and Hematopoietic Cell Trans-Plant Recipients with Advanced Cutaneous Malignancies. Report No.: NCT04349436. 2025. Available online: https://clinicaltrials.gov/study/NCT04349436 (accessed on 8 September 2025).
- Berger, A. A Phase 1 Study of Talimogene Laherparepvec and Panitumumab in Patients with Locally Advanced Squamous Cell Carcinoma of the Skin (SCCS). Report No.: NCT04163952. 2024. Available online: https://clinicaltrials.gov/study/NCT04163952 (accessed on 8 September 2025).
- Replimune Inc. A Randomized, Controlled, Open-Label, Phase 2 Study of Cemiplimab as a Single Agent and in Combination with RP1 in Patients with Advanced Cutaneous Squamous Cell Carcinoma. Report No.: NCT04050436. 2025. Available online: https://clinicaltrials.gov/study/NCT04050436 (accessed on 8 September 2025).
| T Staging | BWH | AJCC 8th Edition |
|---|---|---|
| T1 | No high-risk factors | Tumor < 2 cm in greatest diameter |
| T2/T2a | 1 high-risk factor | Tumor ≥ 2 cm but <4 cm in greatest diameter |
| T2b | 2–3 high-risk factors | - |
| T3 | ≥4 high-risk factors or bone invasion | Tumor ≥ 4 cm in greatest diameter or minor bone invasion, or PNI, or deep invasion * |
| T4 | - | a. Tumor with gross cortical bone/marrow invasion b. Tumor with skull bone invasion or skull-base foramen involvement |
| High-risk Factors | Tumor diameter ≥ 2 cm; PNI ≥ 0.1 mm nerve caliber; Poorly differentiated; Tumor invasion beyond subcutaneous fat | - |
| Comments | Does not include immunosuppression in the staging of cSCC. It is based on tumor-specific features only | Acknowledges immunosuppression in the subtexts as an adverse factor but does not include it in the TNM staging |
| Drug (Brand) | Class | FDA Indication | FDA Approval | Clinical Trial | Key Findings |
|---|---|---|---|---|---|
| Cemiplimab (Libtayo) | anti-PD-1 | Metastatic or locally advanced cSCC; not amenable to curative surgery or radiation | 28 September 2018 | EMPOWER-CSCC-1 (NCT02760498); Phase II | ORR 47% with a durable response ≥ 12 months |
| Pembrolizumab (Keytruda) | anti-PD-1 | Metastatic/recurrent or locally advanced cSCC; not curable by surgery or radiation | 24 June 2020 6 July 2021 * | KEYNOTE-629 (NCT03284424); Phase II | ORR 35–50% with a durable response ≥ 12 months |
| Cosibelimab (Unloxcyt) | anti-PD-L1 | Metastatic or locally advanced cSCC; not candidates for curative surgery or radiation | 13 December 2024 | CK-301-101 (NCT03212404); Phase I | ORR 47–48% with a mean duration of response of 17.7 months in locally advanced disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.H.; St. John, M. Cutaneous Squamous Cell Carcinoma in Immunocompromised Patients. Cancers 2025, 17, 3476. https://doi.org/10.3390/cancers17213476
Hwang SH, St. John M. Cutaneous Squamous Cell Carcinoma in Immunocompromised Patients. Cancers. 2025; 17(21):3476. https://doi.org/10.3390/cancers17213476
Chicago/Turabian StyleHwang, Song Hon, and Maie St. John. 2025. "Cutaneous Squamous Cell Carcinoma in Immunocompromised Patients" Cancers 17, no. 21: 3476. https://doi.org/10.3390/cancers17213476
APA StyleHwang, S. H., & St. John, M. (2025). Cutaneous Squamous Cell Carcinoma in Immunocompromised Patients. Cancers, 17(21), 3476. https://doi.org/10.3390/cancers17213476

