The Impact of Multidisciplinary Research on Progress in Skin Cancer Prevention
Simple Summary
Abstract
1. Introduction
2. Methods
3. Evolution of Skin Cancer Prevention
3.1. Primary Prevention: Public Health Initiatives
3.2. Secondary Prevention: Dermatology-Led Interventions
3.3. Integrated Multidisciplinary Models
4. Multidisciplinary Teams: Roles and Contributions
4.1. Dermatology and Oncology
4.2. Biostatistics and Epidemiology
4.3. Behavioural Research, Social Sciences and Psychology
4.4. Health Economics and Health Services Research
4.5. Primary Care and Implementation Sciences
4.6. Pathology and Genetics
4.7. Computational Science, Imaging, and Artificial Intelligence
4.8. Bioinformatics and Data Integration
5. Technology and Innovation: Shaping the Future
6. Gaps, Controversies, and Challenges
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| 3D-TBP | Three-Dimensional Total Body Photography |
| ACEMID | Australian Centre of Excellence in Melanoma Imaging and Diagnosis |
| AI | Artificial intelligence |
| ISIC | International Skin Imaging Collaboration |
| SEER | Surveillance, Epidemiology, and End Results |
| TBP | Total Body Photography |
| UV | Ultraviolet |
References
- World Health Organisation: Ultraviolet Radiation and Skin Cancer. Available online: https://www.who.int/uv/faq/skincancer/en/index1.html (accessed on 2 September 2025).
- Arnold, M.; Singh, D.; Laversanne, M. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Olsen, C.M.; Pandeya, N.; Green, A.C.; Ragaini, B.S.; Venn, A.J.; Whiteman, D.C. Keratinocyte cancer incidence in Australia: A review of population-based incidence trends and estimates of lifetime risk. Public Health Res. Pract. 2022, 32, 3212203. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Lancaster, H.O.; Nelson, J. Sunlight as a cause of malignant melanoma: A clinical survey. Med. J. Aust. 1957, 1, 452–456. [Google Scholar] [CrossRef]
- Iannacone, M.R.; Green, A.C. Towards skin cancer prevention and early detection: Evolution of skin cancer awareness campaigns in Australia. Melanoma Manag. 2014, 1, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Montague, M.; Borland, R.; Sinclair, C. Slip! Slop! Slap! And SunSmart, 1980–2000: Skin Cancer Control and 20 Years of Population-Based Campaigning. Health Educ. Behav. 2001, 28, 290–305. [Google Scholar] [CrossRef]
- SunSmart. Available online: https://www.sunsmart.com.au/about-sunsmart (accessed on 2 September 2025).
- Aulbert, W.; Parpart, C.; Schulz-Hornbostel, R.; Hinrichs, B.; Krüger-Corcoran, D.; Stockfleth, E. Certification of sun protection practices in a German child day-care centre improves children’s sun protection: The ‘SunPass’ pilot study. Br. J. Dermatol. 2009, 161, 5–12. [Google Scholar] [CrossRef]
- Hewitt, M.; Denman, S.; Hayes, L.; Pearson, J.; Wallbanks, C. Evaluation of ‘Sun-safe’: A health education resource for primary schools. Health Educ. Res. 2001, 16, 623–633. [Google Scholar] [CrossRef]
- Miller, D.R.; Geller, A.C.; Wood, M.C.; Lew, R.A.; Koh, H.K. The Falmouth Safe Skin Project: Evaluation of a community program to promote sun protection in youth. Health Educ. Behav. 1999, 26, 369–384. [Google Scholar] [CrossRef]
- Aitken, J.F.; Youlden, J.R.; Baade, P.D.; Soyer, H.P.; Green, A.C.; Smithers, B.M. Generational shift in melanoma incidence and mortality in Queensland, Australia, 1995–2014. Int. J. Cancer 2018, 142, 1528–1535. [Google Scholar] [CrossRef]
- Whiteman, D.C.; Green, A.C.; Olsen, C.M. The Growing Burden of Invasive Melanoma: Projections of Incidence Rates and Numbers of New Cases in Six Susceptible Populations through 2031. J. Investig. Dermatol. 2016, 136, 1161–1171. [Google Scholar] [CrossRef]
- Gordon, L.; Olsen, C.; Whiteman, D.C.; Elliot, T.M.; Janda, M.; Green, A. Prevention versus early detection for long-term control of melanoma and keratinocyte carcinomas: A cost-effectiveness modelling study. BMJ Open 2020, 10, e034388. [Google Scholar] [CrossRef]
- Janda, M.; Sinclair, C. Experience from an outright ban of commercial sunbeds in the Australian context. Br. J. Dermatol. 2022, 187, 7. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Harrison, S.L.; Buettner, P.; Nowak, M. School sun-protection policies—Does being SunSmart make a difference? Health Educ. Res. 2014, 29, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Horsham, C.; Auster, J.; Sendall, M.C.; Stoneham, M.; Youl, P.; Crane, P.; Tenkate, T.; Janda, M.; Kimlin, M. Interventions to decrease skin cancer risk in outdoor workers: Update to a 2007 systematic review. BMC Res. Notes 2014, 7, 10. [Google Scholar] [CrossRef]
- Gordon, L.G.; Rowell, D. Health system costs of skin cancer and cost-effectiveness of skin cancer prevention and screening: A systematic review. Eur. J. Cancer Prev. 2015, 24, 141–149. [Google Scholar] [CrossRef]
- Collins, L.G.; Minto, C.; Ledger, M.; Blane, S.; Hendrie, D. Cost-effectiveness analysis and return on investment of SunSmart Western Australia to prevent skin cancer. Health Promot. Int. 2024, 39, daae091. [Google Scholar] [CrossRef] [PubMed]
- Kittler, H.; Pehamberger, H.; Wolff, K.; Binder, M. Diagnostic accuracy of dermoscopy. Lancet Oncol. 2002, 3, 159–165. [Google Scholar] [CrossRef]
- Friedman, R.J.; Rigel, D.S.; Kopf, A.W. Early detection of malignant melanoma: The role of physician examination and self-examination of the skin. CA Cancer J. Clin. 1985, 35, 130–151. [Google Scholar] [CrossRef]
- Abbasi, N.R.; Shaw, H.M.; Rigel, D.S.; Friedman, R.J.; McCarthy, W.H.; Osman, I.; Kopf, A.W.; Polsky, D. Early Diagnosis of Cutaneous Melanoma: Revisiting the ABCD Criteria. JAMA 2004, 292, 2771–2776. [Google Scholar] [CrossRef]
- Venugopal, S.S.; Soyer, H.P.; Menzies, S.W. Results of a nationwide dermoscopy survey investigating the prevalence, advantages and disadvantages of dermoscopy use among Australian dermatologists. Aust. J. Dermatol. 2011, 52, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Ahnlinde, I.; Bjellerup, M.; Nilsson, F.; Nielsen, K. Validity of ABCD Rule of Dermoscopy in Clinical Practice. Acta Derm. Venerol. 2016, 96, 367–372. [Google Scholar] [CrossRef]
- Tsao, H.; Olazagasti, J.M.; Cordoro, K.M.; Brewer, J.D.; Taylor, S.C.; Bordeaux, J.S.; Chren, M.M.; Sober, A.J.; Tegeler, C.; Bhushan, R.; et al. Early detection of melanoma: Reviewing the ABCDEs. J. Am. Acad. Dermatol. 2015, 72, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Staples, M.P.; Elwood, M.; Burton, R.C.; Williams, J.L.; Marks, R.; Giles, G.G. Non-melanoma skin cancer in Australia: The 2002 national survey and trends since 1985. Med. J. Aust. 2006, 184, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Katalinic, A.; Waldmann, A.; Weinstock, M.A.; Geller, A.C.; Eisemann, N.; Greinert, R.; Volkmer, B.; Breitbart, E. Does skin cancer screening save lives?: An observational study comparing trends in melanoma mortality in regions with and without screening. Cancer 2012, 118, 5395–5402. [Google Scholar] [CrossRef]
- Stang, A.; Garbe, C.; Autier, P.; Jöckel, K.H. The many unanswered questions related to the German skin cancer screening programme. Eur. J. Cancer 2016, 64, 83–88. [Google Scholar] [CrossRef]
- Braveman, P.; Gottlieb, L. The Social Determinants of Health: It’s Time to Consider the Causes of the Causes. Public Health Rep. 2014, 129, 19–31. [Google Scholar] [CrossRef]
- Wunderlich, K.; Suppa, M.; Gandini, S.; Lipski, J.; White, J.M.; Marmol, V.D. Risk Factors and Innovations in Risk Assessment for Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma. Cancers 2024, 16, 1016. [Google Scholar] [CrossRef]
- Urbach, F. Environmental Risk Factors for Skin Cancer. In Skin Carcinogenesis in Man and in Experimental Models; Hecker, E., Jung, E.G., Marks, F., Tilgen, W., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 243–262. [Google Scholar] [CrossRef]
- Mawn, V.B.; Fleischer, A.B., Jr. A survey of attitudes, beliefs, and behavior regarding tanning bed use, sunbathing, and sunscreen use. J. Am. Acad. Dermatol. 1993, 29, 959–962. [Google Scholar] [CrossRef]
- Australasian College of Dermatologists. Accessible and Quality Dermatology Care for All Australians. ACD White Paper; November 2022. Available online: https://www.dermcoll.edu.au/wp-content/uploads/2022/12/ACD_Accessible-and-quality-dermatology-care-for-all-Australians_White-Paper_Nov-2022.pdf (accessed on 15 October 2025).
- Del Marmol, V. Prevention and screening of melanoma in Europe: 20 years of the Euromelanoma campaign. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 5–11. [Google Scholar] [CrossRef]
- Okhovat, J.P.; Beaulieu, D.; Tsao, H.; Halpern, A.C.; Michaud, D.S.; Shaykevich, S.; Geller, A.C. The first 30 years of the American Academy of Dermatology skin cancer screening program: 1985–2014. J. Am. Acad. Dermatol. 2018, 79, 884–891. [Google Scholar] [CrossRef]
- Skin Cancer Foundation. Destination: Healthy Skin. Available online: https://www.skincancer.org/press/2019-destination-healthy-skin-the-skin-cancer-foundations-mobile-education-and-screening-program-concludes-another-trip-around-the-country (accessed on 4 September 2025).
- Cancer Council. National Skin Cancer Action Week: Combatting Australia’s ‘National Cancer’. Available online: https://www.cancer.org.au/cancer-information/causes-and-prevention/sun-safety/campaigns-and-events/national-skin-cancer-action-week (accessed on 4 September 2025).
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Barsouk, A. Epidemiology of Melanoma. Med. Sci. 2021, 9, 63. [Google Scholar] [CrossRef]
- Sundararajan, S.; Thida, A.M.; Yadlapti, S.; Mukkamalla, S.K.R.; Koya, S. Metastatic Melanoma. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, CA, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470358/ (accessed on 2 September 2025).
- González, S.; Swindells, K.; Rajadhyaksha, M.; Torres, A. Changing paradigms in dermatology: Confocal microscopy in clinical and surgical dermatology. Clin. Dermatol. 2003, 21, 359–369. [Google Scholar] [CrossRef]
- Hornung, A.; Steeb, T.; Wessely, A.; Brinker, T.J.; Breakell, T.; Erdmann, M.; Berking, C.; Heppt, M.V. The Value of Total Body Photography for the Early Detection of Melanoma: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 1726. [Google Scholar] [CrossRef]
- Bhawan, J. The Evolution of Dermatopathology—The American Experience. Am. J. Dermatopathol. 2006, 28, 67–71. [Google Scholar] [CrossRef]
- Maurichi, A.; Barretta, F.; Patuzzo, R.; Gallino, G.; Mattavelli, I.; Shimonovitz-Moore, M.; Nizri, E.; Matteucci, M.; Summo, V.; Cossa, M.; et al. Local Recurrence and Survival in Patients with Melanoma >2 mm in Thickness at Difficult Sites Treated with 1-cm Versus 2-cm Margins. J. Natl. Compr. Cancer Netw. 2024, 22, 687–693. [Google Scholar] [CrossRef]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Senguin, N.; Bastholt, L.; Bataille, V.; Brochez, L.; Del Marmol, V.; et al. European Association of Dermato-Oncology (EADO), the European Dermatology Forum (EDF), and the European Organization for Research and Treatment of Cancer (EORTC). European consensus-based interdisciplinary guideline for maelanoma. Part 1: Diagnostics—Update 2024. Eur. J. Cancer 2025, 215, 115152. [Google Scholar] [CrossRef]
- Diegel, D.M.; Ellis, J.I. Excision of skin cancer. In Skin Cancer, 2nd ed.; Schwartz, R.A., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2008; pp. 385–402. [Google Scholar]
- Lideikaitė, A.; Mozūraitienė, J.; Letautienė, S. Analysis of prognostic factors for melanoma patients. Acta Med. Litu. 2017, 24, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.M.; Newton-Bishop, J.; A’Hern, R.; Coombes, G.; Timmons, M.; Evans, J.; Cook, M.; Theaker, J.; Fallowfield, M.; O’Neill, T.; et al. Excision Margins in High-Risk Malignant Melanoma. N. Engl. J. Med. 2004, 350, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Mohs, F.E. Chemosurgery for the microscopically controlled excision of cutaneous cancer. Head Neck Surg. 1978, 1, 150–166. [Google Scholar] [CrossRef] [PubMed]
- Schadendorf, D.; Dummer, R.; Flaherty, K.T.; Robert, C.; Arance, A.; de Groot, J.W.B.; Garbe, C.; Gogas, H.J.; Gutzmer, R.; Krajsová, I.; et al. COLUMBUS 7-year update: A randomized, open-label, phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF V600E/K-mutant melanoma. Eur. J. Cancer 2024, 204, 114073. [Google Scholar] [CrossRef] [PubMed]
- Menzies, A.M.; Lo, S.N.; Saw, R.P.M.; Gonzales, M.; Ch’ng, S.; Nieweg, O.E.; Shannon, K.F.; Ferguson, P.M.; Lee, J.; Emmett, L.; et al. Five-year analysis of neoadjuvant dabrafenib and trametinib for stage III melanoma. Ann. Oncol. 2024, 35, 739–746. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzales, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Long-Term Outcomes with Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients with Advanced Melanoma. J. Clin. Oncol. 2022, 40, 127–137. [Google Scholar] [CrossRef]
- Long, G.V.; Larkin, J.; Schadendorf, D.; Grob, J.J.; Lao, C.D.; Márquez-Rodas, I.; Wagstaff, J.; Lebbé, C.; Pigozzo, J.; Robert, C.; et al. Pooled Long-Term Outcomes with Nivolumab Plus Ipilimumab or Nivolumab Alone in Patients with Advanced Melanoma. J. Clin. Oncol. 2025, 43, 938–948. [Google Scholar] [CrossRef]
- Blank, C.U.; Lucas, M.W.; Scolyer, R.A.; van de Wiel, B.A.; Menzies, A.M.; Lopez-Yurda, M.; Hoejimakers, L.L.; Saw, R.P.M.; Lijnsvelt, J.M.; Maher, N.G.; et al. Neoadjuvant Nivolumab and Ipilimumab in Resectable Stage III Melanoma. N. Engl. J. Med. 2024, 391, 1696–1708. [Google Scholar] [CrossRef]
- Dai, Y.; Sun, J.; Zhang, X.; Zhao, J.; Yang, W.; Zhou, J.; Gao, Z.; Wang, Q.; Yu, F.; Wang, B. Supramolecular assembly boosting the phototherapy performances of BODIPYs. Coord. Chem. Rev. 2024, 517, 216024. [Google Scholar] [CrossRef]
- Yan, M.; Wu, S.; Wang, Y.; Liang, M.; Wang, M.; Hu, W.; Yu, G.; Mao, Z.; Huang, F.; Zhou, J. Recent Progress of Supramolecular Chemotherapy Based on Host-Guest Interactions. Adv. Mater. 2024, 36, e2304249. [Google Scholar] [CrossRef]
- Beaton, L.; Bandula, S.; Gaze, M.N.; Sharma, R.A. How rapid advances in imaging are defining the future of precision radiation oncology. Br. J. Cancer 2019, 120, 779–790. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Rusho, M.A.; Menon, S.V.; Kaur, M.; Jabir, M.S.; Jawad, S.F.; Hasan, T.F.; Najm, M.A.A.; Jawad, M.A.; Khelief, A.J. Advancements in radiobiology techniques and applications for personalized radiation therapy in nuclear medicine. J. Radioanal. Nucl. Chem. 2024, 333, 6121–6132. [Google Scholar] [CrossRef]
- Aujla, K.S.; Clyde, J.W.; Mudd, K.; Chen, Y. Patient Reported Factors Influencing Decisions on Radiotherapy vs. Mohs Surgery for Non-Melanoma Skin Cancer of Cosmetically Challenging Head and Neck Sites at a Rural Radiation Satellite Facility. Int. J. Radiat. Oncol. 2022, 114, E602. [Google Scholar] [CrossRef]
- Emens, L.A.; Romero, P.J.; Anderson, A.C.; Bruno, T.C.; Capitini, C.M.; Collyar, D.; Gulley, J.L.; Hwu, P.; Posey, A.D., Jr.; Silk, A.W.; et al. Challenges and opportunities in cancer immunotherapy: A Society for Immunotherapy of Cancer (SITC) strategic vision. J. Immunother. Cancer 2024, 12, e009063. [Google Scholar] [CrossRef]
- Bandara, S.; Raveendran, S. Current Landscape and Future Directions in Cancer Immunotherapy: Therapies, Trials, and Challenges. Cancers 2025, 17, 821. [Google Scholar] [CrossRef]
- QIMR Berghofer. QSkin. Available online: https://www.qimrb.edu.au/studies/qskin (accessed on 4 September 2025).
- Gallagher, R.P.; Hill, G.B.; Badjdik, C.D.; Coldman, A.J.; Fincham, S.; McLean, D.I.; Threlfall, W.J. Sunlight exposure, pigmentation factors, and risk of nonmelanocytic skin cancer. II. Squamous cell carcinoma. Arch. Dermatol. 1995, 131, 164–169. [Google Scholar] [CrossRef] [PubMed]
- English, D.R.; Armstrong, B.K.; Kricker, A.; Winter, M.G.; Heenan, P.J.; Randell, P.L. Case-control study of sun exposure and squamous cell carcinoma of the skin. Int. J. Cancer 1998, 77, 347–353. [Google Scholar] [CrossRef]
- Kricker, A.; Armstrong, B.K.; English, D.R.; Heenan, P.J. Does intermittent sun exposure cause basal cell carcinoma? a case-control study in Western Australia. Int. J. Cancer 1995, 60, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Olsen, C.M.; Green, A.C.; Neale, N.E.; Webb, P.M.; Cicero, R.A.; Jackman, L.M.; O’Brien, S.M.; Perry, S.L.; Ranieri, B.A.; Whiteman, D.C. Cohort profile: The QSkin Sun and Health Study. Int. J. Epidemiol. 2012, 41, 929–929i. [Google Scholar] [CrossRef]
- Whiteman, D.C.; Thompson, B.S.; Thrift, A.P.; Hughes, M.-C.; Muranushi, C.; Neale, R.E.; Green, A.C.; Olsen, C.M. A Model to Predict the Risk of Keratinocyte Carcinomas. J. Investig. Dermatol. 2016, 136, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Olsen, C.M.; Pandeya, N.; Thompson, B.S.; Dusingize, J.C.; Green, A.C.; Neale, R.E.; Whiteman, D.C. Association between Phenotypic Characteristics and Melanoma in a Large Prospective Cohort Study. J. Investig. Dermatol. 2019, 139, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Tabbakh, T.; Volkov, A.; Wakefield, M.; Dobbinson, S. Implementation of the SunSmart program and population sun protection behaviour in Melbourne, Australia: Results from cross-sectional summer surveys from 1987 to 2017. PLoS Med. 2019, 16, e1002932. [Google Scholar] [CrossRef]
- Garbe, C.; Peris, K.; Hauschild, A.; Saiag, P.; Middleton, M.; Spatz, A.; Grob, J.J.; Malvehy, J.; Newton-Bishop, J.; Stratigos, A.; et al. Diagnosis and treatment of melanoma: European consensus-based interdisciplinary guideline. Eur. J. Cancer 2010, 46, 270–283. [Google Scholar] [CrossRef]
- Cancer Science. Limitations of Prediction Models. Available online: https://cancerscience.net/about/index/limitations-of-prediction-models (accessed on 15 October 2025).
- Australian Skin and Skin Cancer Research Centre. Position Statement: Balancing the Harms and Benefits of Sun Exposure. Available online: https://www.assc.org.au/wp-content/uploads/2023/01/Sun-Exposure-Summit-PositionStatement_V1.9.pdf (accessed on 15 October 2025).
- Robinson, J.K.; Kim, J.; Rosenbaum, S.; Ortiz, S. Indoor tanning knowledge, attitudes, and behavior among young adults from 1988-2007. Arch. Dermatol. 2008, 144, 484–488. [Google Scholar] [CrossRef]
- Makin, J.K.; Warne, C.D.; Dobbinson, S.J.; Dobbinson, M.A.; Hill, D.J. Population and age-group trends in weekend sun protection and sunburn over two decades of the SunSmart programme in Melbourne, Australia. Br. J. Dermatol. 2012, 168, 154–161. [Google Scholar] [CrossRef]
- Stapleton, J.L.; Manne, S.L.; Greene, K.; Darabos, K.; Carpenter, A.; Hudson, S.V.; Coups, E.J. Sociocultural experiences, body image, and indoor tanning among young adult women. J. Health Psychol. 2017, 22, 1582–1590. [Google Scholar] [CrossRef]
- Najmi, M.; Brown, A.E.; Harrington, S.R.; Farris, D.; Sepulveda, S.; Nelson, K.C. A systematic review and synthesis of qualitative and quantitative studies evaluating provider, patient, and health care system-related barriers to diagnostic skin cancer examinations. Arch. Dermatol. Res. 2022, 314, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Falzone, A.E.; Brindis, C.D.; Chren, M.M.; Junn, A.; Pagoto, S.; Wehner, M.; Linos, E. Teens, Tweets, and Tanning Beds: Rethinking the Use of Social Media for Skin Cancer Prevention. Am. J. Prev. Med. 2017, 53, S86–S94. [Google Scholar] [CrossRef]
- West, S.E.; Martin, K.L.; Ailor, S.K. Tanning Themselves to Death: A New Teen Fad. Mo. Med. 2012, 109, 166–170. [Google Scholar] [PubMed]
- Sinikumpu, S.P.; Jokelainen, J.; Keinänen-Kiukaanniemi, S.; Huilaja, L. Skin cancers and their risk factors in older persons: A population-based study. BMC Geriatr. 2022, 22, 269. [Google Scholar] [CrossRef] [PubMed]
- Slape, D.R.; Saunderson, R.B.; Tatian, A.H.; Forstner, D.F.; Estall, V.J. Cutaneous malignancies in Indigenous Peoples of urban Sydney. J. Med. Imaging Radiat. Oncol. 2019, 63, 244–249. [Google Scholar] [CrossRef]
- Khlat, M.; Vail, A.; Parkin, M.; Green, A. Mortality from Melanoma in Migrants to Australia: Variation by Age at Arrival and Duration of Stay. Am. J. Epidemiol. 1992, 135, 1103–1113. [Google Scholar] [CrossRef]
- Horsham, C.; Baade, P.; Kou, K.; O’Hara, M.; Sinclair, C.; Loescher, L.J.; Soyer, H.P.; Janda, M. Optimizing Texting Interventions for Melanoma Prevention and Early Detection: A Latin Square Crossover RCT. Am. J. Prev. Med. 2021, 61, 348–356. [Google Scholar] [CrossRef]
- Janda, M.; Horsham, C.; Vagenas, D.; Loescher, L.J.; Gillespie, N.; Koh, U.; Curiel-Lewandrowski, C.; Hofmann-Wellenhof, R.; Halpern, A.; Whiteman, D.C.; et al. Accuracy of mobile digital teledermoscopy for skin self-examinations in adults at high risk of skin cancer: An open-label, randomised controlled trial. Lancet Digit. Health 2020, 2, e129–e137. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Susanto, A.K.; Soyer, H.P.; Janda, M.; Camargo Catapan, S. Psychosocial wellbeing in people with melanoma in-situ: A systematic review. Melanoma Res. 2025, 35, 11–23. [Google Scholar] [CrossRef]
- Ahmad, N.; Kashyap, A.; Taylor, M.; Gonna, N.; Haff, P.; Farris, D.; McQuade, J.; Roth, M.; Nelson, K. Quality of Life Among Adolescents and Young Adults with Melanoma: A Systematic Review. J. Adolesc. Young Adult Oncol. 2025. [Google Scholar] [CrossRef]
- Collins, L.G.; Gage, R.; Sinclair, C.; Lindsay, D. The Cost-Effectiveness of Primary Prevention Interventions for Skin Cancer: An Updated Systematic Review. Appl. Health Econ. Health Policy 2024, 22, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhong, Y.; Han, L.; Xie, Y.; Wan, M. Global, regional, and national trends in the burden of melanoma and non-melanoma skin cancer: Insights from the global burden of disease study 1990–2021. Sci. Rep. 2025, 15, 5996. [Google Scholar] [CrossRef]
- Harvey, V.M.; Patel, H.; Sandhu, S.; Wallington, S.F.; Hinds, G. Social determinants of racial and ethnic disparities in cutaneous melanoma outcomes. Cancer Control 2014, 21, 343–349. [Google Scholar] [CrossRef]
- Oliveria, S.A.; Christos, P.J.; Marghoob, A.A.; Halpern, A.C. Skin cancer screening and prevention in the primary care setting: National ambulatory medical care survey 1997. J. Gen. Intern. Med. 2001, 16, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Cantisani, C.; Ambrosio, L.; Cucchi, C.; Meznerics, F.A.; Kiss, N.; Bánvölgyi, A.; Rega, F.; Grignaffini, F.; Barbuto, F.; Frezza, F.; et al. Melanoma Detection by Non-Specialists: An Untapped Potential for Triage? Diagnostics 2022, 12, 2821. [Google Scholar] [CrossRef]
- Sathe, N.C.; Zito, P.M. Skin Cancer. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, CA, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441949/ (accessed on 4 September 2025).
- Gordon, L.G.; Shih, S.; Watts, C.; Goldsbury, D.; Green, A.C. The economics of skin cancer prevention with implications for Australia and New Zealand: Where are we now? Public Health Res. Pract. 2022, 32, 31502119. [Google Scholar] [CrossRef]
- von Schuckmann, L.A.; Smithers, B.M.; Khosrotehrani, K.; Beesley, V.L.; van der Pols, J.C.; Hughes, M.B.; Green, A.C. Use of support services in a sample of patients with high-risk primary melanomas in urban, regional and rural Queensland. Aust. N. Z. J. Public Health 2017, 41, 315–319. [Google Scholar] [CrossRef]
- Beames, C.; Adelson, P.; Sharplin, G.; Eckert, M. Primary care nurse’s role and educational preparedness in skin cancer screening and early detection: A scoping review. J. Adv. Nurs. 2024, 80, 2228–2251. [Google Scholar] [CrossRef]
- Souvignier, S.T.; Mayer, J.A.; Eckhardt, L. Educating the public about skin cancer prevention: A role for pharmacists. J. Clin. Pharm. Ther. 1996, 21, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Ashrafzadeh, S.; Metlay, J.P.; Choudhry, N.K.; Emmons, K.M.; Asgari, M.M. Using Implementation Science to Optimize the Uptake of Evidence-Based Medicine into Dermatology Practice. J. Investig. Dermatol. 2020, 5, 952–958. [Google Scholar] [CrossRef]
- Papachristou, P.; Söderholm, M.; Pallon, J.; Taloyan, M.; Polesie, S.; Paoli, J.; Anderson, C.D.; Falk, M. Evaluation of an artificial intelligence-based decision support for the detection of cutaneous melanoma in primary care: A prospective real-life clinical trial. Br. J. Dermatol. 2024, 191, 125–133. [Google Scholar] [CrossRef]
- Massone, C.; Maak, D.; Hofmann-Wellenhof, R.; Soyer, H.P.; Frühauf, J. Teledermatology for skin cancer prevention: An experience on 690 Austrian patients. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 1103–1108. [Google Scholar] [CrossRef]
- Dunlop, K.; Rankin, N.M.; Smit, A.K.; Salgado, Z.; Newson, A.J.; Keogh, L.; Cust, A.E. Acceptability of risk-stratified population screening across cancer types: Qualitative interviews with the Australian public. Health Expect. 2021, 24, 1326–1336. [Google Scholar] [CrossRef]
- The Australasian College of Dermatologists. Skin Cancer: A Significant Gap in the National Preventive Health Strategy. Available online: https://www.dermcoll.edu.au/wp-content/uploads/2021/04/ACD_National-Preventive-Health-Strategy-submission-September-2020.pdf (accessed on 4 September 2025).
- Cramb, S.M.; Duncan, E.W.; Aitken, J.F.; Soyer, H.P.; Mengersen, K.L.; Baade, P.D. Geographical patterns in melanoma incidence across Australia: Can thickness differentials reveal the key drivers? Ann. Cancer Epidemiol. 2020, 4, 11. [Google Scholar] [CrossRef]
- Voiculescu, V.M.; Popescu, A.I.; Costache, M. Immunohistochemistry for Skin Cancers: New Insights into Diagnosis and Treatment of Melanoma. Cancers 2025, 17, 1769. [Google Scholar] [CrossRef] [PubMed]
- Greinert, R. Skin cancer: New markers for better prevention. Pathobiology 2009, 76, 64–81. [Google Scholar] [CrossRef]
- Castellani, G.; Buccarelli, M.; Arasi, M.B.; Rossi, S.; Pisanu, M.E.; Bellenghi, M.; Lintas, C.; Tabolacci, C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers 2023, 15, 4026. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Couselo, E.; Adelantado, E.Z.; Ortiz, C.; García, J.S.; Perez-Garcia, J. NRAS-mutant melanoma: Current challenges and future prospect. Onco Targets Ther. 2017, 10, 3941–3947. [Google Scholar] [CrossRef]
- Pham, D.M.; Guhan, S.; Tsao, H. KIT and Melanoma: Biological Insights and Clinical Implications. Yonsei Med. J. 2020, 61, 562–571. [Google Scholar] [CrossRef]
- Smit, A.K.; Newson, A.J.; Morton, R.L.; Kimlin, M.; Keogh, L.; Law, M.H.; Kirk, J.; Dobbinson, S.; Kanetsky, P.A.; Fenton, G.; et al. The melanoma genomics managing your risk study: A protocol for a randomized controlled trial evaluating the impact of personal genomic risk information on skin cancer prevention behaviors. Contemp. Clin. Trials 2018, 70, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Pellegrini, C.; Cardelli, L.; Cicarelli, V.; Nardo, L.D.; Fargnoli, M.C. Familial Melanoma: Diagnostic and Management Implications. Dermatol. Prac. Concept. 2019, 9, 10–16. [Google Scholar] [CrossRef]
- Maas, E.J.; Betz-Stablein, B.; Aoude, L.G.; Soyer, H.P.; McInerney-Leo, A.M. Unusual suspects in hereditary melanoma: POT1, POLE, BAP1. Trends Genet. 2022, 38, 1204–1207. [Google Scholar] [CrossRef]
- Primiero, C.A.; Maas, E.J.; Wallingford, C.K.; Soyer, H.P.; McInerney-Leo, A.M. Genetic testing for familial melanoma. Ital. J. Dermatol. Venerol. 2024, 159, 34–42. [Google Scholar] [CrossRef]
- GenoMEL. Available online: https://genomel.org (accessed on 4 September 2025).
- Barrett, J.H.; Iles, M.M.; Harland, M.; Taylor, J.C.; Aitken, J.F.; Andresen, P.A.; Akslen, L.A.; Armstrong, B.K.; Avril, M.F.; Azizi, E.; et al. Genome-wide association study identifies three new melanoma susceptibility loci. Nat. Genet. 2011, 43, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- FORCE-Facing Our Risk of Cancer Empowered. CDKN2A: Options for Managing Cancer Risk. Available online: https://www.facingourrisk.org/info/hereditary-cancer-and-genetic-testing/hereditary-cancer-genes-and-risk/genes-by-name/cdkn2a/risk-management (accessed on 14 October 2025).
- Tsoulaki, O.; Evans, D.G.; Sinha, K.; Rajan, N.; Bakr, F.; Hatcher, H.; Napolitano, A.; Finn, E.; Iyengar, S.; Sohaib, A.; et al. UK clinical practice guidelines for the management of patients with constitutional POT1 pathogenic variants. J. Med. Genet. 2025, 62, 559–565. [Google Scholar] [CrossRef] [PubMed]
- eviQ Cancer Genetics. CDKN2A—Risk Management. Available online: https://www.eviq.org.au/cancer-genetics/adult/risk-management/1516-cdkn2a-risk-management (accessed on 16 October 2025).
- eviQ Cancer Genetics. CDKN2A—Genetic Testing. Available online: https://www.eviq.org.au/cancer-genetics/adult/genetic-testing-for-heritable-pathogenic-variants/1864-cdkn2a-genetic-testing (accessed on 14 October 2025).
- Tiller, J.; Lacaze, P. Australians need more protection against genetic discrimination: Health experts. Conversation 2021. [Google Scholar] [CrossRef]
- Fallat, M.E.; Katz, A.L.; Mercurio, M.R.; Moon, M.R.; Okun, A.L.; Webb, S.A.; Weise, K.L.; Saul, R.A.; Braddock, S.R.; Chen, E.; et al. Ethical and policy issues in genetic testing and screening of children. Pediatrics 2013, 131, 620–622. [Google Scholar] [CrossRef] [PubMed]
- Soyer, H.P.; Jayasinghe, D.; Rodriguez-Acevedo, A.J.; Collins, L.G.; Caffery, L.J.; Whiteman, D.C.; Betz-Stablein, B.; Osborne, S.R.; Finnane, A.; Horsham, C.; et al. 3D Total-Body Photography in Patients at High Risk for Melanoma: A Randomized Clinical Trial. JAMA Dermatol. 2025, 161, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Berk-Krauss, J.; Polsky, D.; Stein, J.A. Mole Mapping for Management of Pigmented Skin Lesions. Dermatol. Clin. 2017, 35, 439–445. [Google Scholar] [CrossRef]
- The International Skin Imaging Collaboration (ISIC). Available online: https://www.isic-archive.com (accessed on 8 September 2025).
- Tschandl, P.; Rinner, C.; Apalla, Z.; Argenziano, G.; Codella, N.; Halpern, A.; Janda, M.; Lallas, A.; Longo, C.; Malvehy, J.; et al. Human–computer collaboration for skin cancer recognition. Nat. Med. 2020, 26, 1229–1234. [Google Scholar] [CrossRef]
- Winkler, J.K.; Fink, C.; Toberer, F.; Enk, A.; Deinlein, T.; Hofmann-Wellenhof, R.; Thomas, L.; Lallas, A.; Blum, A.; Stolz, W.; et al. Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition. JAMA Dermatol. 2019, 155, 1135–1141. [Google Scholar] [CrossRef]
- Adamson, A.S.; Smith, A. Machine Learning and Health Care Disparities in Dermatology. JAMA Dermatol. 2018, 154, 1247–1248. [Google Scholar] [CrossRef]
- Omiye, J.A.; Gui, H.; Daneshjou, R.; Cai, Z.R.; Muralidharan, V. Principles, applications, and future of artificial intelligence in dermatology. Front. Med. 2023, 10, 1278232. [Google Scholar] [CrossRef]
- Collins, G.S.; Moons, K.G.M.; Dhiman, P.; Riley, R.D.; Beam, A.L.; Van Calster, B.; Ghassemi, M.; Liu, X.; Reitsma, J.B.; van Smeden, M.; et al. TRIPOD+AI statement: Updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ 2024, 385, e078378. [Google Scholar] [CrossRef] [PubMed]
- Vasey, B.; Novak, A.; Ather, S.; Ibrahim, M.; McCulloch, P. DECIDE-AI: A new reporting guideline and its relevance to artificial intelligence studies in radiology. Clin. Radiol. 2023, 78, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Crawford, M.E.; Kamali, K.; Dorey, R.A.; MacIntyre, O.C.; Cleminson, K.; MacGillivry, M.L.; Green, P.J.; Langley, R.G.; Purdy, K.S.; DeCoste, R.C.; et al. Using Artificial Intelligence as a Melanoma Screening Tool in Self-Referred Patients. J. Cutan. Med. Surg. 2024, 28, 37–43. [Google Scholar] [CrossRef]
- Wei, M.L.; Tada, M.; So, A.; Torres, R. Artificial intelligence and skin cancer. Front. Med. 2024, 11, 1331895. [Google Scholar] [CrossRef]
- Behara, K.; Bhero, E.; Agee, J.T. AI in dermatology: A comprehensive review into skin cancer detection. Peer J. Comput. Sci. 2024, 10, e2530. [Google Scholar] [CrossRef]
- Abdollahimajd, F.; Abbasi, F.; Motamedi, A.; Koohi, N.; Robati, R.M.; Gorji, M. Using the power of artificial intelligence to improve the diagnosis and management of nonmelanoma skin cancer. J. Res. Med. Sci. 2025, 30, 25. [Google Scholar] [CrossRef]
- Liopyris, K.; Gregoriou, S.; Dias, J.; Stratigos, A.J. Artificial Intelligence in Dermatology: Challenges and Perspectives. Dermatol. Ther. 2022, 12, 2637–2651. [Google Scholar] [CrossRef] [PubMed]
- Caffery, L.J.; Sullivan, R.P.; McInerney-Leo, A.; Lawn, C.; Mendis, R.A.; Janda, M.; Haplern, A.C.; Soyer, H.P. Privacy in Imaging for Dermatology Research. J. Investig. Dermatol. 2025, in press. [CrossRef] [PubMed]
- The University of Queensland. ACRF ACEMID Winner of 2024 Eureka Prize for Excellence in Interdisciplinary Scientific Research. Available online: https://acemid.centre.uq.edu.au/article/2024/09/acrf-acemid-winner-2024-eureka-prize-excellence-interdisciplinary-scientific-research (accessed on 8 September 2025).
- Koh, U.; Cust, A.E.; Fernández-Peñas, P.; Mann, G.; Morton, R.; Wolfe, R.; Payne, E.; Horsham, C.; Kwaan, G.; Mahumud, R.A.; et al. ACEMID cohort study: Protocol of a prospective cohort study using 3D total body photography for melanoma imaging and diagnosis. BMJ Open 2023, 13, e072788. [Google Scholar] [CrossRef] [PubMed]
- Mahumud, R.A.; Janda, M.; Soyer, H.P.; Fernández-Peñas, P.; Mar, V.J.; Morton, R.L. Assessing the value of precision medicine health technologies to detect and manage melanoma. Med. J. Aust. 2022, 217, 275–278. [Google Scholar] [CrossRef]
- Lee, K.J.; Betz-Stablein, B.; Stark, M.S.; Janda, M.; McInerney-Leo, A.M.; Caffery, L.J.; Gillepsie, N.; Yanes, T.; Soyer, H.P. The Future of Precision Prevention for Advanced Melanoma. Front. Med. 2022, 17, 818096. [Google Scholar] [CrossRef]
- Surveillance, Epidemiology, and End Results (SEER) Program. National Cancer Institute. Available online: https://seer.cancer.gov (accessed on 14 October 2025).
- Digital Imaging and Communication in Medicine (DICOM). Available online: https://www.dicomstandard.org (accessed on 8 September 2025).
- Australian Government. Specialist Training Program. Available online: https://www.health.gov.au/our-work/specialist-training-program (accessed on 16 October 2025).
- Nair, M.; Svedberg, P.; Larrson, I.; Nygren, J.M. A comprehensive overview of barriers and strategies for AI implementation in healthcare: Mixed-method design. PLoS ONE 2024, 19, e0305949. [Google Scholar] [CrossRef]
- NSW Government. AI System Implementation Issues and Risk Mitigation: Living Evidence. Available online: https://aci.health.nsw.gov.au/statewide-programs/critical-intelligence-unit/artificial/system-implementation-issues-risks (accessed on 16 October 2025).
- Scipion, C.E.A.; Manchester, M.A.; Federman, A.; Wang, Y.; Arias, J.J. Barriers to and facilitators of clinician acceptance and use of artificial intelligence in healthcare settings: A scoping review. BMJ Open 2025, 15, e092624. [Google Scholar] [CrossRef]
- Primiero, C.A.; Janda, M.; Soyer, H.P. Skin 2.0: How Cutaneous Digital Twins Could Reshape Dermatology. J. Investig. Dermatol. 2025, 145, 18–21. [Google Scholar] [CrossRef]
- Brinker, T.J.; Klode, J.; Esser, S.; Schadendorf, D. Facial-Aging App Availability in Waiting Rooms as a Potential Opportunity for Skin Cancer Prevention. JAMA Dermatol. 2018, 154, 1085–1086. [Google Scholar] [CrossRef]
- Kahler, S.; Betz-Stablein, B.; Lee, F.; Torrano, J.; Janda, M.; Primiero, C.; Soyer, H.P.; Jayasinghe, D. Estimation of Body Mass Index from 3-Dimensional Total Body Photography. J. Investig. Dermatol. 2025, 145, 972–975. [Google Scholar] [CrossRef]
- Susanto, A.; Kahler, S.; Dulanjala Sewwandi, M.A.N.; Mothershaw, A.; Goldinger, S.M.; Mar, V.J.; Janda, M.; Soyer, H.P.; Primiero, C.A. Three-dimensional total body photography enables automated obesity-related comorbidity screening in dermatology. J. Investig. Dermatol. 2025, in press. [Google Scholar] [CrossRef]
- Susanto, A.; Nathan, V.; Janda, M.; Khosrotehrani, K.; McMeniman, E.; Soyer, H.P.; Betz-Stablein, B. Diversifying dermatology: Improving skin of colour representation. Aust. J. Dermatol. 2024, 65, e208–e210. [Google Scholar] [CrossRef]
- Liu, Y.; Primiero, C.A.; Kulkarni, V.; Soyer, H.P.; Betz-Stablein, B. Artificial Intelligence for the Classification of Pigmented Skin Lesions in Populations with Skin of Color: A Systematic Review. Dermatology 2023, 239, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Gloster, H.M., Jr.; Neal, K. Skin cancer in skin of color. J. Am. Acad. Dermatol. 2006, 55, 741–764. [Google Scholar] [CrossRef]
- Australian Institute of Health and Welfare (AIHW). Australian Cancer Database. Available online: https://www.aihw.gov.au/about-our-data/our-data-collections/australian-cancer-database (accessed on 14 October 2025).
- Horsham, C.; Antrobus, J.; Olsen, C.; Ford, H.; Abernethy, D.; Hacker, E. Testing Wearable UV Sensors to Improve Sun Protection in Young Adults at an Outdoor Festival: Field Study. JMIR mHealth uHealth 2020, 8, e21243. [Google Scholar] [CrossRef]
- Singh, N.; Dunlop, K.L.A.; Woolley, N.; Vaishishtha, T.W.; Damian, D.L.; Vuong, K.; Cust, A.E.; Smit, A.K. A review of skin cancer primary prevention activities in primary care settings. Public Health Res. Pract. 2024, 34, 34012401. [Google Scholar] [CrossRef] [PubMed]
- Asdul, P.; Chambers, D.; Brandt, H.M.; Fernandez, M.E.; Ramanadhan, S.; Torres, E.; Leeman, J.; Baquero, B.; Fleischer, L.; Escoffery, C.; et al. Grounding implementation science in health equity for cancer prevention and control. Implement. Sci. Commun. 2022, 3, 56. [Google Scholar] [CrossRef] [PubMed]
- Lacson, J.C.A.; Doyle, S.H.; Qian, L.; Del Rio, J.; Forgas, S.M.; Valavanis, S.; Carvajal, R.; Gonzales-Calderon, G.; Kim, Y.; Roetzheim, R.G.; et al. A Randomized Trial of Precision Prevention Materials to Improve Primary and Secondary Melanoma Prevention Activities among Individuals with Limited Melanoma Risk Phenotypes. Cancers 2021, 13, 3143. [Google Scholar] [CrossRef]
- Green, A.; Williams, G.; Neale, R.; Hart, V.; Leslie, D.; Parsons, P.; Marks, G.C.; Gaffney, P.; Battistutta, D.; Frost, C.; et al. Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: A randomised controlled trial. Lancet 1999, 354, 723–729. [Google Scholar] [CrossRef]
- Green, A.C.; Williams, G.M.; Logan, V.; Strutton, G.M. Reduced melanoma after regular sunscreen use: Randomized trial follow-up. J. Clin. Oncol. 2011, 29, 257–263. [Google Scholar] [CrossRef]
- Darlington, S.; Williams, G.; Neale, R.; Frost, C.; Green, A. A randomized controlled trial to assess sunscreen application and beta carotene supplementation in the prevention of solar keratoses. Arch. Dermatol. 2003, 139, 451–555. [Google Scholar] [CrossRef]
- Janda, M.; Neale, R.; Khosrotehrani, K.; Whiteman, D.; Julian, A.; Loughran, S. Report of the Pre-Conference Sunscreen Workshop. In Proceedings of the 6th International Conference on UV and Skin Cancer Prevention, Brisbane, Australia, 11–13 September 2024; pp. 1–13. [Google Scholar]
- Anderson, P.; Eckert, M. Skin cancer in regional, rural, and remote Australia; opportunities for service improvement through technological advances and interdisciplinary care. Aust. J. Adv. Nurs. 2020, 37, 25–30. [Google Scholar] [CrossRef]
- Ahuja, S.; Briggs, S.M.; Collier, S.M. Teledermatology in Rural, Underserved, and Isolated Environments: A Review. Curr. Dermatol. Rep. 2022, 11, 328–335. [Google Scholar] [CrossRef]
- Griffith, V.; Foy, V. Teledermatology as a Solution for Rural and Rare Dermatologic Care: A Review of Strategies and Opportunities. Dermatol. Rev. 2025, 6, e70049. [Google Scholar] [CrossRef]
- Insight+. Current Skin Cancer Biomarkers ‘Ineffective’ But Research Gives New Hope. Available online: https://insightplus.mja.com.au/2023/6/current-skin-cancer-biomarkers-ineffective-but-research-gives-new-hope (accessed on 16 October 2025).
- Felzmann, H.; Villaronga, E.F.; Lutz, C.; Tamò-Larrieux, A. Transparency you can trust: Transparency requirements for artificial intelligence between legal norms and contextual concerns. Big Data Soc. 2019, 6, 2053951719860542. [Google Scholar] [CrossRef]
- Zlatolas, L.N.; Welzer, T.; Lhotska, L. Data breaches in healthcare: Security mechanisms for attack mitigation. Clust. Comput. 2024, 27, 8639–8654. [Google Scholar] [CrossRef]
- Ratwani, R.M.; Sutton, K.; Galarraga, J.E. Addressing AI Algorithmic Bias in Healath Care. JAMA 2024, 332, 1051–1052. [Google Scholar] [CrossRef] [PubMed]
- Australian Government. Safe and Responsible Artificial Intelligence in Health Care—Legislation and Regulation Review. Available online: https://www.health.gov.au/sites/default/files/2025-07/safe-and-responsible-artificial-intelligence-in-health-care-legislation-and-regulation-review-final-report.pdf (accessed on 16 October 2025).
- Cancer Council. Climate Change: Skin Cancer Statistics and Issues Prevention Policy. Available online: https://www.cancer.org.au/about-us/policy-and-advocacy/prevention/uv-radiation/related-resources/climate-change (accessed on 14 October 2025).
- Neale, R.E.; Hamilton, A.R.; Janda, M.; Gies, P.; Green, A.C. Seasonal variation in measured solar ultraviolet radiation exposure of adults in subtropical Australia. Photochem. Photobiol. 2010, 86, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Bais, A.F.; McKenzie, R.L.; Bernhard, G.; Aucamp, P.J.; Ilyas, M.; Madronich, S.; Tourpali, K. Ozone depletion and climate change: Impacts on UV radiation. Photochem. Photobiol. Sci. 2015, 14, 19–52. [Google Scholar] [CrossRef] [PubMed]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef] [PubMed]
- SunSmart. Free SunSmart Global UV App. Available online: https://www.sunsmart.com.au/resources/sunsmart-app (accessed on 16 October 2025).
- Government of South Australia: SafeWorkSA. Heat & UV. Available online: https://safework.sa.gov.au/workers/health-and-wellbeing/heat-and-uv (accessed on 14 October 2025).
- Vojvodic, A.; Vlaskovic-Jovicevic, T.; Vojvodic, P.; Vojvodic, J.; Goldust, M.; Peric-Hajzler, Z.; Matovic, D.; Sija, G.; Stepic, N.; Nguyen, V.T.; et al. Psychological Impact of Melanoma, How to Detect, Support and Help. Open Access Maced. J. Med. Sci. 2019, 7, 3043–3045. [Google Scholar] [CrossRef] [PubMed]

| Criteria | Considerations |
|---|---|
| Study design | Was the AI tested in a reader study or clinical workflow? |
| Dataset composition | Was there adequate representation of skin tones, lesion types, and demographics? |
| External validation | Was the model validated on independent datasets or in different clinical settings? |
| Human-AI interaction | Was clinician input part of the workflow, and if so, how did it affect outcomes? |
| Reporting transparency | Have model architecture, training data, and performance metrics been clearly reported? |
| Equity and bias | Were any steps taken to address underrepresentation of skin of colour? |
| Implementation readiness | Did the tool meet clinical usability, safety and regulatory standards? |
| Infrastructure | Example | Description |
|---|---|---|
| International datasets | ISIC Archive [120] | Large annotated dermatoscopic image dataset used to train and validate AI algorithms for melanoma detection |
| National registries | SEER Program [137] | Population-level data supporting cancer surveillance, screening, and epidemiological research |
| Collaborative research networks | Euromelanoma [34] | Multinational initiative promoting awareness, education, clinical research, and policy development |
| Method | Expert Consensus | Epidemiological Modelling | Behavioural Simulation | Health Economic Simulation Models | Implementation Studies | Digital Twins | Integrated AI-Driven Prediction Platforms |
|---|---|---|---|---|---|---|---|
| Description | Narrative synthesis or expert panels for future needs | Statistical models projecting incidence, mortality, and outcomes | Experimental or digital studies testing behavioural responses | Cost-effectiveness analyses predicting sustainability | Real-world testing of workflows and delivery of care | Virtual models of individuals or populations for prevention and surveillance | Microsimulation modelling, multimodal data integration to forecast outcomes |
| Example | Guidelines on risk stratification, national screening | QSkin projections of melanoma trends with changing UV exposure | Appearance-based messaging, smartphone reminders | Cost evaluations of banning sunbeds and opportunistic screening | Teledermatology for rural settings, opportunistic screening by nurses | Longitudinal mole monitoring, optimised screening intervals | ACEMID predictive models linking melanoma risk with cardiometabolic outcomes |
| Domain | Measurable Output(s) | Practical Data Source(s) | Equity Metric | Overdiagnosis Metric |
|---|---|---|---|---|
| Epidemiology | Age-standardised incidence and mortality rates | National cancer registries (e.g., SEER, Australian Cancer Database) | Incidence by skin type, age, geographic location | Stage distribution at diagnosis |
| Behavioural science | Sun protection adherence scores | Population surveys, wearable UV sensors | Behaviours stratified by socioeconomic status, education, ethnicity | N/A |
| Health economics | Cost-effectiveness ratios, return-on-investment metrics | Medicare claims data, program-level expenditure reports | Cost–benefit across income quintiles | Cost per additional diagnosis |
| Implementation science | Uptake and fidelity of interventions | Clinic-level audits, electronic health records | Intervention reach by rural status and language access | Fidelity versus unnecessary follow-up rates |
| Digital twins/AI | Naevus evolution tracking, UV vulnerability mapping | ISIC Archive, 3D-TBP imaging datasets (e.g., ACEMID) | Model performance of AI across different skin types | False positive rate in low-risk populations |
| Clinicians | Researchers | AI Developers |
|---|---|---|
| Knowledge of the type and use of imaging analysis and AI methods | Statistical methods to assess value of AI model, clinical applications of AI | Which clinical tasks are repetitive and challenging for clinicians and would benefit from AI support? |
| Real-world applications of AI | Processing large datasets, including data management | Bias associated with datasets due to selection of clinically notable lesions |
| Which clinical tasks are highly suitable for AI algorithm support? | Key issues with AI validation and how to assess generalisability of training and test datasets | Understanding of diagnostic assessment for images, so that they can be modelled |
| Know the strengths and weaknesses of various AI and machine learning models (e.g., supervised versus unsupervised methods) | How to interpret training/testing metrics, and explain the AI decision making process | Understand whether model is overfitting or underfitting given its clinical purpose, and select appropriate threshold |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Susanto, A.; Primiero, C.; Goldinger, S.M.; Soyer, H.P.; Janda, M. The Impact of Multidisciplinary Research on Progress in Skin Cancer Prevention. Cancers 2025, 17, 3473. https://doi.org/10.3390/cancers17213473
Susanto A, Primiero C, Goldinger SM, Soyer HP, Janda M. The Impact of Multidisciplinary Research on Progress in Skin Cancer Prevention. Cancers. 2025; 17(21):3473. https://doi.org/10.3390/cancers17213473
Chicago/Turabian StyleSusanto, Alyssa, Clare Primiero, Simone M. Goldinger, H. Peter Soyer, and Monika Janda. 2025. "The Impact of Multidisciplinary Research on Progress in Skin Cancer Prevention" Cancers 17, no. 21: 3473. https://doi.org/10.3390/cancers17213473
APA StyleSusanto, A., Primiero, C., Goldinger, S. M., Soyer, H. P., & Janda, M. (2025). The Impact of Multidisciplinary Research on Progress in Skin Cancer Prevention. Cancers, 17(21), 3473. https://doi.org/10.3390/cancers17213473

