A New Era, New Risks: The Cardio-Oncology Perspective on Immunotherapy in Non-Small Cell Lung Cancer
Simple Summary
Abstract
1. Introduction
2. The Paradigm Shift of LC Management: Early Detection and Chemo-Immunotherapy
3. Lung Cancer Patients and Cardio-Immuno-Metabolic Risk
4. A Tale of Two Cities: Cardiovascular Toxicity of Immune Checkpoint Inhibitor Therapy in Randomized Clinical Trials Versus Real-World Practice
5. Management of Cardiovascular Risk and Toxicity in NSCLC Patients Treated with Immune Checkpoint Inhibitors as First-Line Therapy
5.1. Cardiovascular Events and Surgery in NSCLC
5.2. Pericarditis
6. Survivorship and Cardiovascular Surveillance
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Mo, S.; Yi, B. The spatiotemporal dynamics of lung cancer: 30-year trends of epidemiology across 204 countries and territories. BMC Public Health 2022, 22, 987. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, J.; Deng, Y.; Tin, M.S.; Lok, V.; Ngai, C.H.; Zhang, L.; Lucero-Prisno, D.E., 3rd; Xu, W.; Zheng, Z.J.; Elcarte, E.; et al. Distribution, Risk Factors, and Temporal Trends for Lung Cancer Incidence and Mortality: A Global Analysis. Chest 2022, 161, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xia, P.F.; Geng, T.T.; Tu, Z.Z.; Zhang, Y.B.; Yu, H.C.; Zhang, J.J.; Guo, K.; Yang, K.; Liu, G.; et al. Trends in Self-Reported Adherence to Healthy Lifestyle Behaviors Among US Adults, 1999 to March 2020. JAMA Netw. Open 2023, 6, e2323584. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, T.; Yang, X.; Huang, Y.; Zhao, M.; Li, M.; Ma, K.; Yin, J.; Zhan, C.; Wang, Q. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manag. Res. 2019, 11, 943–953. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hansen, R.N.; Zhang, Y.; Seal, B.; Ryan, K.; Yong, C.; Darilay, A.; Ramsey, S.D. Long-term survival trends in patients with unresectable stage III non-small cell lung cancer receiving chemotherapy and radiation therapy: A SEER cancer registry analysis. BMC Cancer 2020, 20, 276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Higgins, K.A.; Puri, S.; Gray, J.E. Systemic and Radiation Therapy Approaches for Locally Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Ganti, A.K.; Klein, A.B.; Cotarla, I.; Seal, B.; Chou, E. Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients with Non-Small Cell Lung Cancer in the US. JAMA Oncol. 2021, 7, 1824–1832. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bei, Y.; Chen, X.; Raturi, V.P.; Liu, K.; Ye, S.; Xu, Q.; Lu, M. Treatment patterns and outcomes change in early-stage non-small cell lung cancer in octogenarians and older: A SEER database analysis. Aging Clin. Exp. Res. 2021, 33, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.T.; Jin, Y.; Lo, E.; Chen, Y.; Hanlon Newell, A.E.; Kong, Y.; Inge, L.J. Real-World Biomarker Test Utilization and Subsequent Treatment in Patients with Early-Stage Non-small Cell Lung Cancer in the United States, 2011–2021. Oncol. Ther. 2023, 11, 343–360. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N. Engl. J. Med. 2020, 383, 640–649. [Google Scholar] [CrossRef]
- Aggarwal, C.; Marmarelis, M.E.; Hwang, W.T.; Scholes, D.G.; McWilliams, T.L.; Singh, A.P.; Sun, L.; Kosteva, J.; Costello, M.R.; Cohen, R.B.; et al. Association Between Availability of Molecular Genotyping Results and Overall Survival in Patients with Advanced Non squamous Non-Small-Cell Lung Cancer. JCO Precis. Oncol. 2023, 7, e2300191. [Google Scholar] [CrossRef] [PubMed]
- Voruganti, T.; Soulos, P.R.; Mamtani, R.; Presley, C.J.; Gross, C.P. Association Between Age and Survival Trends in Advanced Non-Small Cell Lung Cancer After Adoption of Immunotherapy. JAMA Oncol. 2023, 9, 334–341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Borg, M.; Hilberg, O.; Andersen, M.B.; Weinreich, U.M.; Rasmussen, T.R. Increased use of computed tomography in Denmark: Stage shift toward early stage lung cancer through incidental findings. Acta Oncol. 2022, 61, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Singareddy, A.; Flanagan, M.E.; Samson, P.P.; Waqar, S.N.; Devarakonda, S.; Ward, J.P.; Herzog, B.H.; Rohatgi, A.; Robinson, C.G.; Gao, F.; et al. Trends in Stage I Lung Cancer. Clin. Lung Cancer 2023, 24, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Potter, A.L.; Rosenstein, A.L.; Kiang, M.V.; Shah, S.A.; Gaissert, H.A.; Chang, D.C.; Fintelmann, F.J.; Yang, C.J. Association of computed tomography screening with lung cancer stage shift and survival in the United States: Quasi-experimental study. BMJ 2022, 376, e069008. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bonney, A.; Malouf, R.; Marchal, C.; Manners, D.; Fong, K.M.; Marshall, H.M.; Irving, L.B.; Manser, R. Impact of low-dose computed tomography (LDCT) screening on lung cancer-related mortality. Cochrane Database Syst. Rev. 2022, 8, CD013829. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flores, R.; Patel, P.; Alpert, N.; Pyenson, B.; Taioli, E. Association of Stage Shift and Population Mortality Among Patients with Non-Small Cell Lung Cancer. JAMA Netw. Open 2021, 4, e2137508. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strongman, H.; Gadd, S.; Matthews, A.; Mansfield, K.E.; Stanway, S.; Lyon, A.R.; Dos-Santos-Silva, I.; Smeeth, L.; Bhaskaran, K. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: A population-based cohort study using multiple linked UK electronic health records databases. Lancet 2019, 394, 1041–1054. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Florido, R.; Daya, N.R.; Ndumele, C.E.; Koton, S.; Russell, S.D.; Prizment, A.; Blumenthal, R.S.; Matsushita, K.; Mok, Y.; Felix, A.S.; et al. Cardiovascular Disease Risk Among Cancer Survivors: The Atherosclerosis Risk In Communities (ARIC) Study. J. Am. Coll. Cardiol. 2022, 80, 22–32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ogedegbe, O.J.; Odugbemi, O.P.; Tabowei, G.; Alugba, G.; Pius, R.; Nwogwugwu, E.; Nwaezeapu, K.I. Rising Cardiovascular mortality in Lung cancer patients results from a large cancer database retrospective cohort study. JACC 2025, 85 (Suppl. S12), 2874. [Google Scholar] [CrossRef]
- Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Koning, H.J.; van Der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Jonas, D.E.; Reuland, D.S.; Reddy, S.M.; Nagle, M.; Clark, S.D.; Weber, R.P.; Enyioha, C.; Malo, T.L.; Brenner, A.T.; Armstrong, C.; et al. Screening for Lung Cancer with Low-Dose Computed Tomography: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2021, 325, 971–987. [Google Scholar] [CrossRef] [PubMed]
- Passiglia, F.; Cinquini, M.; Bertolaccini, L.; Del Re, M.; Facchinetti, F.; Ferrara, R.; Franchina, T.; Larici, A.R.; Malapelle, U.; Menis, J.; et al. Benefits and Harms of Lung Cancer Screening by Chest Computed Tomography: A Systematic Review and Meta-Analysis. J. Clin. Oncol. 2021, 39, 2574–2585, Erratum in J. Clin. Oncol. 2021, 39, 3192–3193. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. KEYNOTE-024 Investigators. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Five-Year Outcomes with Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score ≥ 50. J. Clin. Oncol. 2021, 39, 2339–2349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Borghaei, H.; Gettinger, S.; Vokes, E.E.; Chow, L.Q.M.; Burgio, M.A.; de Castro Carpeno, J.; Pluzanski, A.; Arrieta, O.; Frontera, O.A.; Chiari, R.; et al. Five-Year Outcomes from the Randomized, Phase III Trials CheckMate 017 and 057: Nivolumab Versus Docetaxel in Previously Treated Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2021, 39, 723–733, Erratum in J. Clin. Oncol. 2021, 39, 1190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score of 50% or Greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Sezer, A.; Kilickap, S.; Gümüş, M.; Bondarenko, I.; Özgüroğlu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: A multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 2021, 397, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef] [PubMed]
- Novello, S.; Kowalski, D.M.; Luft, A.; Gümüş, M.; Vicente, D.; Mazières, J.; Rodríguez-Cid, J.; Tafreshi, A.; Cheng, Y.; Lee, K.H.; et al. Pembrolizumab plus chemotherapy in squamous non–small-cell lung cancer: 5-year update of the phase III KEYNOTE-407 study. J. Clin. Oncol. 2023, 41, 1999–2006. [Google Scholar] [CrossRef]
- Garassino, M.C.; Gadgeel, S.; Speranza, G.; Felip, E.; Esteban, E.; Dómine, M.; Hochmair, M.J.; Powell, S.F.; Bischoff, H.G.; Peled, N.; et al. Pembrolizumab Plus Pemetrexed and Platinum in Nonsquamous Non-Small-Cell Lung Cancer: 5-Year Outcomes from the Phase 3 KEYNOTE-189 Study. J. Clin. Oncol. 2023, 41, 1992–1998. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gogishvili, M.; Melkadze, T.; Makharadze, T.; Giorgadze, D.; Dvorkin, M.; Penkov, K.; Laktionov, K.; Nemsadze, G.; Nechaeva, M.; Rozhkova, I.; et al. Cemiplimab plus chemotherapy versus chemotherapy alone in non-small cell lung cancer: A randomized, controlled, double-blind phase 3 trial. Nat. Med. 2022, 28, 2374–2380. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lim, S.M.; Peters, S.; Ortega Granados, A.L.; Pinto, G.D.J.; Fuentes, C.S.; Lo Russo, G.; Schenker, M.; Ahn, J.S.; Reck, M.; Szijgyarto, Z.; et al. Dostarlimab or pembrolizumab plus chemotherapy in previously untreated metastatic non-squamous non-small cell lung cancer: The randomized PERLA phase II trial. Nat. Commun. 2023, 14, 7301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. IMpower150 Study Group. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Ciuleanu, T.E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211, Erratum in Lancet Oncol. 2021, 22, e92. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.H.; Halmos, B.; Puri, S.; Qin, A.; Ismaila, N.; Abu Rous, F.; Alluri, K.; Freeman-Daily, J.; Malhotra, N.; Marrone, K.A.; et al. Therapy for Stage IV Non-Small Cell Lung Cancer Without Driver Alterations: ASCO Living Guideline, Version 2025.1. J. Clin. Oncol. 2025, 43, e45–e58. [Google Scholar] [CrossRef] [PubMed]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. PACIFIC Investigators. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhang, Z.; Bai, M.; Yan, Y.; Yu, J.; Xu, Y. Radiation combined with immune checkpoint inhibitors for unresectable locally advanced non-small cell lung cancer: Synergistic mechanisms, current state, challenges, and orientations. Cell Commun. Signal. 2023, 21, 119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V.; et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Kratzer, T.B.; Bandi, P.; Freedman, N.D.; Smith, R.A.; Travis, W.D.; Jemal, A.; Siegel, R. Lung cancer statistics, 2023. Cancer 2024, 130, 1330–1348. [Google Scholar] [CrossRef] [PubMed]
- Almatrafi, A.; Thomas, O.; Callister, M.; Gabe, R.; Beeken, R.J.; Neal, R. The prevalence of comorbidity in the lung cancer screening population: A systematic review and meta-analysis. J. Med. Screen. 2023, 30, 3–13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, A.; Apple, J.; Belli, A.J.; Barcellos, A.; Hansen, E.; Fernandes, L.L.; Zettler, C.M.; Wang, C.K. Real-world study of disease-free survival & patient characteristics associated with disease-free survival in early-stage non-small cell lung cancer: A retrospective observational study. Cancer Treat. Res. Commun. 2023, 36, 100742. [Google Scholar] [CrossRef] [PubMed]
- NSCLC Meta-analysis Collaborative Group. Preoperative chemotherapy for non-small-cell lung cancer: A systematic review and meta-analysis of individual participant data. Lancet 2014, 383, 1561–1571. [Google Scholar] [CrossRef]
- Mountzios, G.; Remon, J.; Hendriks, L.E.L.; García-Campelo, R.; Rolfo, C.; Van Schil, P.; Forde, P.M.; Besse, B.; Subbiah, V.; Reck, M.; et al. Immune-checkpoint inhibition for resectable non-small-cell lung cancer—Opportunities and challenges. Nat. Rev. Clin. Oncol. 2023, 20, 664–677. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Taube, J.M.; Pardoll, D.M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 2020, 367, eaax0182. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Forde, P.M.; Spicer, J.; Lu, S.; Provencio, M.; Mitsudomi, T.; Awad, M.M.; Felip, E.; Broderick, S.R.; Brahmer, J.R.; Swanson, S.J.; et al. CheckMate 816 Investigators. Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. N. Engl. J. Med. 2022, 386, 1973–1985. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heymach, J.V.; Harpole, D.; Mitsudomi, T.; Taube, J.M.; Galffy, G.; Hochmair, M.; Winder, T.; Zukov, R.; Garbaos, G.; Gao, S.; et al. AEGEAN Investigators. Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 1672–1684. [Google Scholar] [CrossRef] [PubMed]
- Wakelee, H.; Liberman, M.; Kato, T.; Tsuboi, M.; Lee, S.H.; Gao, S.; Chen, K.N.; Dooms, C.; Majem, M.; Eigendorff, E.; et al. KEYNOTE-671 Investigators. Perioperative Pembrolizumab for Early-Stage Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 491–503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, S.; Zhang, W.; Wu, L.; Wang, W.; Zhang, P.; the Neotorch Investigators. Perioperative Toripalimab Plus Chemotherapy for Patients with Resectable Non-Small Cell Lung Cancer: The Neotorch Randomized Clinical Trial. JAMA 2024, 331, 201–211, Erratum in JAMA 2025, 333, 910. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Riely, G.J.; Wood, D.E.; Ettinger, D.S.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; et al. Non-Small Cell Lung Cancer, Version 4.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2024, 22, 249–274. [Google Scholar] [CrossRef] [PubMed]
- Bott, M.J.; Yang, S.C.; Park, B.J.; Adusumilli, P.S.; Rusch, V.W.; Isbell, J.M.; Downey, R.J.; Brahmer, J.R.; Battafarano, R.; Bush, E.; et al. Initial results of pulmonary resection after neoadjuvant nivolumab in patients with resectable non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2019, 158, 269–276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baek, J.; Owen, D.H.; Merritt, R.E.; Shilo, K.; Otterson, G.A.; D’Souza, D.M.; Carbone, D.P.; Kneuertz, P.J. Minimally Invasive Lobectomy for Residual Primary Tumors of Advanced Non-Small-Cell Lung Cancer After Treatment with Immune Checkpoint Inhibitors: Case Series and Clinical Considerations. Clin. Lung Cancer 2020, 21, e265–e269. [Google Scholar] [CrossRef] [PubMed]
- Sepesi, B.; Zhou, N.; William, W.N., Jr.; Lin, H.Y.; Leung, C.H.; Weissferdt, A.; Mitchell, K.G.; Pataer, A.; Walsh, G.L.; Rice, D.C.; et al. Surgical outcomes after neoadjuvant nivolumab or nivolumab with ipilimumab in patients with non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2022, 164, 1327–1337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wislez, M.; Mazieres, J.; Lavole, A.; Zalcman, G.; Carre, O.; Egenod, T.; Caliandro, R.; Dubos-Arvis, C.; Jeannin, G.; Molinier, O.; et al. Neoadjuvant durvalumab for resectable non-small-cell lung cancer (NSCLC): Results from a multicenter study (IFCT-1601 IONESCO). J. Immunother. Cancer 2022, 10, e005636. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Halvorsen, S.; Mehilli, J.; Cassese, S.; Hall, T.S.; Abdelhamid, M.; Barbato, E.; De Hert, S.; de Laval, I.; Geisler, T.; Hinterbuchner, L.; et al. ESC Scientific Document Group 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur. Heart J. 2022, 43, 3826–3924, Erratum in Eur. Heart J. 2023, 44, 4421. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. ESC Scientific Document Group 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361, Erratum in Eur. Heart J. 2023, 44, 1621. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Blake, S.J.; Yong, M.C.; Harjunpää, H.; Ngiow, S.F.; Takeda, K.; Young, A.; O’Donnell, J.S.; Allen, S.; Smyth, M.J.; et al. Improved Efficacy of Neoadjuvant Compared to Adjuvant Immunotherapy to Eradicate Metastatic Disease. Cancer Discov. 2016, 6, 1382–1399. [Google Scholar] [CrossRef] [PubMed]
- Blank, C.U.; Rozeman, E.A.; Fanchi, L.F.; Sikorska, K.; van de Wiel, B.; Kvistborg, P.; Krijgsman, O.; van den Braber, M.; Philips, D.; Broeks, A.; et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 2018, 24, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, A.; Yu, H.; Wang, Y.; Zhang, X.; Qiu, H.; Du, W.; Luo, L.; Fu, S.; Zhang, L.; et al. Neoadjuvant-Adjuvant vs Neoadjuvant-Only PD-1 and PD-L1 Inhibitors for Patients with Resectable NSCLC: An Indirect Meta-Analysis. JAMA Netw. Open 2024, 7, e241285. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Felip, E.; Altorki, N.; Zhou, C.; Csőszi, T.; Vynnychenko, I.; Goloborodko, O.; Luft, A.; Akopov, A.; Martinez-Marti, A.; Kenmotsu, H.; et al. IMpower010 Investigators. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase 3 trial. Lancet 2021, 398, 1344–1357, Erratum in Lancet 2021, 398, 1686. [Google Scholar] [CrossRef] [PubMed]
- Felip, E.; Altorki, N.; Zhou, C.; Vallières, E.; Csoszi, T.; Vynnychenko, I.O.; Goloborodko, O.; Rittmeyer, A.; Reck, M.; Martinez-Marti, A.; et al. IMpower010 Study Investigators. Five-Year Survival Outcomes with Atezolizumab After Chemotherapy in Resected Stage IB-IIIA Non-Small Cell Lung Cancer (IMpower010): An Open-Label, Randomized, Phase III Trial. J. Clin. Oncol. 2025, 43, 21. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.; Paz-Ares, L.; Marreaud, S.; Dafni, U.; Oselin, K.; Havel, L.; Esteban, E.; Isla, D.; Martinez-Marti, A.; Faehling, M.; et al. EORTC-1416-LCG/ETOP 8-15–PEARLS/KEYNOTE-091 Investigators. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage IB-IIIA non-small-cell lung cancer (PEARLS/KEYNOTE-091): An interim analysis of a randomised, triple-blind, phase 3 trial. Lancet Oncol. 2022, 23, 1274–1286. [Google Scholar] [CrossRef] [PubMed]
- Goss, G.; Darling, G.; Westeel, V.; Nakagawa, K.; Sureda, B.M.; Perrone, F.; McLachlan, S.-A.; Kang, J.; Wu, Y.-L.; Dingemans, A.-M.; et al. LBA48 CCTG BR.31: A global, double-blind placebo-controlled, randomized phase III study of adjuvant durvalumab in completely resected non-small cell lung cancer (NSCLC). Ann. Oncol. 2024, 35, S1238. [Google Scholar] [CrossRef]
- Cascone, T.; Awad, M.M.; Spicer, J.D.; He, J.; Lu, S.; Sepesi, B.; Tanaka, F.; Taube, J.M.; Cornelissen, R.; Havel, L.; et al. CheckMate 77T Investigators. Perioperative Nivolumab in Resectable Lung Cancer. N. Engl. J. Med. 2024, 390, 1756–1769. [Google Scholar] [CrossRef] [PubMed]
- Forde, P.M.; Spicer, J.D.; Provencio, M.; Mitsudomi, T.; Awad, M.M.; Wang, C.; Lu, S.; Felip, E.; Swanson, S.J.; Brahmer, J.R.; et al. CheckMate 816 Investigators. Overall Survival with Neoadjuvant Nivolumab plus Chemotherapy in Lung Cancer. N. Engl. J. Med. 2025, 393, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Battisti, N.M.L.; Welch, C.A.; Sweeting, M.; de Belder, M.; Deanfield, J.; Weston, C.; Peake, M.D.; Adlam, D.; Ring, A. Prevalence of Cardiovascular Disease in Patients with Potentially Curable Malignancies: A National Registry Dataset Analysis. JACC CardioOncol. 2022, 4, 238–253. [Google Scholar] [CrossRef]
- Kravchenko, J.; Berry, M.; Arbeev, K.; Lyerly, H.K.; Yashin, A.; Akushevich, I. Cardiovascular comorbidities and survival of lung cancer patients: Medicare data-based analysis. Lung Cancer 2015, 88, 85–93. [Google Scholar] [CrossRef]
- Mitchell, J.D.; Laurie, M.; Xia, Q.; Dreyfus, B.; Jain, N.; Jain, A.; Lane, D.; Lenihan, D.J. Risk profiles and incidence of cardiovascular events across different cancer types. ESMO Open 2023, 8, 101830. [Google Scholar] [CrossRef]
- Iachina, M.; Jakobsen, E.; Møller, H.; Lüchtenborg, M.; Mellemgaard, A.; Krasnik, M.; Green, A. The effect of different comorbidities on survival of non-small cells lung cancer patients. Lung 2015, 193, 291–297. [Google Scholar] [CrossRef]
- Sun, J.Y.; Zhang, Z.Y.; Qu, Q.; Wang, N.; Zhang, Y.M.; Miao, L.F.; Wang, J.; Wu, L.D.; Liu, Y.; Zhang, C.Y.; et al. Cardiovascular disease-specific mortality in 270,618 patients with non-small cell lung cancer. Int. J. Cardiol. 2021, 330, 186–193. [Google Scholar] [CrossRef]
- Batra, A.; Sheka, D.; Kong, S.; Cheung, W.Y. Impact of pre-existing cardiovascular disease on treatment patterns and survival outcomes in patients with lung cancer. BMC Cancer 2020, 20, 1004. [Google Scholar] [CrossRef]
- Kobo, O.; Raisi-Estabragh, Z.; Gevaert, S.; Rana, J.S.; Van Spall, H.G.C.; Roguin, A.; Petersen, S.E.; Ky, B.; Mamas, M.A. Impact of cancer diagnosis on distribution and trends of cardiovascular hospitalizations in the USA between 2004 and 2017. Eur. Heart J. Qual. Care Clin. Outcomes 2022, 8, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.F.; Lei, X.; Haas, A.; Baylis, R.A.; Gao, H.; Luo, L.; Giordano, S.H.; Wehner, M.R.; Nead, K.T.; Leeper, N.J. Risk of Cancer After Diagnosis of Cardiovascular Disease. JACC CardioOncol. 2023, 5, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Leiter, A.; Veluswamy, R.R.; Wisnivesky, J.P. The global burden of lung cancer: Current status and future trends. Nat. Rev. Clin. Oncol. 2023, 20, 624–639. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, C.; López-Cuadrado, T.; Rodríguez-Blázquez, C.; Pastor-Barriuso, R.; Galán, I. Clustering of unhealthy lifestyle behaviors, self-rated health and disability. Prev. Med. 2022, 155, 106911. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Rogers, K.; van der Ploeg, H.; Stamatakis, E.; Bauman, A.E. Traditional and Emerging Lifestyle Risk Behaviors and All-Cause Mortality in Middle-Aged and Older Adults: Evidence from a Large Population-Based Australian Cohort. PLoS Med. 2015, 12, e1001917. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moore, S.C.; Lee, I.M.; Weiderpass, E.; Campbell, P.T.; Sampson, J.N.; Kitahara, C.M.; Keadle, S.K.; Arem, H.; Berrington de Gonzalez, A.; Hartge, P.; et al. Association of Leisure-Time Physical Activity with Risk of 26 Types of Cancer in 1.44 Million Adults. JAMA Intern. Med. 2016, 176, 816–825. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xue, X.J.; Gao, Q.; Qiao, J.H.; Zhang, J.; Xu, C.P.; Liu, J. Red and processed meat consumption and the risk of lung cancer: A dose-response meta-analysis of 33 published studies. Int. J. Clin. Exp. Med. 2014, 7, 1542–1553. [Google Scholar] [PubMed] [PubMed Central]
- Farvid, M.S.; Sidahmed, E.; Spence, N.D.; Mante Angua, K.; Rosner, B.A.; Barnett, J.B. Consumption of red meat and processed meat and cancer incidence: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2021, 36, 937–951. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.R.; Abar, L.; Vingeliene, S.; Chan, D.S.; Aune, D.; Navarro-Rosenblatt, D.; Stevens, C.; Greenwood, D.; Norat, T. Fruits, vegetables and lung cancer risk: A systematic review and meta-analysis. Ann. Oncol. 2016, 27, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, T.; Guo, X.F.; Li, D. The Associations of Fruit and Vegetable Intake with Lung Cancer Risk in Participants with Different Smoking Status: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2019, 11, 1791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, X.; Zhu, C.; Ji, M.; Fan, J.; Xie, J.; Huang, Y.; Jiang, X.; Xu, J.; Yin, R.; Du, L.; et al. Diet and Risk of Incident Lung Cancer: A Large Prospective Cohort Study in UK Biobank. Am. J. Clin. Nutr. 2021, 114, 2043–2051. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cao, S.M.; Dimou, N.; Wu, L.; Li, J.B.; Yang, J. Association of Metabolic Syndrome with Risk of Lung Cancer: A Population-Based Prospective Cohort Study. Chest 2024, 165, 213–223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sin, S.; Lee, C.H.; Choi, S.M.; Han, K.D.; Lee, J. Metabolic Syndrome and Risk of Lung Cancer: An Analysis of Korean National Health Insurance Corporation Database. J. Clin. Endocrinol. Metab. 2020, 105, dgaa596. [Google Scholar] [CrossRef] [PubMed]
- López-Jiménez, T.; Duarte-Salles, T.; Plana-Ripoll, O.; Recalde, M.; Xavier-Cos, F.; Puente, D. Association between metabolic syndrome and 13 types of cancer in Catalonia: A matched case-control study. PLoS ONE 2022, 17, e0264634. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, J.; Wang, R.; Tan, S.; Zhao, X.; Hou, A. Association between insulin resistance, metabolic syndrome and its components and lung cancer: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2024, 16, 63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, E.; Chen, X. Prediabetes and the risk of lung cancer incidence and mortality: A meta-analysis. J. Diabetes Investig. 2023, 14, 1209–1220. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, Z.; Hu, Y.; Zuo, F.; Wen, X.; Wu, D.; Sun, X.; Liu, C. The association between metabolic syndrome and lung cancer risk: A Mendelian randomization study. Sci. Rep. 2024, 14, 28494. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carreras-Torres, R.; Johansson, M.; Haycock, P.C.; Wade, K.H.; Relton, C.L.; Martin, R.M.; Davey Smith, G.; Albanes, D.; Aldrich, M.C.; Andrew, A.; et al. Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian randomization study. PLoS ONE 2017, 12, e0177875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, W.; Liu, G.; Hung, R.J.; Haycock, P.C.; Aldrich, M.C.; Andrew, A.S.; Arnold, S.M.; Bickeböller, H.; Bojesen, S.E.; Brennan, P.; et al. Causal relationships between body mass index, smoking and lung cancer: Univariable and multivariable Mendelian randomization. Int. J. Cancer 2021, 148, 1077–1086. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caan, B.J.; Cespedes Feliciano, E.M.; Kroenke, C.H. The Importance of Body Composition in Explaining the Overweight Paradox in Cancer-Counterpoint. Cancer Res. 2018, 78, 1906–1912. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hidayat, K.; Du, X.; Chen, G.; Shi, M.; Shi, B. Abdominal Obesity and Lung Cancer Risk: Systematic Review and Meta-Analysis of Prospective Studies. Nutrients 2016, 8, 810. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, D.; Zheng, W.; Johansson, M.; Lan, Q.; Park, Y.; White, E.; Matthews, C.E.; Sawada, N.; Gao, Y.T.; Robien, K.; et al. Overall and Central Obesity and Risk of Lung Cancer: A Pooled Analysis. J. Natl. Cancer Inst. 2018, 110, 831–842. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wood, A.M.; Jonsson, H.; Nagel, G.; Häggström, C.; Manjer, J.; Ulmer, H.; Engeland, A.; Zitt, E.; Jochems, S.H.J.; Ghaderi, S.; et al. The Inverse Association of Body Mass Index with Lung Cancer: Exploring Residual Confounding, Metabolic Aberrations and Within-Person Variability in Smoking. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Spitz, M.R.; Mistry, J.; Gu, J.; Hong, W.K.; Wu, X. Plasma levels of insulin-like growth factor-I and lung cancer risk: A case-control analysis. J. Natl. Cancer Inst. 1999, 91, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Favoni, R.E.; de Cupis, A.; Ravera, F.; Cantoni, C.; Pirani, P.; Ardizzoni, A.; Noonan, D.; Biassoni, R. Expression and function of the insulin-like growth factor I system in human non-small-cell lung cancer and normal lung cell lines. Int. J. Cancer 1994, 56, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Dziadziuszko, R.; Camidge, D.R.; Hirsch, F.R. The insulin-like growth factor pathway in lung cancer. J. Thorac. Oncol. 2008, 3, 815–818. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Shen, Y.; Tan, L.; Li, W. Prognostic Value of Sarcopenia in Lung Cancer: A Systematic Review and Meta-analysis. Chest 2019, 156, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Damluji, A.A.; Alfaraidhy, M.; AlHajri, N.; Rohant, N.N.; Kumar, M.; Al Malouf, C.; Bahrainy, S.; Ji Kwak, M.; Batchelor, W.B.; Forman, D.E.; et al. Sarcopenia and Cardiovascular Diseases. Circulation 2023, 147, 1534–1553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Afzali, A.M.; Müntefering, T.; Wiendl, H.; Meuth, S.G.; Ruck, T. Skeletal muscle cells actively shape (auto)immune responses. Autoimmun. Rev. 2018, 17, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Montano, M.; Correa-de-Araujo, R. Maladaptive Immune Activation in Age-Related Decline of Muscle Function. J. Gerontol A Biol. Sci. Med. Sci. 2023, 78 (Suppl. S1), 19–24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pillon, N.J.; Bilan, P.J.; Fink, L.N.; Klip, A. Cross-talk between skeletal muscle and immune cells: Muscle-derived mediators and metabolic implications. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E453–E465. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Choi, K.M. Interplay of skeletal muscle and adipose tissue: Sarcopenic obesity. Metabolism 2023, 144, 155577. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, L.; Xu, S. Sarcopenia affects clinical efficacy of immune checkpoint inhibitors in non-small cell lung cancer patients: A systematic review and meta-analysis. Int. Immunopharmacol. 2020, 88, 106907. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Shen, J.; Qian, Y.; Zhou, T. Sarcopenia as a Determinant of the Efficacy of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: A Meta-Analysis. Nutr. Cancer 2023, 75, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, S.; Chang, J.; Qin, Y.; Li, C. Impact of BMI on the survival outcomes of non-small cell lung cancer patients treated with immune checkpoint inhibitors: A meta-analysis. BMC Cancer 2023, 23, 1023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bu, D.X.; Tarrio, M.; Maganto-Garcia, E.; Stavrakis, G.; Tajima, G.; Lederer, J.; Jarolim, P.; Freeman, G.J.; Sharpe, A.H.; Lichtman, A.H. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arter. Thromb. Vasc. Biol. 2011, 31, 1100–1107. [Google Scholar] [CrossRef]
- Fernandez, D.M.; Rahman, A.H.; Fernandez, N.F.; Chudnovskiy, A.; Amir, E.D.; Amadori, L.; Khan, N.S.; Wong, C.K.; Shamailova, R.; Hill, C.A.; et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 2019, 25, 1576–1588. [Google Scholar] [CrossRef]
- Vuong, J.T.; Stein-Merlob, A.F.; Nayeri, A.; Sallam, T.; Neilan, T.G.; Yang, E.H. Immune Checkpoint Therapies and Atherosclerosis: Mechanisms and Clinical Implications: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 577–593. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suero-Abreu, G.A.; Zanni, M.V.; Neilan, T.G. Atherosclerosis with Immune Checkpoint Inhibitor Therapy: Evidence, Diagnosis, and Management: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2022, 4, 598–615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piras, L.; Zuccanti, M.; Russo, P.; Riccio, F.; Agresti, A.; Lustri, C.; Dardani, D.; Ferrera, A.; Fiorentini, V.; Tocci, G.; et al. Association between Immune Checkpoint Inhibitors and Atherosclerotic Cardiovascular Disease Risk: Another Brick in the Wall. Int. J. Mol. Sci. 2024, 25, 2502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Libby, P.; Lichtman, A.H.; Hansson, G.K. Immune effector mechanisms implicated in atherosclerosis: From mice to humans. Immunity 2013, 38, 1092–1104, Erratum in Immunity 2013, 39, 413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bergqvist, D.; Björck, M.; Säwe, J.; Troëng, T. Randomized trials or population-based registries. Eur. J. Vasc. Endovasc. Surg. 2007, 34, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.R.; Liu, C.; Hripcsak, G.; Cheung, Y.K.; Weng, C. Comparison of clinical characteristics between clinical trial participants and nonparticipants using electronic health record data. JAMA Netw. Open 2021, 4, e214732. [Google Scholar] [CrossRef]
- Bonsu, J.; Charles, L.; Guha, A.; Awan, F.; Woyach, J.; Yildiz, V.; Wei, L.; Jneid, H.; Addison, D. Representation of patients with cardiovascular disease in pivotal cancer clinical trials. Circulation 2019, 139, 2594–2596. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tan, S.; Sivakumar, S.; Segelov, E.; Nicholls, S.J.; Nelson, A.J. Cardiovascular risk factor reporting in immune checkpoint inhibitor trials: A systematic review. Cancer Epidemiol. 2023, 83, 102334. [Google Scholar] [CrossRef]
- Johnson, D.B.; Balko, J.M.; Compton, M.L.; Chalkias, S.; Gorham, J.; Xu, Y.; Hicks, M.; Puzanov, I.; Alexander, M.R.; Bloomer, T.L.; et al. Fulminant Myocarditis with Combination Immune Checkpoint Blockade. N. Engl. J. Med. 2016, 375, 1749–1755. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agostinetto, E.; Eiger, D.; Lambertini, M.; Ceppi, M.; Bruzzone, M.; Pondé, N.; Plummer, C.; Awada, A.H.; Santoro, A.; Piccart-Gebhart, M.; et al. Cardiotoxicity of immune checkpoint inhibitors: A systematic review and meta-analysis of randomised clinical trials. Eur. J. Cancer 2021, 148, 76–91. [Google Scholar] [CrossRef] [PubMed]
- Rahouma, M.; Karim, N.A.; Baudo, M.; Yahia, M.; Kamel, M.; Eldessouki, I.; Abouarab, A.; Saad, I.; Elmously, A.; Gray, K.D.; et al. Cardiotoxicity with immune system targeting drugs: A meta-analysis of anti-PD/PD-L1 immunotherapy randomized clinical trials. Immunotherapy 2019, 11, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Kanji, S.; Morin, S.; Agtarap, K.; Purkayastha, D.; Thabet, P.; Bosse, D.; Wang, X.; Lunny, C.; Hutton, B. Adverse Events Associated with Immune Checkpoint Inhibitors: Overview of Systematic Reviews. Drugs 2022, 82, 793–809. [Google Scholar] [CrossRef] [PubMed]
- Malaty, M.M.; Amarasekera, A.T.; Li, C.; Scherrer-Crosbie, M.; Tan, T.C. Incidence of immune checkpoint inhibitor mediated cardiovascular toxicity: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2022, 52, e13831. [Google Scholar] [CrossRef] [PubMed]
- Naqash, A.R.; Moey, M.Y.Y.; Cherie Tan, X.W.; Laharwal, M.; Hill, V.; Moka, N.; Finnigan, S.; Murray, J.; Johnson, D.B.; Moslehi, J.J.; et al. Major Adverse Cardiac Events with Immune Checkpoint Inhibitors: A Pooled Analysis of Trials Sponsored by the National Cancer Institute-Cancer Therapy Evaluation Program. J. Clin. Oncol. 2022, 40, 3439–3452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dolladille, C.; Akroun, J.; Morice, P.M.; Dompmartin, A.; Ezine, E.; Sassier, M.; Da-Silva, A.; Plane, A.F.; Legallois, D.; L’Orphelin, J.M.; et al. Cardiovascular immunotoxicities associated with immune checkpoint inhibitors: A safety meta-analysis. Eur. Heart J. 2021, 42, 4964–4977. [Google Scholar] [CrossRef] [PubMed]
- Salem, J.E.; Manouchehri, A.; Moey, M.; Lebrun-Vignes, B.; Bastarache, L.; Pariente, A.; Gobert, A.; Spano, J.P.; Balko, J.M.; Bonaca, M.P.; et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: An observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018, 19, 1579–1589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, A.; Yuan, Y.; Eccles, L.; Chitkara, A.; Dalén, J.; Varol, N. Treatment patterns for advanced non-small cell lung cancer in the US: A systematic review of observational studies. Cancer Treat. Res. Commun. 2022, 33, 100648. [Google Scholar] [CrossRef] [PubMed]
- Carroll, R.; Bortolini, M.; Calleja, A.; Munro, R.; Kong, S.; Daumont, M.J.; Penrod, J.R.; Lakhdari, K.; Lacoin, L.; Cheung, W.Y. Trends in treatment patterns and survival outcomes in advanced non-small cell lung cancer: A Canadian population-based real-world analysis. BMC Cancer 2022, 22, 255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shin, Y.E.; Kumar, A.; Guo, J.J. Spending, utilization, and price trends for immune checkpoint inhibitors in US medicaid programs: An empirical analysis from 2011 to 2021. Clin. Drug Investig. 2023, 43, 289–298. [Google Scholar] [CrossRef]
- Hektoen, H.H.; Tsuruda, K.M.; Fjellbirkeland, L.; Nilssen, Y.; Brustugun, O.T.; Andreassen, B.K. Real-world evidence for pembrolizumab in non-small cell lung cancer: A nationwide cohort study. Br. J. Cancer 2025, 132, 93–102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126, Erratum in J. Clin. Oncol. 2022, 40, 315. [Google Scholar] [CrossRef] [PubMed]
- Power, J.R.; Dolladille, C.; Ozbay, B.; Procureur, A.; Ederhy, S.; Palaskas, N.L.; Lehmann, L.H.; Cautela, J.; Courand, P.Y.; Hayek, S.S.; et al. International ICI-Myocarditis Registry. Immune checkpoint inhibitor-associated myocarditis: A novel risk score. Eur. Heart J. 2025, ehaf315; Erratum in Eur. Heart J. 2025, ehaf529. [Google Scholar] [CrossRef] [PubMed]
- Moslehi, J.J.; Salem, J.E.; Sosman, J.A.; Lebrun-Vignes, B.; Johnson, D.B. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 2018, 391, 933. [Google Scholar] [CrossRef]
- Gougis, P.; Jochum, F.; Abbar, B.; Dumas, E.; Bihan, K.; Lebrun-Vignes, B.; Moslehi, J.; Spano, J.P.; Laas, E.; Hotton, J.; et al. Clinical spectrum and evolution of immune-checkpoint inhibitors toxicities over a decade-a worldwide perspective. EClinicalMedicine 2024, 70, 102536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jain, P.; Bugarin, J.G.; Guha, A.; Jain, C.; Patil, N.; Shen, T.; Stanevich, I.; Nikore, V.; Margolin, K.; Ernstoff, M.; et al. Cardiovascular adverse events are associated with usage of immune checkpoint inhibitors in real-world clinical data across the United States. ESMO Open 2021, 6, 100252, Erratum in ESMO Open 2021, 6, 100286. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, X.; Lin, J.; Wang, B.; Huang, S.; Liu, M.; Yang, J. Clinical characteristics and influencing factors of anti-PD-1/PD-L1-related severe cardiac adverse event: Based on FAERS and TCGA databases. Sci. Rep. 2024, 14, 22199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’Souza, M.; Nielsen, D.; Svane, I.M.; Iversen, K.; Rasmussen, P.V.; Madelaire, C.; Fosbøl, E.; Køber, L.; Gustafsson, F.; Andersson, C.; et al. The risk of cardiac events in patients receiving immune checkpoint inhibitors: A nationwide Danish study. Eur. Heart J. 2021, 42, 1621–1631. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zheng, Y.; Li, B.; Zhi, Y.; Chen, M.; Zeng, J.; Jiao, Q.; Tao, Y.; Liu, X.; Shen, Z.; et al. Association among major adverse cardiovascular events with immune checkpoint inhibitors: A systematic review and meta-analysis. J. Intern. Med. 2025, 297, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Delombaerde, D.; Oeste, C.L.; Geldhof, V.; Croes, L.; Bassez, I.; Verbiest, A.; Tack, L.; Hens, D.; Franssen, C.; Debruyne, P.R.; et al. Cardiovascular toxicities in cancer patients treated with immune checkpoint inhibitors: Multicenter study using natural language processing on Belgian hospital data. ESMO Real. World Data Digit. Oncol. 2025, 7, 100111. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Z.; Chen, D.; Zhang, J.; Yuan, M.; Zhang, Y.; Liu, S.; Zhang, G.; Yang, G. The Cardiotoxicity Risk of Immune Checkpoint Inhibitors Compared with Chemotherapy: A Systematic Review and Meta-analysis of Observational Studies. Cardiovasc. Toxicol. 2025, 25, 805–819. [Google Scholar] [CrossRef] [PubMed]
- Poels, K.; van Leent, M.M.T.; Reiche, M.E.; Kusters, P.J.H.; Huveneers, S.; de Winther, M.P.J.; Mulder, W.J.M.; Lutgens, E.; Seijkens, T.T.P. Antibody-Mediated Inhibition of CTLA4 Aggravates Atherosclerotic Plaque Inflammation and Progression in Hyperlipidemic Mice. Cells 2020, 9, 1987. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strauss, L.; Mahmoud, M.A.A.; Weaver, J.D.; Tijaro-Ovalle, N.M.; Christofides, A.; Wang, Q.; Pal, R.; Yuan, M.; Asara, J.; Patsoukis, N.; et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci. Immunol. 2020, 5, eaay1863. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gotsman, I.; Grabie, N.; Dacosta, R.; Sukhova, G.; Sharpe, A.; Lichtman, A.H. Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice. J. Clin. Investig. 2007, 117, 2974–2982. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Orecchioni, M.; Ley, K. How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity. Nat. Rev. Immunol. 2022, 22, 251–265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Poels, K.; van Leent, M.M.T.; Boutros, C.; Tissot, H.; Roy, S.; Meerwaldt, A.E.; Toner, Y.C.A.; Reiche, M.E.; Kusters, P.J.H.; Malinova, T.; et al. Immune Checkpoint Inhibitor Therapy Aggravates T Cell-Driven Plaque Inflammation in Atherosclerosis. JACC CardioOncol. 2020, 2, 599–610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Drobni, Z.D.; Alvi, R.M.; Taron, J.; Zafar, A.; Murphy, S.P.; Rambarat, P.K.; Mosarla, R.C.; Lee, C.; Zlotoff, D.A.; Raghu, V.K.; et al. Association Between Immune Checkpoint Inhibitors with Cardiovascular Events and Atherosclerotic Plaque. Circulation 2020, 142, 2299–2311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Drobni, Z.D.; Gongora, C.; Taron, J.; Suero-Abreu, G.A.; Karady, J.; Gilman, H.K.; Supraja, S.; Nikolaidou, S.; Leeper, N.; Merkely, B.; et al. Impact of immune checkpoint inhibitors on atherosclerosis progression in patients with lung cancer. J. Immunother. Cancer 2023, 11, e007307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gong, B.; Guo, Y.; Li, Y.; Wang, J.; Zhou, G.; Chen, Y.H.; Nie, T.; Yang, M.; Luo, K.; Zheng, C.; et al. Immune checkpoint inhibitors in cancer: The increased risk of atherosclerotic cardiovascular disease events and progression of coronary artery calcium. BMC Med. 2024, 22, 44. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pasello, G.; Pavan, A.; Attili, I.; Bortolami, A.; Bonanno, L.; Menis, J.; Conte, P.; Guarneri, V. Real world data in the era of Immune Checkpoint Inhibitors (ICIs): Increasing evidence and future applications in lung cancer. Cancer Treat. Rev. 2020, 87, 102031. [Google Scholar] [CrossRef] [PubMed]
- Spigel, D.R.; McCleod, M.; Jotte, R.M.; Einhorn, L.; Horn, L.; Waterhouse, D.M.; Creelan, B.; Babu, S.; Leighl, N.B.; Chandler, J.C.; et al. Efficacy, and Patient-Reported Health-Related Quality of Life and Symptom Burden with Nivolumab in Patients with Advanced Non-Small Cell Lung Cancer, Including Patients Aged 70 Years or Older or with Poor Performance Status (CheckMate 153). J. Thorac. Oncol. 2019, 14, 1628–1639. [Google Scholar] [CrossRef] [PubMed]
- La, J.; Cheng, D.; Brophy, M.T.; Do, N.V.; Lee, J.S.; Tuck, D.; Fillmore, N.R. Real-World Outcomes for Patients Treated with Immune Checkpoint Inhibitors in the Veterans Affairs System. JCO Clin. Cancer Inform. 2020, 4, 918–928. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johns, A.C.; Yang, M.; Wei, L.; Grogan, M.; Patel, S.H.; Li, M.; Husain, M.; Kendra, K.L.; Otterson, G.A.; Burkart, J.T.; et al. Association of medical comorbidities and cardiovascular disease with toxicity and survival among patients receiving checkpoint inhibitor immunotherapy. Cancer Immunol. Immunother. 2023, 72, 2005–2013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, X.; Lin, J.H.; Pan, S.; Salei, Y.V.; Parsons, S.K. The real-world insights on the use, safety, and outcome of immune-checkpoint inhibitors in underrepresented populations with lung cancer. Cancer Treat. Res. Commun. 2024, 40, 100833. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Drobni, Z.D.; Zafar, A.; Gongora, C.A.; Zlotoff, D.A.; Alvi, R.M.; Taron, J.; Rambarat, P.K.; Schoenfeld, S.; Mosarla, R.C.; et al. Pre-Existing Autoimmune Disease Increases the Risk of Cardiovascular and Noncardiovascular Events After Immunotherapy. JACC CardioOncol. 2022, 4, 660–669. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teske, A.J.; Moudgil, R.; López-Fernández, T.; Barac, A.; Brown, S.A.; Deswal, A.; Neilan, T.G.; Ganatra, S.; Abdel Qadir, H.; Menon, V.; et al. Global Cardio Oncology Registry (G-COR): Registry Design, Primary Objectives, and Future Perspectives of a Multicenter Global Initiative. Circ. Cardiovasc. Qual. Outcomes 2023, 16, e009905. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hussaini, S.; Chehade, R.; Boldt, R.G.; Raphael, J.; Blanchette, P.; Vareki, S.M.; Fernandes, R. Association between immune-related side effects and efficacy and benefit of immune checkpoint inhibitors–a systematic review and meta-analysis. Cancer Treat. Rev. 2021, 92, 102134. [Google Scholar] [CrossRef] [PubMed]
- Maccio, U.; Wicki, A.; Ruschitzka, F.; Beuschlein, F.; Wolleb, S.; Varga, Z.; Moch, H. Frequency and Consequences of Immune Checkpoint Inhibitor-Associated Inflammatory Changes in Different Organs: An Autopsy Study Over 13-Years. Mod. Pathol. 2024, 38, 100683. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Horita, N.; Adib, E.; Zhou, S.; Nassar, A.H.; Asad, Z.U.A.; Cortellini, A.; Naqash, A.R. Treatment-related adverse events, including fatal toxicities, in patients with solid tumours receiving neoadjuvant and adjuvant immune checkpoint blockade: A systematic review and meta-analysis of randomised controlled trials. Lancet Oncol. 2024, 25, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Aburaki, R.; Fujiwara, Y.; Chida, K.; Horita, N.; Nagasaka, M. Surgical and safety outcomes in patients with non-small cell lung cancer receiving neoadjuvant chemoimmunotherapy versus chemotherapy alone: A systematic review and meta-analysis. Cancer Treat. Rev. 2024, 131, 102833. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Huang, C.; Du, L.; Wang, C.; Yang, Y.; Yu, X.; Lin, S.; Yang, C.; Zhao, H.; Cai, S.; et al. Efficacy and safety of perioperative sintilimab plus platinum-based chemotherapy for potentially resectable stage IIIB non-small cell lung cancer (periSCOPE): An open-label, single-arm, phase II trial. EClinicalMedicine 2024, 79, 102997. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, M.; Lee, C.K.; Lewis, C.R.; Boyer, M.; Brown, B.; Schaffer, A.; Pearson, S.A.; Simes, R.J. Generalizability of immune checkpoint inhibitor trials to real-world patients with advanced non-small cell lung cancer. Lung Cancer 2022, 166, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Kocher, F.; Fiegl, M.; Mian, M.; Hilbe, W. Cardiovascular Comorbidities and Events in NSCLC: Often Underestimated but Worth Considering. Clin. Lung Cancer 2015, 16, 305–312. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, M.; Chanda, A.; Grabauskas, T.; Kumar, M.; Kim, A.S. Cardiovascular disease and lung cancer. Front. Oncol. 2024, 14, 1258991. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yegya-Raman, N.; Berlin, E.; Feigenberg, S.J.; Ky, B.; Sun, L. Cardiovascular Toxicity and Risk Mitigation with Lung Cancer Treatment. Curr. Oncol. Rep. 2023, 25, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Gould, M.K.; Munoz-Plaza, C.E.; Hahn, E.E.; Lee, J.S.; Parry, C.; Shen, E. Comorbidity Profiles and Their Effect on Treatment Selection and Survival among Patients with Lung Cancer. Ann. Am. Thorac. Soc. 2017, 14, 1571–1580. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, D.E.; Boyne, D.J.; Ford-Sahibzada, C.; Inskip, J.A.; Smith, C.J.; Sripada, K.; Brenner, D.R.; Cheung, W.Y. Real-World Treatment Patterns, Clinical Outcomes, and Healthcare Resource Utilization in Early-Stage Non-Small-Cell Lung Cancer. Curr. Oncol. 2024, 31, 447–461. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hernandez, D.; Cheng, C.Y.; Hernandez-Villafuerte, K.; Schlander, M. Survival and comorbidities in lung cancer patients: Evidence from administrative claims data in Germany. Oncol. Res. 2023, 30, 173. [Google Scholar] [CrossRef]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; Rimner, A.; et al. Five-Year Survival Outcomes from the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311, Erratum in J. Clin. Oncol. 2022, 40, 1965. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leighl, N.B.; Hellmann, M.D.; Hui, R.; Carcereny, E.; Felip, E.; Ahn, M.-J.; Eder, J.P.; Balmanoukian, A.S.; Aggarwal, C.; Horn, L.; et al. Pembrolizumab in patients with advanced non-small-cell lung cancer (KEYNOTE-001): 3-year results from an open-label, phase 1 study. Lancet Respir. Med. 2019, 7, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Walls, G.M.; Bergom, C.; Mitchell, J.D.; Rentschler, S.L.; Hugo, G.D.; Samson, P.P.; Robinson, C.G. Cardiotoxicity following thoracic radiotherapy for lung cancer. Br. J. Cancer 2025, 132, 311–325, Erratum in Br. J. Cancer 2025, 132, 401–407. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boulet, J.; Peña, J.; Hulten, E.A.; Neilan, T.G.; Dragomir, A.; Freeman, C.; Lambert, C.; Hijal, T.; Nadeau, L.; Brophy, J.M.; et al. Statin Use and Risk of Vascular Events Among Cancer Patients After Radiotherapy to the Thorax, Head, and Neck. J. Am. Heart Assoc. 2019, 8, e005996. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Atkins, K.M.; Bitterman, D.S.; Chaunzwa, T.L.; Williams, C.L.; Rahman, R.; Kozono, D.E.; Baldini, E.H.; Aerts, H.J.; Tamarappoo, B.K.; Hoffmann, U.; et al. Statin Use, Heart Radiation Dose, and Survival in Locally Advanced Lung Cancer. Pract. Radiat. Oncol. 2021, 11, e459–e467. [Google Scholar] [CrossRef] [PubMed]
- Gietema, J.A.; Meinardi, M.T.; Messerschmidt, J.; Gelevert, T.; Alt, F.; Uges, D.R.; Sleijfer, D.T. Circulating plasma platinum more than 10 years after cisplatin treatment for testicular cancer. Lancet 2000, 355, 1075–1076. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.H.Y.; Fitzpatrick, R.W.; Layton, D.; Webley, S.; Salek, S. Cancer Therapy-Induced Cardiotoxicity: Results of the Analysis of the UK DEFINE Database. Cancers 2025, 17, 311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Demkow, U.; Stelmaszczyk-Emmel, A. Cardiotoxicity of cisplatin-based chemotherapy in advanced non-small cell lung cancer patients. Respir. Physiol. Neurobiol. 2013, 187, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Largeau, B.; Cracowski, J.L.; Lengellé, C.; Sautenet, B.; Jonville-Béra, A.P. Drug-induced peripheral oedema: An aetiology-based review. Br. J. Clin. Pharmacol. 2021, 87, 3043–3055. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, J.; Moslehi, J.J.; Bersell, K.R.; Funck-Brentano, C.; Roden, D.M.; Salem, J.E. Anticancer drug-induced cardiac rhythm disorders: Current knowledge and basic underlying mechanisms. Pharmacol. Ther. 2018, 189, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; He, Z.; Li, M.; Weng, L.; Lin, J. Efficacy and safety of metronomic oral vinorelbine and its combination therapy as second- and later-line regimens for advanced non-small-cell lung cancer: A retrospective analysis. Clin. Transl. Oncol. 2024, 26, 3202–3210. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Cheng, F.; Wang, L.; Zou, F.; Pan, R.; Tian, Y.; Zhang, X.; She, J.; Zhang, Y.; Yang, X. A pharmacovigilance study of etoposide in the FDA adverse event reporting system (FAERS) database, what does the real world say? Front. Pharmacol. 2023, 14, 1259908. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, K.; Eblan, M.J.; Deal, A.M.; Lipner, M.; Zagar, T.M.; Wang, Y.; Mavroidis, P.; Lee, C.B.; Jensen, B.C.; Rosenman, J.G.; et al. Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: Pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J. Clin. Oncol. 2017, 35, 1387–1394. [Google Scholar] [CrossRef]
- Dess, R.T.; Sun, Y.; Matuszak, M.M.; Sun, G.; Soni, P.D.; Bazzi, L.; Murthy, V.L.; Hearn, J.W.D.; Kong, F.-M.; Kalemkerian, G.P.; et al. Cardiac events after radiation therapy: Combined analysis of prospective multicenter trials for locally advanced non-small-cell lung cancer. J. Clin. Oncol. 2017, 35, 1395–1402. [Google Scholar] [CrossRef]
- García-Pardo, M.; Chang, A.; Schmid, S.; Dong, M.; Brown, M.; Christiani, D.; Tindel, H.A.; Brennan, P.; Chen, C.; Zhang, J.; et al. Respiratory and Cardiometabolic Comorbidities and Stages I to III NSCLC Survival: A Pooled Analysis from the International Lung Cancer Consortium. J. Thorac. Oncol. 2023, 18, 313–323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tohidinezhad, F.; Pennetta, F.; van Loon, J.; Dekker, A.; de Ruysscher, D.; Traverso, A. Prediction models for treatment-induced cardiac toxicity in patients with non-small-cell lung cancer: A systematic review and meta-analysis. Clin. Transl. Radiat. Oncol. 2022, 33, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gao, W.; Ning, Y.; Zou, X.; Zhang, W.; Zeng, L.; Liu, J. Cardiovascular Toxicity with PD-1/PD-L1 Inhibitors in Cancer Patients: A Systematic Review and Meta-Analysis. Front. Immunol. 2022, 13, 908173. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bishnoi, R.; Shah, C.; Blaes, A.; Bian, J.; Hong, Y.R. Cardiovascular toxicity in patients treated with immunotherapy for metastatic non-small cell lung cancer: A SEER-medicare study: CVD outcomes with the use of ICI in mNSCLC. Lung Cancer 2020, 150, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Sabaté-Ortega, J.; Teixidor-Vilà, E.; Sais, È.; Hernandez-Martínez, A.; Montañés-Ferrer, C.; Coma, N.; Polonio-Alcalá, E.; Pineda, V.; Bosch-Barrera, J. Cardiovascular toxicity induced by immunotherapy in non-small cell lung cancer: A systematic review and meta-analysis of observational studies. Front. Oncol. 2025, 15, 1528950. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, F.; Zheng, L.; Xu, X.; Jin, J.; Li, X.; Zhou, L. The impact of chronic obstructive pulmonary disease on the risk of immune-related pneumonitis in lung cancer patients undergoing immunotherapy: A systematic review and meta-analysis. BMC Pulm. Med. 2024, 24, 393. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Nusair, J.; Obeidat, O.; Masoudi, M.D.; Wright, T.; Al-Momani, Z.; Gebremedhen, A.I.; Alnabahneb, N.; Pacioles, T.; Jamil, M.O. Evaluating the impact of COPD exacerbations on survival outcomes in non-small cell lung cancer patients receiving immunotherapy: A retrospective cohort analysis. J. Clin. Oncol. 2025, 43 (Suppl. S16), e20613. [Google Scholar] [CrossRef]
- Nguyen, N.N.; Nguyen, T.H.H.; Hoang, K.D.; Vo, T.K.; Minh Pham, Q.H.; Chen, Y.C. The prognostic significance of diabetes in non-small cell lung cancer patients treated with immune checkpoint inhibitors: A meta-analysis. Diabetes Res. Clin. Pract. 2024, 218, 111930. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Lee, J.; Hong, Y.S.; Kim, K. Increased risk of cardiovascular disease associated with diabetes among adult cancer survivors: A population-based matched cohort study. Eur. J. Prev. Cardiol. 2023, 30, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, H.; Yamada, T.; Oka, Y. Adiposity and cardiovascular disorders: Disturbance of the regulatory system consisting of humoral and neuronal signals. Circ. Res. 2007, 101, 27–39, Erratum in Circ. Res. 2007, 101, e79. [Google Scholar] [CrossRef] [PubMed]
- Larabee, C.M.; Neely, O.C.; Domingos, A.I. Obesity: A neuroimmunometabolic perspective. Nat. Rev. Endocrinol. 2020, 16, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Rahal, Z.; El Darzi, R.; Moghaddam, S.J.; Cascone, T.; Kadara, H. Tumour and microenvironment crosstalk in NSCLC progression and response to therapy. Nat. Rev. Clin. Oncol. 2025, 22, 463–482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tenuta, M.; Gelibter, A.; Pandozzi, C.; Sirgiovanni, G.; Campolo, F.; Venneri, M.A.; Caponnetto, S.; Cortesi, E.; Marchetti, P.; Isidori, A.M.; et al. Impact of Sarcopenia and Inflammation on Patients with Advanced Non-Small Cell Lung Cancer (NCSCL) Treated with Immune Checkpoint Inhibitors (ICIs): A Prospective Study. Cancers 2021, 13, 6355. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baskaran, G.; Heo, R.H.; Wang, M.K.; Meyre, P.B.; Park, L.; Blum, S.; Devereaux, P.J.; Conen, D. Associations of inflammatory biomarkers with morbidity and mortality after noncardiac surgery: A systematic review and meta-analysis. J. Clin. Anesth. 2024, 97, 111540. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Yang, L.; Liu, D.; Li, W. Association of the neutrophil to lymphocyte ratio and clinical outcomes in patients with lung cancer receiving immunotherapy: A meta-analysis. BMJ Open 2020, 10, e035031. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, B.; Wang, Y.H.; Liu, Y.M.; Ma, L.X. Prognostic significance of the neutrophil to lymphocyte ratio in patients with non-small cell lung cancer: A systemic review and meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 3098. [Google Scholar]
- Liu, K.; Yang, L.; Liu, Y.; Zhang, Y.; Zhu, J.; Zhang, H.; He, Z. Systemic Immune-Inflammation Index (SII) and Neutrophil-to-Lymphocyte Ratio (NLR): A Strong Predictor of Disease Severity in Large-Artery Atherosclerosis (LAA) Stroke Patients. J. Inflamm. Res. 2025, 18, 195–202. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Afari, M.E.; Bhat, T. Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: An update. Expert. Rev. Cardiovasc. Ther. 2016, 14, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Liu, F.H.; Wang, Y.L.; Liu, J.X.; Wu, L.; Qin, Y.; Zheng, W.R.; Xing, W.Y.; Xu, J.; Chen, X.; et al. Associations between peripheral whole blood cell counts derived indexes and cancer prognosis: An umbrella review of meta-analyses of cohort studies. Crit. Rev. Oncol. Hematol. 2024, 204, 104525. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Zhang, X.; Zhang, Q.; Ruan, G.T.; Liu, T.; Xie, H.L.; Ge, Y.Z.; Song, M.M.; Deng, L.; Shi, H.P. The value of CRP-albumin-lymphocyte index (CALLY index) as a prognostic biomarker in patients with non-small cell lung cancer. Support. Care Cancer 2023, 31, 533. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Lin, Y.D.; Yao, Y.Z.; Qi, X.J.; Qian, K.; Lin, L.Z. Negative association of C-reactive protein-albumin-lymphocyte index (CALLY index) with all-cause and cause-specific mortality in patients with cancer: Results from NHANES 1999-2018. BMC Cancer 2024, 24, 1499. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vernooij, L.M.; van Klei, W.A.; Moons, K.G.; Takada, T.; van Waes, J.; Damen, J.A. The comparative and added prognostic value of biomarkers to the Revised Cardiac Risk Index for preoperative prediction of major adverse cardiac events and all-cause mortality in patients who undergo noncardiac surgery. Cochrane Database Syst. Rev. 2021, 12, CD013139. [Google Scholar] [CrossRef]
- Lamperti, M.; Romero, C.S.; Guarracino, F.; Cammarota, G.; Vetrugno, L.; Tufegdzic, B.; Lozsan, F.; Macias Frias, J.J.; Duma, A.; Bock, M.; et al. Preoperative assessment of adults undergoing elective noncardiac surgery: Updated guidelines from the European Society of Anaesthesiology and Intensive Care. Eur. J. Anaesthesiol. 2025, 42, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.; Fleischmann, K.E.; Smilowitz, N.R.; de Las Fuentes, L.; Mukherjee, D.; Aggarwal, N.R.; Ahmad, F.S.; Allen, R.B.; Altin, S.E.; Auerbach, A.; et al. AHA/ACC/ACS/ASNC/HRS/SCA/SCCT/SCMR/SVM Guideline for Perioperative Cardiovascular Management for Noncardiac Surgery: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 150, e351–e442, Erratum in Circulation 2024, 150, e466. [Google Scholar] [CrossRef] [PubMed]
- Parashar, Y.; Awwad, A.; Bagchi, S.; Claggett, B.; Siddiqui, S.A.; Ogheneochuko, A.W.; Ballantyne, C.M.; deFilippi, C. A Meta-Analysis and Systematic Review of Cardiac Troponin I vs T in Community Dwelling Adults: Is Specificity at Risk? Clin. Chem. 2025, hvaf023. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Ibáñez, F.O.; Johnson, T.; Mascalchi, M.; Katzke, V.; Delorme, S.; Kaaks, R. Cardiac troponin I as predictor for cardiac and other mortality in the German randomized lung cancer screening trial (LUSI). Sci. Rep. 2024, 14, 7197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shahraki, N.; Samadi, S.; Arasteh, O.; Dashtbayaz, R.J.; Zarei, B.; Mohammadpour, A.H.; Jomehzadeh, V. Cardiac troponins and coronary artery calcium score: A systematic review. BMC Cardiovasc. Disord. 2024, 24, 96. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shemesh, J.; Henschke, C.I.; Farooqi, A.; Yip, R.; Yankelevitz, D.F.; Shaham, D.; Miettinen, O.S. Frequency of coronary artery calcification on low-dose computed tomography screening for lung cancer. Clin. Imaging 2006, 30, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Dzaye, O.; Berning, P.; Dardari, Z.A.; Mortensen, M.B.; Marshall, C.H.; Nasir, K.; Budoff, M.J.; Blumenthal, R.S.; Whelton, S.P.; Blaha, M.J. Coronary artery calcium is associated with increased risk for lung and colorectal cancer in men and women: The Multi-Ethnic Study of Atherosclerosis (MESA). Eur. Heart J. Cardiovasc. Imaging 2022, 23, 708–716. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gendarme, S.; Maitre, B.; Hanash, S.; Pairon, J.C.; Canoui-Poitrine, F.; Chouaïd, C. Beyond lung cancer screening, an opportunity for early detection of chronic obstructive pulmonary disease and cardiovascular diseases. JNCI Cancer Spectr. 2024, 8, pkae082. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mascalchi, M.; Puliti, D.; Romei, C.; Picozzi, G.; De Liperi, A.; Diciotti, S.; Bartolucci, M.; Grazzini, M.; Vannucchi, L.; Falaschi, F.; et al. Moderate-severe coronary calcification predicts long-term cardiovascular death in CT lung cancer screening: The ITALUNG trial. Eur. J. Radiol. 2021, 145, 110040. [Google Scholar] [CrossRef] [PubMed]
- Koutroumpakis, E.; Xu, T.; Lopez-Mattei, J.; Pan, T.; Lu, Y.; Irizarry-Caro, J.A.; Mohan, R.; Zhang, X.; Meng, Q.H.; Lin, R.; et al. Coronary artery calcium score on standard of care oncologic CT scans for the prediction of adverse cardiovascular events in patients with non-small cell lung cancer treated with concurrent chemoradiotherapy. Front. Cardiovasc. Med. 2022, 9, 1071701. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Osawa, K.; Bessho, A.; Fuke, S.; Moriyama, S.; Mizobuchi, A.; Daido, S.; Tanaka, M.; Yumoto, A.; Saito, H.; Ito, H. Coronary artery calcification scoring system based on the coronary artery calcium data and reporting system (CAC-DRS) predicts major adverse cardiovascular events or all-cause death in patients with potentially curable lung cancer without a history of cardiovascular disease. Heart Vessel. 2020, 35, 1483–1493. [Google Scholar] [CrossRef] [PubMed]
- Zahergivar, A.; Golagha, M.; Stoddard, G.; Anderson, P.S.; Woods, L.; Newman, A.; Carter, M.R.; Wang, L.; Ibrahim, M.; Chamberlin, J.; et al. Prognostic value of coronary artery calcium scoring in patients with non-small cell lung cancer using initial staging computed tomography. BMC Med. Imaging 2024, 24, 350. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hech, H.S.; Cronin, P.; Blaha, M.J.; Budoff, M.J.; Kazerooni, E.A.; Narula, J.; Yankelevitz, D.; Abbara, S. 2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: A report of the Society of Cardiovascular Computed Tomography and Society of Thoracic Radiology. J. Thorac. Imaging 2017, 32, W54–W66. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.J.; Wienke, A.; Surov, A. CT-Defined Coronary Artery Calcification as a Prognostic Marker for Overall Survival in Lung Cancer: A Systematic Review and Meta-analysis. Acad. Radiol. 2025, 32, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Han, S.; Zhang, P.; Mi, L.; Wang, Y.; Nie, J.; Dai, L.; Hu, W.; Zhang, J.; Chen, X.; et al. Immune checkpoint inhibitor-related myocarditis in patients with lung cancer. BMC Cancer 2025, 25, 685. [Google Scholar] [CrossRef]
- Faubry, C.; Faure, M.; Toublanc, A.C.; Veillon, R.; Lemaître, A.I.; Vergnenègre, C.; Cochet, H.; Khan, S.; Raherison, C.; Dos Santos, P.; et al. Prospective Study to Detect Immune Checkpoint Inhibitors Associated with Myocarditis Among Patients Treated for Lung Cancer. Front. Cardiovasc. Med. 2022, 9, 878211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takada, K.; Takamori, S.; Brunetti, L.; Crucitti, P.; Cortellini, A. Impact of neoadjuvant immune checkpoint inhibitors on surgery and perioperative complications in patients with non–small-cell lung cancer: A systematic review. Clin. Lung Cancer 2023, 24, 581–590. [Google Scholar] [CrossRef]
- Udumyan, R.; Montgomery, S.; Fang, F.; Valdimarsdottir, U.; Hardardottir, H.; Ekbom, A.; Smedby, K.E.; Fall, K. Beta-Blocker Use and Lung Cancer Mortality in a Nationwide Cohort Study of Patients with Primary Non-Small Cell Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2020, 29, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Yang, W.; Zuo, Y. Beta-blocker and survival in patients with lung cancer: A meta-analysis. PLoS ONE 2021, 16, e0245773. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oh, M.S.; Guzner, A.; Wainwright, D.A.; Mohindra, N.A.; Chae, Y.K.; Behdad, A.; Villaflor, V.M. The Impact of Beta Blockers on Survival Outcomes in Patients with Non-small-cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Clin. Lung Cancer 2021, 22, e57–e62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, X.; Liu, P.; Li, D.; Hu, R.; Tao, M.; Zhu, S.; Wu, W.; Yang, M.; Qu, X. Novel evidence for the prognostic impact of β-blockers in solid cancer patients receiving immune checkpoint inhibitors. Int. Immunopharmacol. 2022, 113 Pt A, 109383. [Google Scholar] [CrossRef] [PubMed]
- Yazawa, T.; Kaira, K.; Shimizu, K.; Shimizu, A.; Mori, K.; Nagashima, T.; Ohtaki, Y.; Oyama, T.; Mogi, A.; Kuwano, H. Prognostic significance of β2-adrenergic receptor expression in non-small cell lung cancer. Am. J. Transl. Res. 2016, 8, 5059–5070. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dong, Z.K.; Wang, Y.F.; Li, W.P.; Jin, W.L. Neurobiology of cancer: Adrenergic signaling and drug repurposing. Pharmacol. Ther. 2024, 264, 108750. [Google Scholar] [CrossRef] [PubMed]
- Leshem, Y.; Etan, T.; Dolev, Y.; Nikolaevski-Berlin, A.; Miodovnik, M.; Shamai, S.; Merimsky, O.; Wolf, I.; Havakuk, O.; Tzuberi, M.; et al. The prognostic value of beta-1 blockers in patients with non-small-cell lung carcinoma treated with pembrolizumab. Int. J. Cardiol. 2024, 397, 131642. [Google Scholar] [CrossRef] [PubMed]
- Bhalraam, U.; Veerni, R.B.; Paddock, S.; Meng, J.; Piepoli, M.; López-Fernández, T.; Tsampasian, V.; Vassiliou, V.S. Impact of sodium-glucose cotransporter-2 inhibitors on heart failure outcomes in cancer patients and survivors: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2025, zwaf026. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Hendryx, M.; Dong, Y. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and non-small cell lung cancer survival. Br. J. Cancer 2023, 128, 1541–1547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perelman, M.G.; Brzezinski, R.Y.; Waissengrin, B.; Leshem, Y.; Bainhoren, O.; Rubinstein, T.A.; Perelman, M.; Rozenbaum, Z.; Havakuk, O.; Topilsky, Y.; et al. Sodium-glucose co-transporter-2 inhibitors in patients treated with immune checkpoint inhibitors. Cardiooncology 2024, 10, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Wang, H.; Tian, J.; Sui, L.; Chen, X. Concomitant Statins and the Survival of Patients with Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors: A Meta-Analysis. Int. J. Clin. Pract. 2022, 2022, 3429462. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marrone, M.T.; Reuss, J.E.; Crawford, A.; Neelon, B.; Liu, J.O.; Brahmer, J.R.; Platz, E.A. Statin Use with Immune Checkpoint Inhibitors and Survival in Non-small Cell Lung Cancer. Clin. Lung Cancer 2025, 26, 201–209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cantini, L.; Pecci, F.; Hurkmans, D.P.; Belderbos, R.A.; Lanese, A.; Copparoni, C.; Aerts, S.; Cornelissen, R.; Dumoulin, D.W.; Fiordoliva, I.; et al. High-intensity statins are associated with improved clinical activity of PD-1 inhibitors in malignant pleural mesothelioma and advanced non-small cell lung cancer patients. Eur. J. Cancer 2021, 144, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Lin, Y.; Ye, X.; Shen, J. Concomitant Statin Use and Survival in Patients with Cancer on Immune Checkpoint Inhibitors: A Meta-Analysis. JCO Oncol. Pract. 2025, 21, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, Y.; Dian, Y.; Zeng, F.; Deng, G.; Lei, S. Association of glucagon-like peptide-1 receptor agonists with risk of cancers-evidence from a drug target Mendelian randomization and clinical trials. Int. J. Surg. 2024, 110, 4688–4694. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Song, J.; Cali Daylan, A.E.; Chi, K.Y.; Prem Anand, D.; Chang, Y.; Chiang, C.H.; Cheng, H. Association Between GLP-1 Receptor Agonists and Incidence of Lung Cancer in Treatment-Naïve Type 2 Diabetes. J. Gen. Intern. Med. 2025, 40, 973–976. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, J.; Kim, C.H. Differential Risk of Cancer Associated with Glucagon-like Peptide-1 Receptor Agonists: Analysis of Real-world Databases. Endocr. Res. 2022, 47, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Sazgary, L.; Puelacher, C.; Lurati Buse, G.; Glarner, N.; Lampart, A.; Bolliger, D.; Steiner, L.; Gürke, L.; Wolff, T.; Mujagic, E.; et al. BASEL-PMI Investigators. Incidence of major adverse cardiac events following non-cardiac surgery. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 550–558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smilowitz, N.R.; Gupta, N.; Ramakrishna, H.; Guo, Y.; Berger, J.S.; Bangalore, S. Perioperative Major Adverse Cardiovascular and Cerebrovascular Events Associated with Noncardiac Surgery. JAMA Cardiol. 2017, 2, 181–187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strickland, S.S.; Quintela, E.M.; Wilson, M.J.; Lee, M.J. Long-term major adverse cardiovascular events following myocardial injury after non-cardiac surgery: Meta-analysis. BJS Open 2023, 7, zrad021. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smilowitz, N.R.; Gupta, N.; Guo, Y.; Beckman, J.A.; Bangalore, S.; Berger, J.S. Trends in cardiovascular risk factor and disease prevalence in patients undergoing non-cardiac surgery. Heart 2018, 104, 1180–1186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schneider, L.; Farrokhyar, F.; Schieman, C.; Shargall, Y.; D’Souza, J.; Camposilvan, I.; Hanna, W.C.; Finley, C.J. Pneumonectomy: The burden of death after discharge and predictors of surgical mortality. Ann. Thorac. Surg. 2014, 98, 1976–1981; discussion 1981–1982. [Google Scholar] [CrossRef] [PubMed]
- Benker, M.; Citak, N.; Neuer, T.; Opitz, I.; Inci, I. Impact of preoperative comorbidities on postoperative complication rate and outcome in surgically resected non-small cell lung cancer patients. Gen. Thorac. Cardiovasc. Surg. 2022, 70, 248–256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brunelli, A.; Rocco, G.; Szanto, Z.; Thomas, P.; Falcoz, P.E. Morbidity and mortality of lobectomy or pneumonectomy after neoadjuvant treatment: An analysis from the ESTS database. Eur. J. Cardiothorac. Surg. 2020, 57, 740–746. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ichinose, J.; Yamamoto, H.; Aokage, K.; Kondo, H.; Sato, Y.; Suzuki, K.; Chida, M. Real-world perioperative outcomes of segmentectomy versus lobectomy for early-stage lung cancer: A propensity score-matched analysis. Eur. J. Cardiothorac. Surg. 2022, 63, ezac529. [Google Scholar] [CrossRef] [PubMed]
- Shelley, B.; Glass, A.; Keast, T.; McErlane, J.; Hughes, C.; Lafferty, B.; Marczin, N.; McCall, P. Perioperative cardiovascular pathophysiology in patients undergoing lung resection surgery: A narrative review. Br. J. Anaesth. 2023, 130, e66–e79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, S.; Chahil, V.; Battisha, A.; Haq, S.; Kalra, D.K. Postoperative Atrial Fibrillation: A Review. Biomedicines 2024, 12, 1968. [Google Scholar] [CrossRef]
- Xin, Y.; Hida, Y.; Kaga, K.; Iimura, Y.; Shiina, N.; Ohtaka, K.; Muto, J.; Kubota, S.; Matsui, Y. Left lobectomy might be a risk factor for atrial fibrillation following pulmonary lobectomy. Eur. J. Cardiothorac. Surg. 2014, 45, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Kimura, D.; Yamamoto, H.; Endo, S.; Fukuchi, E.; Miyata, H.; Fukuda, I.; Ogino, H.; Sawa, Y.; Chida, M.; Minakawa, M. Postoperative cerebral infarction and arrhythmia after pulmonary lobectomy in Japan: A retrospective analysis of 77,060 cases in a national clinical database. Surg. Today 2023, 53, 1388–1395. [Google Scholar] [CrossRef] [PubMed]
- Tong, B.C.; Gu, L.; Wang, X.; Wigle, D.A.; Phillips, J.D.; Harpole, D.H.; Klapper, J.A.; Sporn, T.; Ready, N.E.; D’Amico, T.A. Perioperative outcomes of pulmonary resection after neoadjuvant pembrolizumab in patients with non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2022, 163, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, N.; Okawara, M.; Mori, M.; Fujino, Y.; Matsuda, S.; Fushimi, K.; Tanaka, F. Postoperative cerebral infarction risk is related to lobectomy site in lung cancer: A retrospective cohort study of nationwide data in Japan. BMJ Open Respir. Res. 2022, 9, e001327. [Google Scholar] [CrossRef]
- Frendl, G.; Sodickson, A.C.; Chung, M.K.; Waldo, A.L.; Gersh, B.J.; Tisdale, J.E.; Calkins, H.; Aranki, S.; Kaneko, T.; Cassivi, S.; et al. American Association for Thoracic Surgery 2014 AATS guidelines for the prevention and management of perioperative atrial fibrillation and flutter for thoracic surgical procedures. J. Thorac. Cardiovasc. Surg. 2014, 148, e153–e193. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gaudino, M.; Di Franco, A.; Rong, L.Q.; Piccini, J.; Mack, M. Postoperative atrial fibrillation: From mechanisms to treatment. Eur. Heart J. 2023, 44, 1020–1039. [Google Scholar] [CrossRef]
- Proietti, M.; Romiti, G.F.; Raparelli, V.; Diemberger, I.; Boriani, G.; Dalla Vecchia, L.A.; Bellelli, G.; Marzetti, E.; Lip, G.Y.; Cesari, M. Frailty prevalence and impact on outcomes in patients with atrial fibrillation: A systematic review and meta-analysis of 1,187,000 patients. Ageing Res. Rev. 2022, 79, 101652. [Google Scholar] [CrossRef] [PubMed]
- Amar, D.; Zhang, H.; Tan, K.S.; Piening, D.; Rusch, V.W.; Jones, D.R. A brain natriuretic peptide-based prediction model for atrial fibrillation after thoracic surgery: Development and internal validation. J. Thorac. Cardiovasc. Surg. 2019, 157, 2493–2499.e1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Toufektzian, L.; Zisis, C.; Balaka, C.; Roussakis, A. Effectiveness of brain natriuretic peptide in predicting postoperative atrial fibrillation in patients undergoing non-cardiac thoracic surgery. Interact. Cardiovasc. Thorac. Surg. 2015, 20, 654–657. [Google Scholar] [CrossRef] [PubMed]
- Albini, A.; Malavasi, V.L.; Vitolo, M.; Imberti, J.F.; Marietta, M.; Lip, G.Y.; Boriani, G. Long-term outcomes of postoperative atrial fibrillation following non cardiac surgery: A systematic review and metanalysis. Eur. J. Intern. Med. 2021, 85, 27–33. [Google Scholar] [CrossRef]
- Higuchi, S.; Kabeya, Y.; Matsushita, K.; Arai, N.; Tachibana, K.; Tanaka, R.; Kawachi, R.; Takei, H.; Suzuki, Y.; Kogure, M.; et al. Perioperative Atrial Fibrillation in Noncardiac Surgeries for Malignancies and One-Year Recurrence. Can. J. Cardiol. 2019, 35, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Tamargo, J.; Villacastín, J.; Caballero, R.; Delpón, E. Drug-induced atrial fibrillation. A narrative review of a forgotten adverse effect. Pharmacol. Res. 2024, 200, 107077. [Google Scholar] [CrossRef] [PubMed]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2024, 83, 109–279, Erratum in J. Am. Coll. Cardiol. 2024, 83, 2714. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Gelder, L.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. ESC Scientific Document Group 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef] [PubMed]
- POISE Study Group; Devereaux, P.J.; Yang, H.; Yusuf, S.; Guyatt, G.; Leslie, K.; Villar, J.C.; Xavier, D.; Chrolavicius, S.; Greenspan, L.; et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): A randomised controlled trial. Lancet 2008, 371, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Van Mieghem, W.; Coolen, L.; Malysse, I.; Lacquet, L.M.; Deneffe, G.J.; Demedts, M.G. Amiodarone and the development of ARDS after lung surgery. Chest 1994, 105, 1642–1645. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Jiang, S.; Miao, W.; Shen, Y.; Bolotina, L.; Zhu, H.; Zou, N.; Tian, Y.; Pan, H.; Huang, J.; et al. Clinical Characteristics and Management of Checkpoint Inhibitor Pneumonitis in Non-Small-Cell Lung Cancer Patients After Neoadjuvant Immunotherapy. Clin. Lung Cancer 2025, 26, e91–e98. [Google Scholar] [CrossRef] [PubMed]
- Atterman, A.; Friberg, L.; Asplund, K.; Engdahl, J. Net benefit of oral anticoagulants in patients with atrial fibrillation and active cancer: A nationwide cohort study. Europace 2020, 22, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Huang, B.; Lam, S.H.M.; Ishiguchi, H.; Liu, Y.; Olshansky, B.; Huisman, M.V.; Chao, T.F.; Lip, G.Y.H. Long-term risks and benefits of oral anticoagulation in atrial fibrillation patients with cancer: A report from the GLORIA-AF registry. Eur. J. Clin. Investig. 2025, 55, e14347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, S.H.; Chou, I.J.; Yeh, Y.H.; Chiou, M.J.; Wen, M.S.; Kuo, C.T.; See, L.C.; Kuo, C.F. Association Between Use of Non-Vitamin K Oral Anticoagulants with and Without Concurrent Medications and Risk of Major Bleeding in Nonvalvular Atrial Fibrillation. JAMA 2017, 318, 1250–1259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wong, C.K.; Wong, Y.K.; Chan, Y.H.; Lin, M.; Hai, J.S.H.; Yiu, K.H.; Lip, G.Y.; Lau, K.K.; Tse, H.F. Concomitant Drug Interactions with Non-Vitamin K Oral Anticoagulants Are Associated with Bleeding and Mortality Risk in Patients with Nonvalvular Atrial Fibrillation. J. Am. Heart Assoc. 2025, 14, e038668. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spence, J.; LeManach, Y.; Chan, M.T.V.; Wang, C.Y.; Sigamani, A.; Xavier, D.; Pearse, R.; Alonso-Coello, P.; Garutti, I.; Srinathan, S.K.; et al. Vascular Events in Noncardiac Surgery Patients Cohort Evaluation (VISION) Study Investigators. Association between complications and death within 30 days after noncardiac surgery. CMAJ 2019, 191, E830–E837. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uchoa, R.B.; Caramelli, B. Troponin I as a mortality marker after lung resection surgery—A prospective cohort study. BMC Anesthesiol. 2020, 20, 118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mateos, J.J.; De la Fuente, E.; Valero, P.; Martínez, D.; De la Gala, F.; Bellón, J.M.; Duque, P.; Piñeiro, P.; Calvo, A.; Reyes, A.; et al. Utility of High-Sensitivity Cardiac Troponin Monitoring in Thoracic Surgery for Predicting Severe Postoperative Complications. J. Cardiothorac. Vasc. Anesth. 2025, 39, 1763–1773. [Google Scholar] [CrossRef] [PubMed]
- Beattie, W.S.; Lalu, M.; Bocock, M.; Feng, S.; Wijeysundera, D.N.; Nagele, P.; Fleisher, L.A.; Kurz, A.; Biccard, B.; Leslie, K.; et al. Systematic review and consensus definitions for the Standardized Endpoints in Perioperative Medicine (StEP) initiative: Cardiovascular outcomes. Br. J. Anaesth. 2021, 126, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint European Society of Cardiology (ESC); American College of Cardiology (ACC); American Heart Association (AHA); et al. Fourth Universal Definition of Myocardial Infarction. Circulation 2018, 138, e618–e651, Erratum in Circulation 2018, 138, e652. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, N.R.; Gupta, N.; Guo, Y.; Berger, J.S.; Bangalore, S. Perioperative acute myocardial infarction associated with non-cardiac surgery. Eur. Heart J. 2017, 38, 2409–2417. [Google Scholar] [CrossRef] [PubMed]
- Sanaiha, Y.; Khoury, H.; Kavianpour, B.; Yazdani, S.; Gowland, L.; Iyengar, A.; Juo, Y.Y.; Benharash, P. Impact of Approach and Hospital Volume on Cardiovascular Complications After Pulmonary Lobectomy. J. Surg. Res. 2019, 235, 202. [Google Scholar] [CrossRef] [PubMed]
- Ruetzler, K.; Smilowitz, N.R.; Berger, J.S.; Devereaux, P.J.; Maron, B.A.; Newby, L.K.; de Jesus Perez, V.; Sessler, D.I.; Wijeysundera, D.N. Diagnosis and Management of Patients with Myocardial Injury After Noncardiac Surgery: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e287–e305. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Crake, T.; Manisty, C.; Westwood, M. Pericardial Disease in Cancer Patients. Curr. Treat. Options Cardiovasc. Med. 2018, 20, 60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lorenzo-Esteller, L.; Ramos-Polo, R.; Pons Riverola, A.; Morillas, H.; Berdejo, J.; Pernas, S.; Pomares, H.; Asiain, L.; Garay, A.; Martínez Pérez, E.; et al. Pericardial Disease in Patients with Cancer: Clinical Insights on Diagnosis and Treatment. Cancers 2024, 16, 3466. [Google Scholar] [CrossRef]
- Altan, M.; Toki, M.I.; Gettinger, S.N.; Carvajal-Hausdorf, D.E.; Zugazagoitia, J.; Sinard, J.H.; Herbst, R.S.; Rimm, D.L. Immune Checkpoint Inhibitor-Associated Pericarditis. J. Thorac. Oncol. 2019, 14, 1102–1108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ha, D.M.; Jacob, R.A.; Bade, B.C. Survivorship Challenges and Supportive Care in Lung Cancer. Semin. Respir. Crit. Care Med. 2025. epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Florido, R.; Lee, A.K.; McEvoy, J.W.; Hoogeveen, R.C.; Koton, S.; Vitolins, M.Z.; Shenoy, C.; Russell, S.D.; Blumenthal, R.S.; Ndumele, C.E.; et al. Cancer Survivorship and Subclinical Myocardial Damage. Am. J. Epidemiol. 2019, 188, 2188–2195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yoon, D.W.; Shin, D.W.; Cho, J.H.; Yang, J.H.; Jeong, S.M.; Han, K.; Park, S.H. Increased risk of coronary heart disease and stroke in lung cancer survivors: A Korean nationwide study of 20,458 patients. Lung Cancer 2019, 136, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhu, Q.; Tang, H.; Zhang, S.C.; Huang, Y.Z.; Wang, Y.F.; Xu, Z.Y.; Yang, X.W.; Zheng, J.H.; Guo, C.Y. The risk of treatment-related toxicities with PD-1/PD-L1 inhibitors in patients with lung cancer. Int. J. Cancer 2025, 156, 608–622. [Google Scholar] [CrossRef] [PubMed]
- Wagle, N.S.; Nogueira, L.; Devasia, T.P.; Mariotto, A.B.; Yabroff, K.R.; Islami, F.; Jemal, A.; Alteri, R.; Ganz, P.A.; Siegel, R.L. Cancer treatment and survivorship statistics, 2025. CA Cancer J. Clin. 2025, 75, 308–340. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soh, C.H.; Chen, J.; Marwick, T.H. Incidence rate of coronary atherosclerosis among cancer types during survivorship: A systematic review and meta-analysis. Am. Heart J. 2025, 288, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Watson, H.; Holley, N.; Nkongho, T.N.; Patel, B. New onset of hypertension associated with immune checkpoint inhibitor therapy in cancer patients. Immunotherapy 2025, 17, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Suzuki, Y.; Ueno, K.; Okada, A.; Fujiu, K.; Matsuoka, S.; Michihata, N.; Jo, T.; Takeda, N.; Morita, H.; et al. Association of Life’s Simple 7 with incident cardiovascular disease in 53 974 patients with cancer. Eur. J. Prev. Cardiol. 2022, 29, 2324–2332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wei, Z.; Zhang, Y.; Zhang, Q.; Chen, Z.; Tse, G.; Liu, T.; Wu, S. Association of Life’s Essential 8 with incident atherosclerotic cardiovascular disease in cancer patients: The Kailuan prospective cohort study. Eur. J. Prev. Cardiol. 2023, 30, e78–e80. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wang, P.; Liu, F.; Wang, X.; Si, C.; Gong, J.; Zhou, H.; Song, F. Role of Cardiovascular Health in the Bidirectional Progression Trajectories Between Cardiovascular Disease, Type 2 Diabetes, and Cancer. J. Am. Heart Assoc. 2025, 14, e038180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caro-Codón, J.; López-Fernández, T.; Álvarez-Ortega, C.; Zamora Auñón, P.; Rodríguez, I.R.; Gómez Prieto, P.; Buño Soto, A.; Canales Albendea, M.; Albaladejo, A.; Mediavilla, G.; et al. CARDIOTOX registry investigators. Cardiovascular risk factors during cancer treatment. Prevalence and prognostic relevance: Insights from the CARDIOTOX registry. Eur. J. Prev. Cardiol. 2022, 29, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.Y.; Han, K.; Shin, D.W.; Park, S.H.; Yoon, D.W.; Shin, S.; Jeong, S.M.; Cho, J.H. Cardiovascular risk and undertreatment of dyslipidemia in lung cancer survivors: A nationwide population-based study. Curr. Probl. Cancer 2021, 45, 100615. [Google Scholar] [CrossRef] [PubMed]
- Bergerot, C.; Jacobsen, P.B.; Rosa, W.E.; Lam, W.W.T.; Dunn, J.; Fernández-González, L.; Mehnert-Theuerkauf, A.; Veeraiah, S.; Li, M. Global unmet psychosocial needs in cancer care: Health policy. EClinicalMedicine 2024, 78, 102942. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zullig, L.L.; Drake, C.; Shahsahebi, M.; Avecilla, R.A.; Whitney, C.; Mills, C.; Oeffinger, K.C. Adherence to cardiovascular disease risk factor medications among patients with cancer: A systematic review. J. Cancer Surviv. 2023, 17, 595–618. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Riba, M.B.; Donovan, K.A.; Ahmed, K.; Andersen, B.; Braun, I.; Breitbart, W.S.; Brewer, B.W.; Corbett, C.; Fann, J.; Fleishman, S.; et al. NCCN Guidelines® Insights: Distress Management, Version 2.2023. J. Natl. Compr. Cancer Netw. 2023, 21, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, S.C.; Barac, A.; Ades, P.A.; Alfano, C.M.; Franklin, B.A.; Jones, L.W.; La Gerche, A.; Ligibel, J.A.; Lopez, G.; Madan, K.; et al. Cardio-Oncology Rehabilitation to Manage Cardiovascular Outcomes in Cancer Patients and Survivors: A Scientific Statement from the American Heart Association. Circulation 2019, 139, e997–e1012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cavalheri, V.; Burtin, C.; Formico, V.R.; Nonoyama, M.L.; Jenkins, S.; Spruit, M.A.; Hill, K. Exercise training undertaken by people within 12 months of lung resection for non-small cell lung cancer. Cochrane Database Syst. Rev. 2019, 6, CD009955. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Voorn, M.J.J.; Franssen, R.F.W.; Hoogeboom, T.J.; van Kampen-van den Boogaart, V.E.M.; Bootsma, G.P.; Bongers, B.C.; Janssen-Heijnen, M.L.G. Evidence base for exercise prehabilitation suggests favourable outcomes for patients undergoing surgery for non-small cell lung cancer despite being of low therapeutic quality: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2023, 49, 879–894. [Google Scholar] [CrossRef] [PubMed]
- Cho, A.R.; Najafi, T.; Ramanakumar, A.V.; Ferri, L.; Spicer, J.; Najmeh, S.; Cools-Lartigue, J.; Sirois, C.; Soh, S.; Kim, D.J.; et al. The effect of multimodal prehabilitation on postoperative outcomes in lung cancer surgery. J. Thorac. Cardiovasc. Surg. 2025, 169, 1631–1644.e2. [Google Scholar] [CrossRef] [PubMed]
- Ligibel, J.A.; Bohlke, K.; May, A.M.; Clinton, S.K.; Demark-Wahnefried, W.; Gilchrist, S.C.; Irwin, M.L.; Late, M.; Mansfield, S.; Marshall, T.F.; et al. Exercise, Diet, and Weight Management During Cancer Treatment: ASCO Guideline. J. Clin. Oncol. 2022, 40, 2491–2507. [Google Scholar] [CrossRef] [PubMed]
- Götze, H.; Taubenheim, S.; Dietz, A.; Lordick, F.; Mehnert, A. Comorbid conditions and health-related quality of life in long-term cancer survivors-associations with demographic and medical characteristics. J. Cancer Surviv. 2018, 12, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Boen, H.M.; Cherubin, M.; Franssen, C.; Gevaert, A.B.; Witvrouwen, I.; Bosman, M.; Guns, P.J.; Heidbuchel, H.; Loeys, B.; Alaerts, M.; et al. Circulating MicroRNA as Biomarkers of Anthracycline-Induced Cardiotoxicity: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2024, 6, 183–199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, E.; Calvano, S.E.; Lowry, S.F. Inflammatory cytokines and cell response in surgery. Surgery 2000, 127, 117e26. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, K.B.; Heinrich, S.; Staehle, H.F.; Bogatyreva, L.; Buerkle, H.; Goebel, U. Perioperative cytokine profile during lung surgery predicts patients at risk for postoperative complications—A prospective, clinical study. PLoS ONE 2018, 13, e0199807. [Google Scholar] [CrossRef]
- Neff, T.A.; Braun, J.; Rana, D.; Puhan, M.; Filipovic, M.; Seeberger, M.; Stüber, F.; Neff, S.B.; Beck-Schimmer, B.; Schläpfer, M. Interleukin-6 Is an Early Plasma Marker of Severe Postoperative Complications in Thoracic Surgery: Exploratory Results from a Substudy of a Randomized Controlled Multicenter Trial. Anesth. Analg. 2022, 134, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, G.; Larocca, M.; Navazio, A.; Turazza, F.M.; Inno, A.; Canale, M.L.; Oliva, S.; Besutti, G.; Tedeschi, A.; Aschieri, D.; et al. Atherosclerosis and the Bidirectional Relationship Between Cancer and Cardiovascular Disease: From Bench to Bedside, Part 2 Management. Int. J. Mol. Sci. 2025, 26, 334. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fa’ak, F.; Buni, M.; Falohun, A.; Lu, H.; Song, J.; Johnson, D.H.; Zobniw, C.M.; Trinh, V.A.; Awiwi, M.O.; Tahon, N.H.; et al. Selective immune suppression using interleukin-6 receptor inhibitors for management of immune-related adverse events. J. Immunother. Cancer 2023, 11, e006814, Erratum in J. Immunother. Cancer 2023, 11, e006814corr1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ridker, P.M. hsCRP, High-Risk Plaque, and Pan-Coronary Atherosclerosis: Implications for Patient Care During Acute Myocardial Infarction. JACC Cardiovasc. Interv. 2025, 18, 1229–1231. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, E.; Alqahtani, F.; Alsubai, S.; Del Sole, P.A.; Elzomor, H.; Sharif, R.; McCormick, J.; Revaiah, P.C.; Andreotti, F.; Burzotta, F.; et al. Advanced Analyses of Coronary Computed Tomography Angiography to Predict Future Cardiac Events: A Meta-Analysis. JACC Cardiovasc. Imaging 2025. epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Szilveszter, B.; Vattay, B.; Boussoussou, M.; Nagy-Vecsey, M.; Rokszin, G.; Fábián, I.; Simon, J.; Merkely, B.; Maurovich-Horvat, P.; Kolossváry, M. Interaction Between Statin Use, Coronary Artery Disease Phenotypes, on Computed Tomography Angiography, and Cardiovascular Outcomes. JACC Cardiovasc. Imaging 2025, 18, 10. [Google Scholar] [CrossRef] [PubMed]
- Wykrzykowska, J.; Lehman, S.; Williams, G.; Parker, J.A.; Palmer, M.R.; Varkey, S.; Kolodny, G.; Laham, R. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J. Nucl. Med. 2009, 50, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Calabretta, R.; Beer, L.; Prosch, H.; Kifjak, D.; Zisser, L.; Binder, P.; Grünert, S.; Langsteger, W.; Li, X.; Hacker, M. Induction of Arterial Inflammation by Immune Checkpoint Inhibitor Therapy in Lung Cancer Patients as Measured by 2-[18F]FDG Positron Emission Tomography/Computed Tomography Depends on Pre-Existing Vascular Inflammation. Life 2024, 14, 146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bacmeister, L.; Hempfling, N.; Maier, A.; Weber, S.; Buellesbach, A.; Heidenreich, A.; Bojti, I.; Gissler, M.C.; Hilgendorf, I.; von Zur Muehlen, C.; et al. Longitudinal Assessment of Subclinical Arterial Inflammation in Patients Receiving Immune Checkpoint Inhibitors by Sequential [18F]FDG PET Scans. Circ. Cardiovasc. Imaging 2025, 18, e016851. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Stellar, E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 1993, 153, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Stress, adaptation, and disease. Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1998, 840, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Guha, A.; Shah, V.; Nahle, T.; Singh, S.; Kunhiraman, H.H.; Shehnaz, F.; Nain, P.; Makram, O.M.; Mahmoudi, M.; Al-Kindi, S.; et al. Artificial Intelligence Applications in Cardio-Oncology: A Comprehensive Review. Curr. Cardiol. Rep. 2025, 27, 56. [Google Scholar] [CrossRef] [PubMed]
- Ravera, F.; Gilardi, N.; Ballestrero, A.; Zoppoli, G. Applications, challenges and future directions of artificial intelligence in cardio-oncology. Eur. J. Clin. Investig. 2025, 55 (Suppl. S1), e14370. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qureshi, A.; Shah, Y.A.R.; Qureshi, S.M.; Shah, S.U.R.; Shiwlani, A.; Ahmad, A. The promising role of artificial intelligence in navigating lung cancer prognosis. Int. J. Multidiscip. Res. 2024, 6, 1–21. [Google Scholar]
- Lococo, F.; Boldrini, L.; Diepriye, C.D.; Evangelista, J.; Nero, C.; Flamini, S.; Minucci, A.; De Paolis, E.; Vita, E.; Cesario, A.; et al. Lung cancer multi-omics digital human avatars for integrating precision medicine into clinical practice: The LANTERN study. BMC Cancer 2023, 23, 540, Erratum in BMC Cancer 2023, 23, 1082. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Addison, D.; Branch, M.; Baik, A.H.; Fradley, M.G.; Okwuosa, T.; Reding, K.W.; Simpson, K.E.; Suero-Abreu, G.A.; Yang, E.H.; Yancy, C.W.; et al. Equity in Cardio-Oncology Care and Research: A Scientific Statement from the American Heart Association. Circulation 2023, 148, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Stabellini, N.; Cullen, J.; Bittencourt, M.S.; Moore, J.X.; Sutton, A.; Nain, P.; Hamerschlak, N.; Weintraub, N.L.; Dent, S.; Tsai, M.H.; et al. Allostatic Load/Chronic Stress and Cardiovascular Outcomes in Patients Diagnosed with Breast, Lung, or Colorectal Cancer. J. Am. Heart Assoc. 2024, 13, e033295. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Obeng-Gyasi, S.; Li, Y.; Carson, W.E.; Reisenger, S.; Presley, C.J.; Shields, P.G.; Carbone, D.P.; Ceppa, D.P.; Carlos, R.C.; Andersen, B.L. Association of Allostatic Load with Overall Mortality Among Patients with Metastatic Non-Small Cell Lung Cancer. JAMA Netw. Open 2022, 5, e2221626, Erratum in JAMA Netw. Open 2023, 6, e236766. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khan, H.M.; Ramsey, S.; Shankaran, V. Financial Toxicity in Cancer Care: Implications for Clinical Care and Potential Practice Solutions. J. Clin. Oncol. 2023, 41, 3051–3058. [Google Scholar] [CrossRef] [PubMed]
- Vancoppenolle, J.; Franzen, N.; Azarang, L.; Juslin, T.; Krini, M.; Lubbers, T.; Mattson, J.; Mayeur, D.; Menezes, R.; Schmitt, J.; et al. Financial toxicity and socioeconomic impact of cancer in Europe. ESMO Open 2025, 10, 105293. [Google Scholar] [CrossRef] [PubMed]
| Perioperative Trials | |||||||
| Study/Ref | Treatment | n | Surgery | R0 Resection | pCR | EFS HR | OS HR |
| Checkmate 77T [67] | Nivo vs. Pbo + PBC | 229 232 | 77.7% 76.7% | 89.3% 90.4% | 25.3% 4.7% | 0.58 (0.42–0.81) p < 0.001 | - |
| KEYNOTE-671 [51] | Pembro vs. Pbo + PBC | 397 400 | 82.1% 79.4% | 92% 84.2% | 18.1% 4% | 0.58 (0.46–0.72) p < 0.001) | 0.72 (0.56–0.93) p = 0.0052 |
| AEGEAN [50] | Durva vs. Pbo + PBC | 366 374 | 77.6% 76.6% | 94.7% 91.3% | 17.2% 4.3% | 0.68 (0.53–0.88) p = 0.004 | - |
| Neoadjuvant trials | |||||||
| Study | Treatment | n | Surgery | R0 resection | pCR | EFS HR | OS HR |
| Checkmate 816 (1st study) [49] Checkmate 816 (final analysis) [68] | Nivo vs. Pbo + PBC Nivo vs. Pbo + PBC | 179 179 179 179 | 83.2 75.4 | 83.2% 77.8% | 24% 2.2% | 0.63 (0.43–0.91) p = 0.005 | 0.57 (0.30–1.07) p = 0.008 * 0.72 (95% CI 0.523 to 0.998, p = 0.048 |
| Adjuvant trials | |||||||
| Study | Treatment | n | DFS HR (ITT) | DFS HR (PD-L1 ≥ 50%) | OS HR (ITT) | OS HR (PDL1 ≥ 50) | |
| IMPOWER-010 [63] IMPOWER-010 (DFS final analysis, 2nd OS interim analysis) [64] | PBC → Atezo vs. BSC PBC → Atezo vs. BSC | 442 § 440 § 442 § 440 § | 0.81 (0.67–0.99) p = 0.040 * 0.85 (0.71–1.01) p = 0.07 * | 0.43 (0.27–0.68) 0.48 (0.32–0.72) | 0.995 (0.78–1.28) 0.97 (0.78–1.22) | 0.43 (0.24–0.78) p = 0.005 0.47 (0.28–0.77) | |
| KEYNOTE-091 [65] | Optional PBC → Pembro vs. Pbo | 590 587 | 0.76 (0.63–0.91) p = 0.0014 | 0.82 (0.57–1.18) | 0.87 ** | - | |
| Agent | Cardiovascular Toxicity | Gaps in Knowledge |
|---|---|---|
| Chest radiation [169,170,171,172,173] | Pericardial effusion Atrial arrhythmias HF MI, CAD Conduction abnormalities Constrictive pericarditis | Timing of ICI administrations: Delayed PD-1/PD-L1 inhibitors administration after chest RT may lower early immune-related toxicities while preserving clinical benefit in selected patients. Indications: there are still limitations in elderly, multimorbid patients, and those with structural heart disease. RT-induced cardiovascular damage is still underestimated; cardiovascular toxicity of chest radiation + ICIs is not well defined. These concerns dictate an individualized surveillance and intensive risk factor control. Timing and targets of cardiovascular risk factors are not completely defined. Lipid-lowering therapies show promising effects in reducing CAD risk, but further validation is required. |
| Platinum-based therapies [174,175,176] | Hypertension Venous/arterial Thrombosis Long-term risk for CAD Atrial arrhythmias | Cardiotoxicity of platinum + immunotherapy in first-line lung cancer is understudied in real-world practice. Mechanisms of cardiovascular toxicity are not precisely defined yet. Patient risk stratification: individuals with pre-existing cardiovascular disease appear at higher risk, although sporadic events have also been reported in patients without risk factors. The optimal cardio-oncology surveillance and proactive risk factor management are yet to be defined. |
| Taxanes [59] | Atrial arrhythmias Transient sinus bradycardia Conduction disturbances (AV nodal blocks, LBBB) Increased thromboembolic risk | Current data suggest that the combination with ICI does not significantly increase cardiotoxicity compared with taxanes alone, but real-world evidence is limited. The modality of cardiac monitoring is yet to be defined in patients with preexisting cardiovascular disease. |
| Pemetrexed [177] | Peripheral edema | Pemetrexed is generally safe, but preexisting cardiovascular disease can be a liability. Modalities of cardiac monitoring have not been defined in this population. |
| Gemcitabine [178] | Venous/arterial Thrombosis CAD Atrial arrhythmias | Monitoring is recommended only in high-risk patients, but adverse cardiovascular events may occur in patients with no risk factors. Surveillance modalities are not well defined for patients treated with gemcitabine and ICIs |
| Vinorelbine [179] | HF CAD, arrhythmias | Sporadic cases of vinorelbine-induced bradycardia, supraventricular arrhythmias, or ischemic events are reported, mainly in patients with preexisting cardiovascular disease or when used in combination with other cardiotoxic drugs. Modalities of cardiac monitoring when vinorelbine is administered with ICIs have not been defined. |
| Etoposide [180,181] | HF CAD | Sporadic adverse cardiovascular events are reported mainly in patients with preexisting cardiovascular disease. Modalities of cardiac monitoring when etoposide is administered with ICIs have not been defined. |
| Arrhythmias/ Conduction Abnormalities | CAD | HF | Hypertension | Venous/Arterial Thrombosis | Peripheral Edema | Pericardial Disease |
|---|---|---|---|---|---|---|
| Chest RT PBC Taxanes | Chest RT PBC Gemcitabine Vinorelbine Etoposide | Chest RT# PBC Vinorelbine Etoposide | PBC | PBC Taxanes Gemcitabine | Pemetrexed | Chest RT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarantini, L.; Gallucci, G.; Inno, A.; Camerini, A.; Canale, M.L.; Larocca, M.; Zanelli, F.; Pagano, M.; Alberti, G.; Ciammella, P.; et al. A New Era, New Risks: The Cardio-Oncology Perspective on Immunotherapy in Non-Small Cell Lung Cancer. Cancers 2025, 17, 3443. https://doi.org/10.3390/cancers17213443
Tarantini L, Gallucci G, Inno A, Camerini A, Canale ML, Larocca M, Zanelli F, Pagano M, Alberti G, Ciammella P, et al. A New Era, New Risks: The Cardio-Oncology Perspective on Immunotherapy in Non-Small Cell Lung Cancer. Cancers. 2025; 17(21):3443. https://doi.org/10.3390/cancers17213443
Chicago/Turabian StyleTarantini, Luigi, Giuseppina Gallucci, Alessandro Inno, Andrea Camerini, Maria Laura Canale, Mario Larocca, Francesca Zanelli, Maria Pagano, Giulia Alberti, Patrizia Ciammella, and et al. 2025. "A New Era, New Risks: The Cardio-Oncology Perspective on Immunotherapy in Non-Small Cell Lung Cancer" Cancers 17, no. 21: 3443. https://doi.org/10.3390/cancers17213443
APA StyleTarantini, L., Gallucci, G., Inno, A., Camerini, A., Canale, M. L., Larocca, M., Zanelli, F., Pagano, M., Alberti, G., Ciammella, P., Maurea, N., Gori, S., Navazio, A., & Pinto, C. (2025). A New Era, New Risks: The Cardio-Oncology Perspective on Immunotherapy in Non-Small Cell Lung Cancer. Cancers, 17(21), 3443. https://doi.org/10.3390/cancers17213443

