Next Article in Journal
Upstaging of Patients Diagnosed with Favorable Intermediate-Risk Prostate Cancer—Is Active Surveillance Really a Suitable Approach for All These Patients?
Previous Article in Journal
Astragalin Attenuates Bone Destruction and the Progression of Bone Metastasis in Breast Cancer
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

A New Era, New Risks: The Cardio-Oncology Perspective on Immunotherapy in Non-Small Cell Lung Cancer

1
Cardioncology Clinic—Cardiologia Ospedaliera AUSL—IRCCS “Tecnologie Avanzate e Modelli Assistenziali in Oncologia”, 42100 Reggio Emilia, Italy
2
Independent Researcher, 85025 Melfi, Italy
3
Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar di Valpolicella, Italy
4
Medical Oncology, Versilia Hospital, Azienda USL Toscana Nord-Ovest, 55041 Lido di Camaiore, Italy
5
Cardiology, Versilia Hospital, Azienda USL Toscana Nord-Ovest, 55041 Lido di Camaiore, Italy
6
Provincial Medical Oncology, Department of Oncology and Advanced Technologies, AUSL-IRCCS in Tecnologie Avanzate e Modelli Assistenziali in Oncologia, 42100 Reggio Emilia, Italy
7
Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42100 Reggio Emilia, Italy
8
Cardiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy
*
Author to whom correspondence should be addressed.
Cancers 2025, 17(21), 3443; https://doi.org/10.3390/cancers17213443 (registering DOI)
Submission received: 26 September 2025 / Revised: 23 October 2025 / Accepted: 24 October 2025 / Published: 27 October 2025
(This article belongs to the Section Cancer Immunology and Immunotherapy)

Simple Summary

Lung cancer (LC) remains the leading cause of cancer-related mortality worldwide. Mortality has recently declined, particularly for non-small cell lung cancer (NSCLC), which accounts for 85% of cases. This improvement reflects not only antismoking policies and earlier detection, but also the pivotal role of targeted therapies and immune checkpoint inhibitors in modern LC management. However, real-world observational studies in multimorbid populations have revealed emerging cardiovascular implications of immunotherapy, including potential effects on atherosclerosis, highlighting their increasing clinical significance. These findings emphasize the importance of comprehensive baseline cardiovascular risk assessment, identification of modifiable risk factors, and proactive management, particularly in the adjuvant and neoadjuvant settings where survival is longer. Furthermore, they support the implementation of structured, long-term monitoring strategies, leveraging multiparametric approaches that integrate advanced imaging modalities with prognostic biomarkers, to optimize cardiovascular outcomes and guide personalized care in this vulnerable patient population.

Abstract

Lung cancer (LC) remains the leading cause of cancer-related mortality worldwide. In recent years, mortality rates have declined due to antismoking policies, earlier detection, and the advent of targeted therapies and immunotherapy, particularly for non-small cell lung cancer (NSCLC), which accounts for 85% of all cases. With improved survival, however, LC patients are increasingly exposed to competing causes of mortality, among which cardiovascular disease (CVD) is highly prevalent, affecting 30–50% of patients and contributing to nearly 30% of deaths. This burden reflects both shared risk factors and the cardiotoxic potential of radiotherapy, chemotherapy, and immunotherapy. Beyond acute adverse cardiovascular events during treatment, real-world data indicate that immune checkpoint inhibitors (ICIs) may also exert chronic cardiovascular effects, significantly accelerating the atherosclerotic process in multimorbid patients. These findings underscore the importance of accurate baseline assessment and aggressive management of cardiovascular risk factors in LC patients—particularly in the adjuvant and neoadjuvant settings, where longer survival is anticipated. Moreover, long-term monitoring should be implemented through a tailored, multiparametric strategy that integrates novel biomarkers and advanced artificial intelligence–assisted imaging techniques. Achieving this ambitious goal requires the close collaboration of a multidisciplinary team, with cardiologists playing a pivotal role. This review will address the complexity of LC patients, focusing on the interplay of cardio-immuno-metabolic factors, summarizing the cardiovascular impact of immunotherapy across metastatic, locally advanced, and perioperative settings, and outlining practical strategies for the management of these vulnerable patients.

1. Introduction

Lung cancer (LC) remains the leading cause of cancer-related mortality worldwide, representing a major public health challenge. In 2022, LC accounted for 2,480,675 estimated cases and 1,817,469 deaths, approximately 18% of all cancer-related fatalities globally [1].
In recent years, LC mortality rates have declined, particularly for non-small cell lung cancer (NSCLC), which constitutes 85% of all LC cases [2] As an example, the three-year relative survival rate for NSCLC has improved significantly in the United States, rising from 26% for cases diagnosed in 2004 to 43% for those diagnosed in 2018 [3]. This positive trend is largely attributed to multiple factors, including stricter anti-smoking policies [4,5]; advancements in therapeutic strategies [6,7,8,9,10], especially the introduction of targeted therapies and immunotherapy [11,12,13,14]; and a diagnostic shift towards earlier-stage detection, facilitated by the increased use of chest CT scans [15,16] and screening programs [17,18,19].
Despite these advancements, real-world data indicate that LC survivors remain at high risk for cardiovascular disease (CVD) [20,21,22]. LC and CVD share common risk factors, and their combined burden may be further exacerbated by the widespread use of radiotherapy, chemotherapy, and immunotherapy.
This review aims to explore the cardiovascular (CV) implications of current NSCLC treatment strategies in real-world settings, with a particular focus on the frontline use of immunotherapy in adjuvant and neoadjuvant settings.

2. The Paradigm Shift of LC Management: Early Detection and Chemo-Immunotherapy

A key determinant of NSCLC prognosis is the stage at diagnosis. In recent years, the increased use of chest CT imaging, the development of algorithms for managing suspicious lung nodules, and the implementation of screening programs for high-risk individuals have contributed to a growing proportion of early-stage diagnoses [15,16,17,18,19,20,23,24,25,26]. However, the true breakthrough in NSCLC management has been the paradigm shift in treatment driven by immune checkpoint inhibition [12,13,14]. Targeting pathways such as programmed cell death protein 1 (PD-1/PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) has enabled the reactivation of the patient’s immune system to combat tumors, revolutionizing LC therapy.
Immune checkpoint inhibitor (ICI) impact on the immune system has been exploited in many settings:
(a) Metastatic Setting
The phase 3 KEYNOTE-024 trial (2016) demonstrated that pembrolizumab significantly improved progression-free survival (PFS) and 6-month overall survival (OS) compared to platinum-based chemotherapy in patients with metastatic NSCLC with high PD-L1 expression (≥50%) and no EGFR/ALK alterations [27]. A 5-year follow-up confirmed the durability of this benefit [28]. The survival advantage of immunotherapy over chemotherapy has been further validated in patients included in studies who received either alternative antibodies targeting PD-1 or agents directed against its ligand, PD-L1 [29,30,31,32]. The addition of anti-PD-L1 antibodies to platinum-based chemotherapy has significantly improved OS in metastatic, non-oncogene-addicted NSCLC, regardless of PD-L1 expression [33,34], and in NSCLC without EGFR/ALK/ROS1 alterations [35]. Chemotherapy reinforces the favorable result if associated with immunotherapy as first-line treatment [36]. Additionally, various ICI-based combinations have been explored with favorable results, including the addition of an anti-CTLA-4 or anti-VEGF agent [37,38]. Based on these data, chemo-immunotherapy (CIT) has been established as the standard of care in the first-line treatment of non-oncogene addicted metastatic NSCLC for patients with good performance status, any histology, and any PD-L1 expression [39].
(b) Locally Advanced, Unresectable NSCLC Setting
In the PACIFIC trial, durvalumab as consolidation therapy after chemoradiotherapy significantly prolonged PFS in patients with locally advanced, unresectable NSCLC [40]. ICIs have also been explored in combination with radiotherapy, where a synergistic effect with favorable microenvironment remodeling has been reported, although further studies are needed to optimize RT modality, timing, and ICI therapy duration [41].
(c) Perioperative Setting
Approximately 20–30% of patients with NSCLC present with resectable disease [42]. This proportion is expected to rise with the implementation of LC screening programs [43], which, however, will primarily target a population with a high prevalence of CV comorbidities [44]. Relapse rates remain high in resectable NSCLC despite the use of platinum-based neoadjuvant or adjuvant chemotherapy, which offers only modest (~5%) survival benefit [45,46]. As a result, there is growing interest in incorporating ICIs into perioperative treatment strategies [47].
In the neoadjuvant setting, the intact primary tumor may act as a source of neoantigens, stimulating tumor-specific T cells and enhancing systemic antitumor immunity [48]. The pivotal study by Forde et al. [49] demonstrated that neoadjuvant nivolumab plus chemotherapy significantly improved pathological complete response (PCR) and event-free survival (EFS) compared to chemotherapy alone in patients with stage IB–IIIA NSCLC. These findings have been supported by other trials [50,51,52] and incorporated into clinical guidelines, which now recommend neoadjuvant CIT (nCIT) followed by surgery as the standard of care [53]. However, concerns remain regarding nCIT-related toxicities in real-world practice, which may delay or preclude surgery, affect the extent and completeness of resection, and increase the likelihood of conversion from minimally invasive surgery to thoracotomy [49,50,51,52]. Adverse events and immune-related inflammation, including dense adhesions and fibrosis, are thought to contribute to these surgical challenges. To extend the survival benefit of nCIT and reduce the percentage of missed surgery, the role of an established multidisciplinary team (MDT) is of primary importance [54,55,56,57]. The CV implications of neoadjuvant cancer therapy are also increasingly recognized in Guidelines. The 2022 European Society of Cardiology (ESC) Guidelines on perioperative CV risk assessment identify “neoadjuvant cancer therapy” as a relevant risk factor requiring enhanced monitoring [58]. Similarly, ESC Cardio-Oncology Guidelines underscore the importance of neoadjuvant treatments in perioperative CV risk stratification [59]. Notwithstanding these caveats, neoadjuvant ICI therapy appears more effective than adjuvant therapy in both preclinical and clinical studies [60,61]. A meta-analysis of five neoadjuvant trials involving 2385 patients with stage II–III NSCLC compared neoadjuvant-only versus perioperative (neoadjuvant + adjuvant) ICI therapy. Adjuvant ICI did not improve EFS but was associated with a 14% higher incidence of grade ≥ 3 treatment-related adverse events (TRAEs) compared with chemotherapy alone, and an 8% increase in all-grade TRAEs relative to neoadjuvant-only ICI [62].
In the adjuvant setting, the IMPOWER-010 study showed an improvement in DFS in patients with resected NSCLC treated with atezolizumab after adjuvant chemotherapy compared with best supportive care (BSC) [63]. The final analysis of DFS and the second OS interim analysis after a follow-up ≥5 years confirmed the beneficial impact of adjuvant CIT [64]. Subsequent trials with both pembrolizumab and durvalumab provided conflicting evidence on the role of pure adjuvant immunotherapy [65,66]. Key phase 3 trials establishing ICI therapy in the perioperative NSCLC setting are summarized in Table 1 [49,50,51,63,64,65,67,68].

3. Lung Cancer Patients and Cardio-Immuno-Metabolic Risk

Longer survival exposes patients to competing causes of mortality, among which CVD is particularly relevant. CVD is highly prevalent in LC patients, affecting 30–50% of cases [69,70,71] and contributing to increased mortality (~30%) when coexisting with LC [22,72]. CVD is the second leading cause of death in LC patients, following cancer progression [73], and its impact on treatment decisions is well documented [74]. The rising trend of CVD-related hospitalizations among LC patients and the higher incidence of LC in individuals with pre-existing CVD [75,76] highlight a strong, bidirectional relationship between the two conditions. This link is further reinforced by shared risk factors, such as smoking and airborne environmental contaminants (AECs) [77]. Beyond traditional exposures, lifestyle-related CV risk factors—such as physical inactivity, unhealthy diet, and metabolic dysfunction—are increasingly recognized as contributors to LC risk. Active smokers often engage in poor lifestyle habits that adversely affect immuno-cardio-metabolic balance [78,79]. Sedentary behavior [80] and unhealthy dietary patterns [81,82,83,84] have also been associated with increased LC risk. In the UK Biobank cohort (416,588 participants, 1782 LC cases), a diet rich in fruits, vegetables, whole grains, and fiber—but low in red and processed meats—was linked to reduced LC incidence [85]. LC was more frequent in older males with lower socioeconomic status, higher smoking and alcohol use, and poorer education.
Metabolic syndrome (MetS), characterized by insulin resistance and elevated CV risk, has been independently associated with increased LC risk [86]. This association is supported by registry data [87,88], meta-analyses [89,90], and Mendelian randomization studies that suggest a causal link [91]. Genetic predisposition appears to mediate the influence of environmental and metabolic factors on LC development [92,93]. The traditional inverse relationship between body mass index (BMI) and LC prognosis [94]—often termed the “obesity paradox”—is now better understood as a limitation of BMI itself. The “obesity paradox” likely reflects that BMI does not distinguish between lean and fat mass, nor does it account for fat distribution. Higher BMI can indeed mask sarcopenia (a “BMI paradox”); patients with preserved BMI often have better nutritional reserves and performance status, which are favorable prognostic factors. Measures of central adiposity, such as waist circumference (WC), are more accurate indicators of metabolic health and LC risk. A meta-analysis of six prospective studies (831,535 participants, 5827 LC cases) found a 10% increase in LC risk per 10 cm increase in WC [95]. Similar findings from a pooled analysis of 12 global cohort studies (1.6 million participants, 23,732 LC cases) showed the highest risk in individuals with BMI < 25 kg/m2 but elevated WC [96]. This observation underscores the importance of body composition over BMI in predicting LC risk and outcomes [97]. Visceral adiposity and metabolic disturbances, including insulin resistance, may drive LC pathogenesis [98,99,100]. Sarcopenia—defined by reduced lean mass and often accompanied by increased visceral and ectopic fat—is found in ~50% of NSCLC patients [101] and is associated with chronic inflammation and accelerated CVD progression [102]. Skeletal muscle is involved in immune modulation [103,104] and insulin sensitivity [105], whereas excess visceral and intramuscular fat promotes inflammation, impairs muscle regeneration, and disrupts metabolic homeostasis [106]. This issue is particularly relevant in the era of immunotherapy as first-line treatment for NSCLC. Baseline sarcopenia during ICI therapy is linked to poorer treatment response and shorter survival [107,108]. Conversely, overweight or obese patients (by BMI) with preserved functional status (ECOG-PS 0–1), likely reflecting adequate muscle mass, tend to show better outcomes with ICIs [109]. Immune checkpoint proteins such as PD-1 and PD-L1 are expressed on the surface of T cells and have an important role not only in suppressing T-cell-driven inflammation but also in acting as negative regulators of atherosclerosis. Their inhibition, therefore, may induce accelerated atherosclerosis by increasing effector T cell responses and downgrading the atheroprotective regulatory T function, thus disrupting the delicate balance between T cell subsets [110,111,112,113,114]. Atherosclerosis can indeed be considered a “T-cell-driven disease”, as stated by Libby [115].

4. A Tale of Two Cities: Cardiovascular Toxicity of Immune Checkpoint Inhibitor Therapy in Randomized Clinical Trials Versus Real-World Practice

The design of randomized clinical trials (RCTs)—particularly inclusion/exclusion criteria and follow-up duration—significantly impacts their applicability to real-world clinical practice [116]. In pivotal RCTs of ICIs, patients with poor performance status, autoimmune conditions, or significant comorbidities such as established CVD were generally excluded or underrepresented [117,118]. Furthermore, key CV risk factors were often underreported [119]. Following reports of rare but fatal cases of fulminant myocarditis associated with ICIs [120], concerns have emerged regarding their CV safety, especially immune-related adverse events (irAEs). However, analyses of RCTs suggest that myocarditis and other immune-mediated CV events remain rare, with no significant increase in incidence [121,122,123,124,125]. Regarding CV safety, a systematic analysis of 63 RCTs including 32,518 patients (48 trials with control arms, 29,592 patients) identified an increased risk of six ICI-associated CV adverse events (CVAEs): myocarditis, pericardial disease, heart failure (HF), dyslipidemia, myocardial infarction (MI), and cerebral ischemia with incidence rates from 3.2 to 19.3 per 1000 patients, in a median follow-up of 3.2 to 32.8 months [126]. Pharmacovigilance data have further confirmed these associations. The 2018 WHO VigiBase study (31,321 patients) reported significantly elevated risk of ICI-induced myocarditis, pericardial disease, and vasculitis [127]. CVAEs occurred predominantly in men, often within one month of ICI initiation, and had fatal outcomes in over 80% of cases. Notably, myocarditis associated with ICI combination therapy had a higher mortality (65.6%) and was frequently accompanied by myositis and myasthenia gravis compared to myocarditis observed in ICI monotherapy (44.4%). Pericardial disease was more common in LC patients [127]. The rapid uptake of ICIs into clinical practice, driven by RCT success and reimbursement policies [128,129,130,131], has prompted increased awareness of irAEs [59,132,133]. Over time, CVAE profiles have evolved. For example, fatality rates for myocarditis have declined from 46% in 2018 [134] to 27.6% post-2020 [135]. Furthermore, real-world studies have broadened the spectrum of observed CVAEs. In a retrospective analysis by Jain et al. [136], ICI-treated patients with advanced cancers exhibited a 4.6% incidence of stroke, a 3.5% incidence of HF, a 2.1% incidence of atrial fibrillation (AF), a 1.5% incidence of conduction disorders, a 0.9% incidence of MI, a 0.05% incidence of myocarditis, a 0.05% incidence of vasculitis (0.05%), and a 0.2% incidence of pericarditis. A pharmacovigilance study by Cheng et al. [137], using the FDA Adverse Event Reporting System (FAERS) and The Cancer Genome Atlas (TCGA), identified older age, male sex, anti-PD-L1 agents, prior adverse events, and concurrent use of proton pump inhibitors, NSAIDs, or antibiotics as risk factors for severe CVAEs during anti-PD-1/PD-L1 therapy. Genetic and immune markers such as PD-L1 mRNA expression and LDL receptor-related protein 3 (LRP3) were also implicated. Severe CVAEs were fatal in over 30% of reported cases. While pharmacovigilance studies are valuable for detecting rare and late-onset ICI-associated CVAEs, but are limited by underreporting and selection bias. Clinical registries offer a more reliable real-world perspective. In a Danish national registry study (2011–2017), D’Souza et al. [138] evaluated the association between ICI therapy and CV events in LC and melanoma patients. Among 25,573 LC patients, 743 received PD-1 inhibitors (PD-1i), with a 1-year absolute risk of CV events of 9.7% (95% CI: 6.8–12.5). The hazard ratio (HR) of CV events was 2.14 (95% CI 1.50–3.05) within six months of ICI initiation and remained elevated (HR 2.26, 95% CI 1.27–4.02) beyond six months. Comparable findings emerged from a systematic review of 26 cohort studies (109,883 patients), which reported an 8.2% incidence of major adverse cardiac events (MACEs). ICI therapy, age, male sex, and prior radiation exposure were significantly associated with increased MACE risk [139]. A European multicenter study involving 1571 cancer patients (46.5% with LC) reported a 12.5% incidence of CVAEs—including HF, AF, MI, myocarditis, pericarditis, vasculitis, and Takotsubo cardiomyopathy—over a median follow-up of 8 months. CVAEs were more frequent and showed a later onset time compared to those reported in RCTs, highlighting the need for extended monitoring in clinical practice [140]. A recent meta-analysis of 15 observational studies (2019–2023) found that ICI therapy—either as monotherapy or in combination with chemotherapy—was associated with a significantly increased risk of cardiotoxicity compared to chemotherapy alone. The risk was especially pronounced in patients with pre-existing heart disease (OR 2.01; 95% CI: 1.64–2.46) and those with LC (OR 1.46; 95% CI: 1.26–1.69), with higher susceptibility observed in males, smokers, and older adults [141]. Real-world data have also elucidated a link between ICIs and chronic inflammatory processes such as atherosclerosis. ICIs can exacerbate pre-existing inflammation, and immune checkpoints are known to be negative regulators of atherosclerotic cardiovascular disease (ASCVD) in preclinical models [142,143,144]. Chronic inflammation, fueled by maladaptive immune responses and metabolic dysfunction, plays a central role in atherogenesis [145]. Clinically, ICI-induced “accelerated atherosclerosis” is increasingly documented [112,146,147,148,149]. Real-world evidence has also documented ICI efficacy and safety in underrepresented populations. Pasello et al. [150] observed that older adults and patients with poor performance status (PS), viral infections (e.g., HIV, hepatitis), or multiple comorbidities exhibited treatment outcomes comparable to those seen in RCTs, while the CheckMate 153 trial that included advanced NSCLC patients aged ≥ 70 with ECOG PS 2, demonstrated manageable safety and potential long-term survival benefits with nivolumab [151]. A retrospective analysis of 11,888 ICI-treated patients from the U.S. Veterans Affairs database—characterized by high comorbidity burden (Charlson Comorbidity Index [CCI] ≥ 3 in 68.9% of patients)—reported lower OS than RCTs, yet still superior to non-ICI therapies [152]. Similarly, Johns et al. found no association between specific comorbidities and irAEs or OS; however, a higher modified CCI was linked to shorter OS [153]. Hu et al. examined 125 patients with poor PS (ECOG ≥ 2: 35.2%), high CCI (≥3: 80.8%), autoimmune disease (12.8%), infections (11.2%), and brain metastases (20.8%). Despite their complex clinical profiles, these patients showed comparable treatment access, tolerability, and outcomes. Notably, white patients had shorter OS than non-white patients in multivariable analysis [154]. Regarding autoimmune disease, Lee et al. [155] demonstrated, in a matched cohort study (502 patients), that patients with pre-existing autoimmune conditions had nearly twice the risk of both CV and non-CV irAEs during ICI therapy. Finally, a decade after its introduction and widespread implementation in oncology, immunotherapy has emerged as a revolutionary treatment modality. However, its application in real-world clinical settings necessitates rigorous patient evaluation and meticulous monitoring.

5. Management of Cardiovascular Risk and Toxicity in NSCLC Patients Treated with Immune Checkpoint Inhibitors as First-Line Therapy

LC currently represents the most common indication for ICIs, with usage expected to rise due to expanding first-line indications and integration into both adjuvant and neoadjuvant settings. Consequently, managing ICI-related toxicities has become a key focus in cardio-oncology [156].
The real-world clinical complexity of LC patients, along with the emergence of chronic adverse events, presents ongoing challenges—particularly given that some studies suggest a potential association between immune-related adverse events and improved tumor response [157,158]. Preventing or at least mitigating CV complications is essential for treatment success and long-term outcomes, especially in the neoadjuvant setting where toxicity may compromise the timing and feasibility of surgical interventions and affect the postoperative course [57,159,160,161].
Real-world LC patients frequently present pre-existing structural heart disease and elevated CV risk [69,162,163,164,165], which significantly influence both therapeutic strategies and prognosis [71,163,166,167,168]. Moreover, in addition to immunotherapy, standard LC treatments such as surgery, thoracic radiotherapy (RT), and systemic chemotherapy also contribute to heightened CV risk and toxicity (Table 2 and Table 3).
Symptomatic post-RT cardiac events have an incidence rate of 11–32% [181,182]. Arrhythmias, CAD, and HF are the most frequent adverse CV events [171]; as a matter of fact, a few studies examine the different phenotypes of CV toxicities, and adverse CV events are mainly described as a sum of CV toxicities. Post-RT cardiac events are largely due to the peculiar vulnerability of lung cancer patients who have a heavy burden of comorbidities that enhance the potential CV toxicity of all oncologic therapies [171,183].
Several studies over the years have investigated strategies to stratify and predict the risk of CV complications in patients with NSCLC. A recent systematic review synthesized this evidence, identifying age, male sex, and advanced disease stage as relevant risk factors for acute CV events. Moreover, the presence of pre-existing CVD and the cumulative cardiac radiation dose were found to be the most significant predictors of long-term adverse CV outcomes [184].
Advanced age (>75 years), a high comorbidity burden, pre-existing CVD, and the use of concomitant chemotherapy have been identified as key factors associated with an increased risk of CV complications during immunotherapy [185,186,187]. Among comorbid conditions, beyond the potential impact of chronic obstructive pulmonary disease (COPD) on immune-related pneumonitis and its consequent effects on the cardiovascular system [188,189], type 2 diabetes mellitus has emerged as a significant negative prognostic factor. Its presence has been associated with both an increased risk of CV complications and a reduced therapeutic response to pembrolizumab-based immunotherapy [190,191]. Diabetes mellitus and its commonly associated metabolic conditions, such as central obesity and metabolic syndrome, are frequently characterized by dysregulation of immune-inflammatory responses and increased sympathetic nervous system activity (sympathetic overdrive) [192,193]. These alterations may contribute to an immunosuppressive microenvironment, potentially impairing the efficacy of ICIs and leading to reduced responsiveness to immunotherapy [194]. The alterations in the immuno-inflammatory and metabolic profile are further exacerbated by the presence of sarcopenia, often associated with systemic inflammation, metabolic dysregulation, and reduced physiological reserve, which may not only increase the risk of treatment-related toxicity and postoperative complications but also impair antitumor immune responses and reduce the likelihood of clinical benefit from ICI and chemotherapy tolerance [107,195] Surgical intervention is a major physiological stressor that exacerbates systemic inflammation. Thus, evaluating the patient’s baseline nutritional, metabolic, and inflammatory status is crucial, especially when planning neoadjuvant or adjuvant chemotherapy and/or immunotherapy, and considering potential CV implications.
In addition to evaluating functional capacity through measures such as the Eastern Cooperative Oncology Group Performance Status (ECOG-PS), the 6 min walk test, or cardiopulmonary exercise testing, biomarkers that specifically reflect inflammatory and immune status as preoperative C-reactive protein, interleukin-6, fibrinogen, and tumor necrosis factor-alpha, may prove useful in refining individual patient risk stratification [196]. In this context, indices derived from routine laboratory tests, such as the neutrophil-to-lymphocyte ratio (NLR) or the systemic immune-inflammation index (SII), appear potentially promising due to their repeatability and low cost [197,198,199,200,201]. Regarding the nutritional aspects associated with inflammation, promising preliminary data have emerged from the CALLY index, a novel, low-cost, and reproducible tool that incorporates serum albumin, C-reactive protein, and total leukocyte count to provide a composite measure of inflammatory-nutritional status [202,203]. However, these findings are based on retrospective registries with significant heterogeneity in both treatment approaches and patient pathologies and often rely on a single biomarker value. Prospective studies are thus warranted to confirm their definitive role in clinical practice.
The use of cardiac biomarkers, such as natriuretic peptides and particularly troponins, is recommended by the ESC cardio-oncology guidelines for the monitoring of potential cardiac adverse events associated with ICIs [59] Additionally, the European Society of Anesthesiology recommends the use of these biomarkers to enhance the predictive accuracy of the Revised Cardiac Risk Index (RCRI) for the prevention of postoperative cardiac events in patients undergoing non-cardiac surgery [204,205]. Basal preoperative troponin and natriuretic peptide (NP) evaluation in the context of LC surgery with planned additional treatments such as immunotherapy, chemotherapy, or radiotherapy is therefore mandatory for preoperative CV risk assessment and therapy adjustments in accordance with cardiologic international guidelines on CV management of patients undergoing non-cardiac surgery [58,206]. Detectable blood troponin levels have recognized prognostic value and improve CV risk stratification in the general population [207], and this is especially relevant in populations at risk for LC. In the prospective LUSI study [208], conducted in a cohort enrolled in a lung cancer screening program, 18% of patients without a history of CVD exhibited detectable troponin levels; in these patients, the risk of CV events and death increased proportionally with biomarker levels. The detectable blood level of troponin correlates with subclinical coronary atherosclerosis [209]. This condition is common and clinically significant in patients at risk for, or diagnosed with LC, as demonstrated by studies utilizing chest computed tomography (CT) [210,211,212,213,214,215,216], even when imaging is not ECG-synchronized [217]. In this context, the addition of information on coronary (and vascular) calcifications obtained from CT scans could further enhance individualized CV risk stratification and support the personalization of CV management strategies [218]. Scheduled serial chest CT scans performed during follow-up may also be helpful in assessing the progression of atherosclerosis in patients undergoing treatment with ICIs and/or chemotherapy [148,149]. Baseline multiparametric evaluation with biomarkers and CT imaging may be useful in the differential diagnosis with ICI-induced myocarditis [219]; the rapid increase in natriuretic peptides, troponin and CPK-MB associated with ventricular arrhythmias, the appearance of new conduction disturbances at the ECG, substantial deterioration of the ejection fraction are elements of suspicion for myocarditis, whose diagnosis, however, requires confirmation by cardiac nuclear magnetic resonance imaging [220]. Therefore, given the complex interplay of oncologic treatments and CV risk, multidisciplinary care is essential to ensure optimal CV risk stratification and management throughout the treatment continuum, with particular attention to baseline CV status and predisposing risk factors. A critical component of this approach is a comprehensive baseline CV assessment, which involves integrating clinical history, imaging studies, and laboratory biomarkers, and harmonizing these data with the overall oncologic treatment plan [59]. In this perspective, the involvement of cardiologists, aimed at optimal control of CV risk, can greatly help the multidisciplinary management in candidates for perioperative ICI treatment, especially if associated with chemotherapy [57,161,221].
Although most available data from earlier retrospective studies indicate that beta-blocker use has a neutral effect on survival in lung cancer patients [222,223], promising preliminary evidence suggests a potential therapeutic benefit in the setting of ICI therapy [224,225]. Tumor cells often express adrenergic receptors, and adrenergic signaling has been linked to cancer progression [226,227]. Thus, beta-blockers may enhance the efficacy of ICIs. However, current evidence is mostly retrospective, with some conflicting data [228] highlighting the need for proper patient selection and prospective studies to clarify their clinical utility.
Emerging observational data on the beneficial effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors are encouraging, suggesting a potential role in reducing CV risk and enhancing the response to therapy [229,230,231]. Similarly, statins have shown promise not only in mitigating immunotherapy-related cardiotoxicity [141] but also in improving OS and PFS in patients receiving ICIs [232,233,234,235].
The current body of evidence supports a neutral association between GLP-1 RA use and LC risk [236], with some data suggesting a possible protective role [237,238]. However, these findings are primarily derived from retrospective studies in diabetic or obese populations. No direct evidence exists for a preventive or therapeutic effect in oncologic patients, especially those with lung cancer. Therefore, well-designed prospective studies are warranted to clarify the role of GLP-1 RAs in LC prevention and treatment.

5.1. Cardiovascular Events and Surgery in NSCLC

Surgical resection—including lobectomy, pneumonectomy, or sub-lobar resection—remains the standard of care for early-stage (stage I–II) and selected locally advanced (stage IIB–IIIA) NSCLC [53]. These procedures are frequently combined with perioperative chemotherapy and/or chemo-immunotherapy. Because surgical candidates generally have longer life expectancy, they also face a prolonged window of vulnerability to treatment-associated CV events. Thoracic surgery itself is burdened with a significant risk of CV complications, with reported rates of MACEs ranging from 6.5% to 22% [239,240,241]. Time-trend analyses highlight a growing prevalence of CV risk factors and increasing clinical complexity in surgical candidates, including ≥2 comorbidities [242]. Patients with pre-existing CVD and CV risk factors undergoing lobectomy or pneumonectomy are particularly vulnerable to postoperative CV complications [243,244,245,246].
Postoperative CV events may include arrhythmias, thromboembolic complications, MI, HF, stroke, or sudden cardiac death. However, determining the true incidence of specific postoperative CV events is complicated by the frequent aggregation of CV and respiratory complications in clinical reports, as well as inconsistent definitions of MACEs across studies [247].
Atrial fibrillation (AF) is the most common cardiac complication following LC thoracic surgery, with reported incidences as high as 30% [248,249,250], in the context of perioperative immunotherapy [54,161,251]. AF should not be underestimated due to its association with increased morbidity, including HF, stroke, and myocardial ischemia. The risk of AF is influenced by both the extent of surgical stress and patient-specific factors. AF is particularly prevalent after pneumonectomy, especially of the left lung [249,250,252]. Key risk factors include hypertension, obesity, advanced age, male sex, pre-existing CV or pulmonary disease, chronic obstructive pulmonary disease (COPD), tumor-related inflammation, and postoperative infections. Overall, patient frailty is also a critical determinant of AF risk [253,254,255]. Elevated natriuretic peptides or a history of previous AF can identify patients at higher risk of AF after major thoracic cancer surgery [256,257]. Postoperative atrial fibrillation (POAF) in non-cardiac surgery is linked to an increased long-term risk of stroke and mortality [258]. In a prospective, single-center study with continuous rhythm monitoring, approximately 30% of patients developed recurrent POAF one year after cancer surgery, most episodes being asymptomatic (92%). LC patients were at particularly high risk of relapses, with hypertension, renal dysfunction, and underlying structural heart disease emerging as independent predictors [259]. While the incidence of AF with ICIs appears low [141], individual risk assessment remains essential. Concomitant platinum-based chemotherapy and ancillary treatments, such as high-dose corticosteroids and NSAIDs, can predispose to arrhythmias [260]. Radiation therapy involving the cardiac base similarly elevates AF risk [171]. Moreover, AF may develop secondary to other ICI-related toxicities, including hyperthyroidism, pericarditis, or ICI-induced pneumonitis. The management of POAF requires special attention also for thromboembolic and hemorrhagic risk. In accordance with the 2024 AHA/ACC guidelines on noncardiac surgery [206], in patients who develop rapid AF intra- or postoperatively, it is reasonable to identify and correct precipitating factors (e.g., sepsis, anemia, pain) and, after carefully weighing the competing risks of thromboembolism and perioperative bleeding, to consider initiating postoperative anticoagulation. For patients with new-onset AF in the noncardiac surgical setting, outpatient follow-up is recommended to perform thorough thromboembolic risk stratification and ongoing AF surveillance, given the high likelihood of recurrence and evolution in permanent AF. These recommendations echo current AF guidelines [261,262] by emphasizing the need for a multidisciplinary team involving cardiologists to optimize both cancer and AF management while minimizing drug–drug interactions, QTc prolongation, proarrhythmic risk, bleeding, and thromboembolism. Arrhythmia management should be individualized according to hemodynamic stability and overall clinical status. POAF is transitory with no clear superiority of rate-control versus rhythm-control strategy in this setting. Prophylactic β-blockade as a unique indication for POAF prevention in noncardiac surgery is not recommended, as it has been associated with increased mortality [262,263]. However, as sympathetic overdrive precipitates postoperative tachyarrhythmia, in the absence of contraindications, β-blockers remain the first-line therapy. In cases of contraindications or relative β-blocker resistance, combination regimen or alternative agents such as Digitalis or non-dihydropyridine Ca-channel blockers may be employed. Amiodarone, while effective [261], carries risks of thyroid dysfunction and acute pulmonary injury complications when high dosages are administered [264]. Furthermore, these complications may overlap with immune checkpoint inhibitor–related toxicities [265]; therefore, its use in pulmonary resection on perioperative ICI therapy warrants extreme caution. For most cancer patients with AF, whether in remission or on active treatment, direct oral anticoagulants (DOACs) are preferred over vitamin K antagonists for stroke prevention and bleeding [261,266,267]. This choice is further supported by evidence that ICI therapy is associated with an increased risk of thromboembolic complications [141]. In patients with nonvalvular atrial fibrillation receiving non-vitamin K oral anticoagulants, concomitant use of amiodarone, digoxin, diltiazem, verapamil, and antidepressants may be harmful [268,269] and should be approached with caution and dynamic individualized assessment.
Peri-operative myocardial injury and troponin elevation occur in approximately 20% of patients undergoing thoracic surgery [270]; in the current series of patients undergoing elective LC surgery, even higher incidences are reported, up to 49% [271,272]. Elevated troponin levels above the 99th percentile reference value in the postoperative period following non-cardiac surgery are indicative of cardiac stress or injury/infarction and are strong predictors of both short- and long-term mortality and morbidity [273]. Accordingly, current international guidelines for CV risk assessment and management of non-cardiac surgery recommend routine troponin monitoring in moderate–high risk patients [58,206]. Troponin elevation in the surgical population may vary according to age, sex, renal function, as well as type and urgency of the surgery and does not necessarily indicate a postoperative MI caused by coronary plaque rupture or thrombosis (i.e., Type 1 MI according to Thygesen) [274] in the absence of other clinical signs such as symptoms, ECG changes, or evidence of atherosclerotic coronary obstruction. Type 1 MI is relatively rare (approximately 1%) in the setting of thoracic surgery, especially with the use of current minimally invasive techniques [275,276]. In the absence of secondary causes such as hypoxemia, hypotension, anemia, HF, pulmonary embolism, or arrhythmias and infections, troponin elevation is typically attributed to an imbalance between myocardial oxygen supply and demand (Type 2 MI) [274,277]. Troponin elevation generally occurs early, within 72 h postoperatively, and is frequently asymptomatic. Nonetheless, it carries a significant negative prognostic impact on both short- and long-term mortality and morbidity. Therefore, patients with this condition require close monitoring and aggressive management of factors sustaining myocardial injury.

5.2. Pericarditis

Pericardial disease is a relevant clinical issue in lung cancer (LC) patients and may be presented as acute pericarditis, pericardial effusion, or constrictive pericarditis. In LC, pericarditis can result from direct pericardial involvement by the primary tumor, metastatic spread, or prior thoracic radiotherapy [278,279]. Cases of ICI-associated pericarditis have also been described [136,140,280]. The occurrence of pericarditis in LC patients receiving ICIs is particularly challenging, as its etiology can be multifactorial and often difficult to determine. Management of acute pericarditis generally includes nonsteroidal anti-inflammatory drugs (NSAIDs) and colchicine, with corticosteroids or anti-IL-1 agents reserved for refractory cases [279]. For pericardial effusion, pericardiocentesis, prolonged catheter drainage, or a pericardial window may be required, while pericardiectomy may be indicated for radiotherapy-induced constrictive pericarditis [279].

6. Survivorship and Cardiovascular Surveillance

Improved survival in LC patients presents major challenges for survivorship care, requiring a framework that extends beyond oncologic follow-up to encompass psychosocial support and the management of treatment-related complications [281]. LC survivors face a particularly elevated risk of CV events, which emerges earlier than in other malignancies [21,282,283] and may be further exacerbated by immune checkpoint inhibitor (ICI) therapy [140,284]. In NSCLC, this issue is compounded by substantial heterogeneity related to tumor type and stage, therapeutic protocols, and the high burden of comorbidities, as many patients are elderly, at elevated CV risk, or have pre-existing heart disease. With the number of survivors projected to rise substantially in the coming decade [281,285], there is an urgent need for comprehensive strategies integrating CV risk assessment, prevention, and long-term management. However, available evidence—largely from retrospective analyses of RCTs and non-dedicated registries—provides limited guidance for preventive strategies. Historically, research has focused on immune-related myocarditis, while only recently has growing scientific interest expanded and quantified the broader spectrum of CV complications. Furthermore, the characterization of chronic complications such as atherosclerosis remains incomplete and warrants further investigation.
Traditional CV risk factors—hypercholesterolemia, hypertension, and obesity—are key determinants of atherosclerotic “cardiotoxicity” [286] and require careful management in patients undergoing ICI therapy. Supporting this, a multicenter retrospective study reported a 35% higher relative risk of incident hypertension in patients receiving ICIs compared with matched controls [287]. Similarly, a meta-analysis of 48 RCTs identified dyslipidemia as one of the most frequent CV complications in ICI-treated patients [126], while data from Drobni et al. suggested that concomitant statin therapy slows the progression of atherosclerotic plaques [147]. Beyond lipid metabolism, in NSCLC patients aged ≥ 66 years with pre-existing diabetes, SGLT2 inhibitor use was associated with reduced mortality (HR 0.68), with an even greater benefit observed with longer treatment duration (HR 0.54) in the SEER-Medicare cohort, suggesting that therapy initiation should not be delayed [230].
Epidemiological data—including Life’s Simple 7 and Life’s Essential 8 studies [288,289] and findings from the UK Biobank [290]—consistently demonstrate that optimal CV risk factor control improves long-term outcomes in cancer survivors. Yet, in clinical practice, risk factor management remains largely suboptimal [291,292]. Effective survivorship care must therefore address both medical and psychosocial determinants. Anxiety, depression, and cancer-related stigma are highly prevalent in this population [281,293] and may compromise adherence, social functioning, and even immune competence, potentially reducing responsiveness to ICIs [294]. All the components of emotional distress should be actively searched for [295].
Prevention strategies should include lifestyle interventions and structured rehabilitation. The cardio-oncology rehabilitation (CORE) model, proposed by Gilchrist in 2019, integrates exercise, nutritional counseling, and cardiovascular risk management, offering a comprehensive approach to reduce CV events [296]. This is particularly relevant for lung cancer patients, who often manifest reduced exercise tolerance and impaired quality of life, making both prehabilitation and rehabilitation beneficial [297]. Prehabilitation, particularly, improves functional capacity, reduces postoperative complications, and shortens hospital stay [298,299], and it is currently recommended by ASCO guidelines [300].

7. Conclusions

Immunotherapy has revolutionized lung cancer treatment, demonstrating a significant survival benefit, albeit at the cost of adverse events, among which CV complications stand out for their severity and clinical relevance. LC patients represent a complex cardio-immuno-metabolic population, often experiencing functional limitations that impair health-related quality of life (HRQoL) [293,301]. Managing individual lung cancer patients can be challenging due to the complex interplay of multiple variables. Nevertheless, this is an active area of research. For instance, microRNA biomarkers, which are more directly linked to the underlying pathophysiology, may become relevant for cardiotoxicity screening [302]. Additionally, several inflammatory chemokines [303] and interleukins (ILs), including IL-6, IL-8, and IL-10, involved in perioperative immune modulation, may help predict complications following lung cancer surgery [304,305]. Direct inhibition of IL-6 appears to have the potential to enhance the efficacy of immunotherapy while reducing the risk of adverse events [306,307], and its role in atherosclerotic coronary disease is currently under investigation [308]. Significant potential improvements are also anticipated in the field of imaging, such as the analysis of coronary plaques using coronary CT [309,310] and the assessment of their inflammatory profile with PET-CT [311,312,313].
In conclusion, there are three pillars of an integrated dynamic immuno-cardio-metabolic approach in LC patients in immunotherapy: (1) the risk stratification/awareness pillar that assesses (at baseline and throughout the cancer continuum) the CV risk score, the comorbidities and the metabolic-immuno-inflammatory profile through the evaluation of both metabolic, immune and inflammatory markers and imaging tools; (2) the multidisciplinary intervention that aims to reduce CV risk through preventive strategies and an aggressive control of CV risk factors; (3) the continuous multidisciplinary surveillance plan based on biomarker- and imaging-based monitoring. This plan has to include the assessment of the allostatic load, which is “the price of adaptation to potentially stressful challenges” or a failure to maintain “allostasis”, which is “stability through change” [314,315].
The valuable contribution of artificial intelligence is expected to support the main goal of management: delivering precise, tailored treatment across the entire cancer continuum, extending into the long-term survivorship phase [316,317,318,319].
We are, however, only at the beginning of a new era in the management of oncology patients, with growing awareness that social, economic, and organizational factors, by affecting equity and generalizability of care, may compromise treatment outcomes [320,321,322,323,324]. What is clear is that the management of these complex patients necessarily requires a multidisciplinary approach, in which the cardiologist must play an integral role and can no longer be excluded throughout the cancer journey.

Author Contributions

Conceptualization, L.T.; methodology, L.T. and G.G.; validation, L.T. and G.G.; formal analysis, L.T.; resources, L.T.; data curation, L.T.; writing—original draft preparation, L.T. and G.G.; writing—review and editing, L.T., G.G., A.I., A.C., M.L.C., M.L., F.Z., M.P., G.A., P.C., N.M., S.G., A.N. and C.P.; visualization, L.T., G.G., A.I., A.C., M.L.C., M.L., F.Z., M.P., G.A., P.C., N.M. and S.G.; supervision, L.T. and G.G.; project administration, L.T.; funding acquisition, L.T. All authors have read and agreed to the published version of the manuscript.

Funding

This study was partially funded by the Italian Ministry of Health—Ricerca Corrente Annual Program 2025.

Conflicts of Interest

Alessandro Inno received honoraria for participation in speakers’ bureaus from Amgen, AstraZeneca, Merck Sharp & Dohme, Novartis, and Roche; a medical writing grant from Merck Serono; and travel support from Amgen, AstraZeneca, Roche, and Sanofi. The other authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript: AF: atrial fibrillation; ALK: anaplastic lymphoma kinase; BMI: body mass index; CAD: coronary artery disease; CALLY Index: C-reactive protein-albumin-lymphocyte index; CIT: chemo-immunotherapy; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; CT: computed tomography; CTLA-4: cytotoxic T-lymphocyte-associated protein 4; CV: cardiovascular; CVA: cardiovascular adverse events; CVD: cardiovascular disease; DM: diabetes mellitus; ECOG PS: Eastern Cooperative Oncology Group performance status; EGFR: epidermal growth factor receptor; ESC: European Society of Cardiology; FAERS: FDA Adverse Event Reporting System; GLP1 RA: glucagon-like peptide-1 receptor agonist; HbA1c: glycated haemoglobin A1c; hs-CRP: High Sensitivity C-reactive Protein; ICI: immune checkpoint inhibitor; IL-6: Interleukin-6; irAEs: immune-related adverse events; MI: myocardial infarction; LC: lung cancer; MDT: multidisciplinary team; MRI: magnetic resonance imaging; NLR: neutrophil-to-lymphocyte ratio; NP: natriuretic peptide; NSCLC: non-small cell lung cancer; OS: overall survival; PD-1/PD-L1: programmed cell death protein 1; PFS: progression-free survival; RCRI: Revised Cardiac Risk Index; RCT: randomized controlled trial; ROS1: ROS proto-oncogene 1; SGLT2: sodium glucose co-transporter 2; TCGA: The Cancer Genome Atlas; TyG Index: triglyceride-glucose index; SII: Systemic Immune-inflammation Index; TRAEs: treatment-related adverse events WBC white blood cells; WC: waist circumference.

References

  1. Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
  2. Chen, X.; Mo, S.; Yi, B. The spatiotemporal dynamics of lung cancer: 30-year trends of epidemiology across 204 countries and territories. BMC Public Health 2022, 22, 987. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  3. Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  4. Huang, J.; Deng, Y.; Tin, M.S.; Lok, V.; Ngai, C.H.; Zhang, L.; Lucero-Prisno, D.E., 3rd; Xu, W.; Zheng, Z.J.; Elcarte, E.; et al. Distribution, Risk Factors, and Temporal Trends for Lung Cancer Incidence and Mortality: A Global Analysis. Chest 2022, 161, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
  5. Li, Y.; Xia, P.F.; Geng, T.T.; Tu, Z.Z.; Zhang, Y.B.; Yu, H.C.; Zhang, J.J.; Guo, K.; Yang, K.; Liu, G.; et al. Trends in Self-Reported Adherence to Healthy Lifestyle Behaviors Among US Adults, 1999 to March 2020. JAMA Netw. Open 2023, 6, e2323584. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  6. Lu, T.; Yang, X.; Huang, Y.; Zhao, M.; Li, M.; Ma, K.; Yin, J.; Zhan, C.; Wang, Q. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manag. Res. 2019, 11, 943–953. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  7. Hansen, R.N.; Zhang, Y.; Seal, B.; Ryan, K.; Yong, C.; Darilay, A.; Ramsey, S.D. Long-term survival trends in patients with unresectable stage III non-small cell lung cancer receiving chemotherapy and radiation therapy: A SEER cancer registry analysis. BMC Cancer 2020, 20, 276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  8. Higgins, K.A.; Puri, S.; Gray, J.E. Systemic and Radiation Therapy Approaches for Locally Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 576–585. [Google Scholar] [CrossRef] [PubMed]
  9. Ganti, A.K.; Klein, A.B.; Cotarla, I.; Seal, B.; Chou, E. Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients with Non-Small Cell Lung Cancer in the US. JAMA Oncol. 2021, 7, 1824–1832. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  10. Bei, Y.; Chen, X.; Raturi, V.P.; Liu, K.; Ye, S.; Xu, Q.; Lu, M. Treatment patterns and outcomes change in early-stage non-small cell lung cancer in octogenarians and older: A SEER database analysis. Aging Clin. Exp. Res. 2021, 33, 147–156. [Google Scholar] [CrossRef] [PubMed]
  11. Yan, J.T.; Jin, Y.; Lo, E.; Chen, Y.; Hanlon Newell, A.E.; Kong, Y.; Inge, L.J. Real-World Biomarker Test Utilization and Subsequent Treatment in Patients with Early-Stage Non-small Cell Lung Cancer in the United States, 2011–2021. Oncol. Ther. 2023, 11, 343–360. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  12. Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N. Engl. J. Med. 2020, 383, 640–649. [Google Scholar] [CrossRef]
  13. Aggarwal, C.; Marmarelis, M.E.; Hwang, W.T.; Scholes, D.G.; McWilliams, T.L.; Singh, A.P.; Sun, L.; Kosteva, J.; Costello, M.R.; Cohen, R.B.; et al. Association Between Availability of Molecular Genotyping Results and Overall Survival in Patients with Advanced Non squamous Non-Small-Cell Lung Cancer. JCO Precis. Oncol. 2023, 7, e2300191. [Google Scholar] [CrossRef] [PubMed]
  14. Voruganti, T.; Soulos, P.R.; Mamtani, R.; Presley, C.J.; Gross, C.P. Association Between Age and Survival Trends in Advanced Non-Small Cell Lung Cancer After Adoption of Immunotherapy. JAMA Oncol. 2023, 9, 334–341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  15. Borg, M.; Hilberg, O.; Andersen, M.B.; Weinreich, U.M.; Rasmussen, T.R. Increased use of computed tomography in Denmark: Stage shift toward early stage lung cancer through incidental findings. Acta Oncol. 2022, 61, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
  16. Singareddy, A.; Flanagan, M.E.; Samson, P.P.; Waqar, S.N.; Devarakonda, S.; Ward, J.P.; Herzog, B.H.; Rohatgi, A.; Robinson, C.G.; Gao, F.; et al. Trends in Stage I Lung Cancer. Clin. Lung Cancer 2023, 24, 114–119. [Google Scholar] [CrossRef] [PubMed]
  17. Potter, A.L.; Rosenstein, A.L.; Kiang, M.V.; Shah, S.A.; Gaissert, H.A.; Chang, D.C.; Fintelmann, F.J.; Yang, C.J. Association of computed tomography screening with lung cancer stage shift and survival in the United States: Quasi-experimental study. BMJ 2022, 376, e069008. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  18. Bonney, A.; Malouf, R.; Marchal, C.; Manners, D.; Fong, K.M.; Marshall, H.M.; Irving, L.B.; Manser, R. Impact of low-dose computed tomography (LDCT) screening on lung cancer-related mortality. Cochrane Database Syst. Rev. 2022, 8, CD013829. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  19. Flores, R.; Patel, P.; Alpert, N.; Pyenson, B.; Taioli, E. Association of Stage Shift and Population Mortality Among Patients with Non-Small Cell Lung Cancer. JAMA Netw. Open 2021, 4, e2137508. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  20. Strongman, H.; Gadd, S.; Matthews, A.; Mansfield, K.E.; Stanway, S.; Lyon, A.R.; Dos-Santos-Silva, I.; Smeeth, L.; Bhaskaran, K. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: A population-based cohort study using multiple linked UK electronic health records databases. Lancet 2019, 394, 1041–1054. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  21. Florido, R.; Daya, N.R.; Ndumele, C.E.; Koton, S.; Russell, S.D.; Prizment, A.; Blumenthal, R.S.; Matsushita, K.; Mok, Y.; Felix, A.S.; et al. Cardiovascular Disease Risk Among Cancer Survivors: The Atherosclerosis Risk In Communities (ARIC) Study. J. Am. Coll. Cardiol. 2022, 80, 22–32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  22. Ogedegbe, O.J.; Odugbemi, O.P.; Tabowei, G.; Alugba, G.; Pius, R.; Nwogwugwu, E.; Nwaezeapu, K.I. Rising Cardiovascular mortality in Lung cancer patients results from a large cancer database retrospective cohort study. JACC 2025, 85 (Suppl. S12), 2874. [Google Scholar] [CrossRef]
  23. Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  24. de Koning, H.J.; van Der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef] [PubMed]
  25. Jonas, D.E.; Reuland, D.S.; Reddy, S.M.; Nagle, M.; Clark, S.D.; Weber, R.P.; Enyioha, C.; Malo, T.L.; Brenner, A.T.; Armstrong, C.; et al. Screening for Lung Cancer with Low-Dose Computed Tomography: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2021, 325, 971–987. [Google Scholar] [CrossRef] [PubMed]
  26. Passiglia, F.; Cinquini, M.; Bertolaccini, L.; Del Re, M.; Facchinetti, F.; Ferrara, R.; Franchina, T.; Larici, A.R.; Malapelle, U.; Menis, J.; et al. Benefits and Harms of Lung Cancer Screening by Chest Computed Tomography: A Systematic Review and Meta-Analysis. J. Clin. Oncol. 2021, 39, 2574–2585, Erratum in J. Clin. Oncol. 2021, 39, 3192–3193. [Google Scholar] [CrossRef] [PubMed]
  27. Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. KEYNOTE-024 Investigators. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
  28. Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Five-Year Outcomes with Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score ≥ 50. J. Clin. Oncol. 2021, 39, 2339–2349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  29. Borghaei, H.; Gettinger, S.; Vokes, E.E.; Chow, L.Q.M.; Burgio, M.A.; de Castro Carpeno, J.; Pluzanski, A.; Arrieta, O.; Frontera, O.A.; Chiari, R.; et al. Five-Year Outcomes from the Randomized, Phase III Trials CheckMate 017 and 057: Nivolumab Versus Docetaxel in Previously Treated Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2021, 39, 723–733, Erratum in J. Clin. Oncol. 2021, 39, 1190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  30. Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score of 50% or Greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef] [PubMed]
  31. Sezer, A.; Kilickap, S.; Gümüş, M.; Bondarenko, I.; Özgüroğlu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: A multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 2021, 397, 592–604. [Google Scholar] [CrossRef] [PubMed]
  32. Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef] [PubMed]
  33. Novello, S.; Kowalski, D.M.; Luft, A.; Gümüş, M.; Vicente, D.; Mazières, J.; Rodríguez-Cid, J.; Tafreshi, A.; Cheng, Y.; Lee, K.H.; et al. Pembrolizumab plus chemotherapy in squamous non–small-cell lung cancer: 5-year update of the phase III KEYNOTE-407 study. J. Clin. Oncol. 2023, 41, 1999–2006. [Google Scholar] [CrossRef]
  34. Garassino, M.C.; Gadgeel, S.; Speranza, G.; Felip, E.; Esteban, E.; Dómine, M.; Hochmair, M.J.; Powell, S.F.; Bischoff, H.G.; Peled, N.; et al. Pembrolizumab Plus Pemetrexed and Platinum in Nonsquamous Non-Small-Cell Lung Cancer: 5-Year Outcomes from the Phase 3 KEYNOTE-189 Study. J. Clin. Oncol. 2023, 41, 1992–1998. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  35. Gogishvili, M.; Melkadze, T.; Makharadze, T.; Giorgadze, D.; Dvorkin, M.; Penkov, K.; Laktionov, K.; Nemsadze, G.; Nechaeva, M.; Rozhkova, I.; et al. Cemiplimab plus chemotherapy versus chemotherapy alone in non-small cell lung cancer: A randomized, controlled, double-blind phase 3 trial. Nat. Med. 2022, 28, 2374–2380. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  36. Lim, S.M.; Peters, S.; Ortega Granados, A.L.; Pinto, G.D.J.; Fuentes, C.S.; Lo Russo, G.; Schenker, M.; Ahn, J.S.; Reck, M.; Szijgyarto, Z.; et al. Dostarlimab or pembrolizumab plus chemotherapy in previously untreated metastatic non-squamous non-small cell lung cancer: The randomized PERLA phase II trial. Nat. Commun. 2023, 14, 7301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  37. Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. IMpower150 Study Group. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
  38. Paz-Ares, L.; Ciuleanu, T.E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211, Erratum in Lancet Oncol. 2021, 22, e92. [Google Scholar] [CrossRef] [PubMed]
  39. Owen, D.H.; Halmos, B.; Puri, S.; Qin, A.; Ismaila, N.; Abu Rous, F.; Alluri, K.; Freeman-Daily, J.; Malhotra, N.; Marrone, K.A.; et al. Therapy for Stage IV Non-Small Cell Lung Cancer Without Driver Alterations: ASCO Living Guideline, Version 2025.1. J. Clin. Oncol. 2025, 43, e45–e58. [Google Scholar] [CrossRef] [PubMed]
  40. Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. PACIFIC Investigators. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
  41. Wu, L.; Zhang, Z.; Bai, M.; Yan, Y.; Yu, J.; Xu, Y. Radiation combined with immune checkpoint inhibitors for unresectable locally advanced non-small cell lung cancer: Synergistic mechanisms, current state, challenges, and orientations. Cell Commun. Signal. 2023, 21, 119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  42. Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V.; et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [CrossRef] [PubMed]
  43. Kratzer, T.B.; Bandi, P.; Freedman, N.D.; Smith, R.A.; Travis, W.D.; Jemal, A.; Siegel, R. Lung cancer statistics, 2023. Cancer 2024, 130, 1330–1348. [Google Scholar] [CrossRef] [PubMed]
  44. Almatrafi, A.; Thomas, O.; Callister, M.; Gabe, R.; Beeken, R.J.; Neal, R. The prevalence of comorbidity in the lung cancer screening population: A systematic review and meta-analysis. J. Med. Screen. 2023, 30, 3–13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  45. Shah, A.; Apple, J.; Belli, A.J.; Barcellos, A.; Hansen, E.; Fernandes, L.L.; Zettler, C.M.; Wang, C.K. Real-world study of disease-free survival & patient characteristics associated with disease-free survival in early-stage non-small cell lung cancer: A retrospective observational study. Cancer Treat. Res. Commun. 2023, 36, 100742. [Google Scholar] [CrossRef] [PubMed]
  46. NSCLC Meta-analysis Collaborative Group. Preoperative chemotherapy for non-small-cell lung cancer: A systematic review and meta-analysis of individual participant data. Lancet 2014, 383, 1561–1571. [Google Scholar] [CrossRef]
  47. Mountzios, G.; Remon, J.; Hendriks, L.E.L.; García-Campelo, R.; Rolfo, C.; Van Schil, P.; Forde, P.M.; Besse, B.; Subbiah, V.; Reck, M.; et al. Immune-checkpoint inhibition for resectable non-small-cell lung cancer—Opportunities and challenges. Nat. Rev. Clin. Oncol. 2023, 20, 664–677. [Google Scholar] [CrossRef] [PubMed]
  48. Topalian, S.L.; Taube, J.M.; Pardoll, D.M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 2020, 367, eaax0182. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  49. Forde, P.M.; Spicer, J.; Lu, S.; Provencio, M.; Mitsudomi, T.; Awad, M.M.; Felip, E.; Broderick, S.R.; Brahmer, J.R.; Swanson, S.J.; et al. CheckMate 816 Investigators. Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. N. Engl. J. Med. 2022, 386, 1973–1985. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  50. Heymach, J.V.; Harpole, D.; Mitsudomi, T.; Taube, J.M.; Galffy, G.; Hochmair, M.; Winder, T.; Zukov, R.; Garbaos, G.; Gao, S.; et al. AEGEAN Investigators. Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 1672–1684. [Google Scholar] [CrossRef] [PubMed]
  51. Wakelee, H.; Liberman, M.; Kato, T.; Tsuboi, M.; Lee, S.H.; Gao, S.; Chen, K.N.; Dooms, C.; Majem, M.; Eigendorff, E.; et al. KEYNOTE-671 Investigators. Perioperative Pembrolizumab for Early-Stage Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 491–503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  52. Lu, S.; Zhang, W.; Wu, L.; Wang, W.; Zhang, P.; the Neotorch Investigators. Perioperative Toripalimab Plus Chemotherapy for Patients with Resectable Non-Small Cell Lung Cancer: The Neotorch Randomized Clinical Trial. JAMA 2024, 331, 201–211, Erratum in JAMA 2025, 333, 910. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  53. Riely, G.J.; Wood, D.E.; Ettinger, D.S.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; et al. Non-Small Cell Lung Cancer, Version 4.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2024, 22, 249–274. [Google Scholar] [CrossRef] [PubMed]
  54. Bott, M.J.; Yang, S.C.; Park, B.J.; Adusumilli, P.S.; Rusch, V.W.; Isbell, J.M.; Downey, R.J.; Brahmer, J.R.; Battafarano, R.; Bush, E.; et al. Initial results of pulmonary resection after neoadjuvant nivolumab in patients with resectable non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2019, 158, 269–276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  55. Baek, J.; Owen, D.H.; Merritt, R.E.; Shilo, K.; Otterson, G.A.; D’Souza, D.M.; Carbone, D.P.; Kneuertz, P.J. Minimally Invasive Lobectomy for Residual Primary Tumors of Advanced Non-Small-Cell Lung Cancer After Treatment with Immune Checkpoint Inhibitors: Case Series and Clinical Considerations. Clin. Lung Cancer 2020, 21, e265–e269. [Google Scholar] [CrossRef] [PubMed]
  56. Sepesi, B.; Zhou, N.; William, W.N., Jr.; Lin, H.Y.; Leung, C.H.; Weissferdt, A.; Mitchell, K.G.; Pataer, A.; Walsh, G.L.; Rice, D.C.; et al. Surgical outcomes after neoadjuvant nivolumab or nivolumab with ipilimumab in patients with non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2022, 164, 1327–1337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  57. Wislez, M.; Mazieres, J.; Lavole, A.; Zalcman, G.; Carre, O.; Egenod, T.; Caliandro, R.; Dubos-Arvis, C.; Jeannin, G.; Molinier, O.; et al. Neoadjuvant durvalumab for resectable non-small-cell lung cancer (NSCLC): Results from a multicenter study (IFCT-1601 IONESCO). J. Immunother. Cancer 2022, 10, e005636. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  58. Halvorsen, S.; Mehilli, J.; Cassese, S.; Hall, T.S.; Abdelhamid, M.; Barbato, E.; De Hert, S.; de Laval, I.; Geisler, T.; Hinterbuchner, L.; et al. ESC Scientific Document Group 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur. Heart J. 2022, 43, 3826–3924, Erratum in Eur. Heart J. 2023, 44, 4421. [Google Scholar] [CrossRef] [PubMed]
  59. Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. ESC Scientific Document Group 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361, Erratum in Eur. Heart J. 2023, 44, 1621. [Google Scholar] [CrossRef] [PubMed]
  60. Liu, J.; Blake, S.J.; Yong, M.C.; Harjunpää, H.; Ngiow, S.F.; Takeda, K.; Young, A.; O’Donnell, J.S.; Allen, S.; Smyth, M.J.; et al. Improved Efficacy of Neoadjuvant Compared to Adjuvant Immunotherapy to Eradicate Metastatic Disease. Cancer Discov. 2016, 6, 1382–1399. [Google Scholar] [CrossRef] [PubMed]
  61. Blank, C.U.; Rozeman, E.A.; Fanchi, L.F.; Sikorska, K.; van de Wiel, B.; Kvistborg, P.; Krijgsman, O.; van den Braber, M.; Philips, D.; Broeks, A.; et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 2018, 24, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
  62. Zhou, Y.; Li, A.; Yu, H.; Wang, Y.; Zhang, X.; Qiu, H.; Du, W.; Luo, L.; Fu, S.; Zhang, L.; et al. Neoadjuvant-Adjuvant vs Neoadjuvant-Only PD-1 and PD-L1 Inhibitors for Patients with Resectable NSCLC: An Indirect Meta-Analysis. JAMA Netw. Open 2024, 7, e241285. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  63. Felip, E.; Altorki, N.; Zhou, C.; Csőszi, T.; Vynnychenko, I.; Goloborodko, O.; Luft, A.; Akopov, A.; Martinez-Marti, A.; Kenmotsu, H.; et al. IMpower010 Investigators. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase 3 trial. Lancet 2021, 398, 1344–1357, Erratum in Lancet 2021, 398, 1686. [Google Scholar] [CrossRef] [PubMed]
  64. Felip, E.; Altorki, N.; Zhou, C.; Vallières, E.; Csoszi, T.; Vynnychenko, I.O.; Goloborodko, O.; Rittmeyer, A.; Reck, M.; Martinez-Marti, A.; et al. IMpower010 Study Investigators. Five-Year Survival Outcomes with Atezolizumab After Chemotherapy in Resected Stage IB-IIIA Non-Small Cell Lung Cancer (IMpower010): An Open-Label, Randomized, Phase III Trial. J. Clin. Oncol. 2025, 43, 21. [Google Scholar] [CrossRef] [PubMed]
  65. O’Brien, M.; Paz-Ares, L.; Marreaud, S.; Dafni, U.; Oselin, K.; Havel, L.; Esteban, E.; Isla, D.; Martinez-Marti, A.; Faehling, M.; et al. EORTC-1416-LCG/ETOP 8-15–PEARLS/KEYNOTE-091 Investigators. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage IB-IIIA non-small-cell lung cancer (PEARLS/KEYNOTE-091): An interim analysis of a randomised, triple-blind, phase 3 trial. Lancet Oncol. 2022, 23, 1274–1286. [Google Scholar] [CrossRef] [PubMed]
  66. Goss, G.; Darling, G.; Westeel, V.; Nakagawa, K.; Sureda, B.M.; Perrone, F.; McLachlan, S.-A.; Kang, J.; Wu, Y.-L.; Dingemans, A.-M.; et al. LBA48 CCTG BR.31: A global, double-blind placebo-controlled, randomized phase III study of adjuvant durvalumab in completely resected non-small cell lung cancer (NSCLC). Ann. Oncol. 2024, 35, S1238. [Google Scholar] [CrossRef]
  67. Cascone, T.; Awad, M.M.; Spicer, J.D.; He, J.; Lu, S.; Sepesi, B.; Tanaka, F.; Taube, J.M.; Cornelissen, R.; Havel, L.; et al. CheckMate 77T Investigators. Perioperative Nivolumab in Resectable Lung Cancer. N. Engl. J. Med. 2024, 390, 1756–1769. [Google Scholar] [CrossRef] [PubMed]
  68. Forde, P.M.; Spicer, J.D.; Provencio, M.; Mitsudomi, T.; Awad, M.M.; Wang, C.; Lu, S.; Felip, E.; Swanson, S.J.; Brahmer, J.R.; et al. CheckMate 816 Investigators. Overall Survival with Neoadjuvant Nivolumab plus Chemotherapy in Lung Cancer. N. Engl. J. Med. 2025, 393, 741–752. [Google Scholar] [CrossRef] [PubMed]
  69. Battisti, N.M.L.; Welch, C.A.; Sweeting, M.; de Belder, M.; Deanfield, J.; Weston, C.; Peake, M.D.; Adlam, D.; Ring, A. Prevalence of Cardiovascular Disease in Patients with Potentially Curable Malignancies: A National Registry Dataset Analysis. JACC CardioOncol. 2022, 4, 238–253. [Google Scholar] [CrossRef]
  70. Kravchenko, J.; Berry, M.; Arbeev, K.; Lyerly, H.K.; Yashin, A.; Akushevich, I. Cardiovascular comorbidities and survival of lung cancer patients: Medicare data-based analysis. Lung Cancer 2015, 88, 85–93. [Google Scholar] [CrossRef]
  71. Mitchell, J.D.; Laurie, M.; Xia, Q.; Dreyfus, B.; Jain, N.; Jain, A.; Lane, D.; Lenihan, D.J. Risk profiles and incidence of cardiovascular events across different cancer types. ESMO Open 2023, 8, 101830. [Google Scholar] [CrossRef]
  72. Iachina, M.; Jakobsen, E.; Møller, H.; Lüchtenborg, M.; Mellemgaard, A.; Krasnik, M.; Green, A. The effect of different comorbidities on survival of non-small cells lung cancer patients. Lung 2015, 193, 291–297. [Google Scholar] [CrossRef]
  73. Sun, J.Y.; Zhang, Z.Y.; Qu, Q.; Wang, N.; Zhang, Y.M.; Miao, L.F.; Wang, J.; Wu, L.D.; Liu, Y.; Zhang, C.Y.; et al. Cardiovascular disease-specific mortality in 270,618 patients with non-small cell lung cancer. Int. J. Cardiol. 2021, 330, 186–193. [Google Scholar] [CrossRef]
  74. Batra, A.; Sheka, D.; Kong, S.; Cheung, W.Y. Impact of pre-existing cardiovascular disease on treatment patterns and survival outcomes in patients with lung cancer. BMC Cancer 2020, 20, 1004. [Google Scholar] [CrossRef]
  75. Kobo, O.; Raisi-Estabragh, Z.; Gevaert, S.; Rana, J.S.; Van Spall, H.G.C.; Roguin, A.; Petersen, S.E.; Ky, B.; Mamas, M.A. Impact of cancer diagnosis on distribution and trends of cardiovascular hospitalizations in the USA between 2004 and 2017. Eur. Heart J. Qual. Care Clin. Outcomes 2022, 8, 787–797. [Google Scholar] [CrossRef] [PubMed]
  76. Bell, C.F.; Lei, X.; Haas, A.; Baylis, R.A.; Gao, H.; Luo, L.; Giordano, S.H.; Wehner, M.R.; Nead, K.T.; Leeper, N.J. Risk of Cancer After Diagnosis of Cardiovascular Disease. JACC CardioOncol. 2023, 5, 431–440. [Google Scholar] [CrossRef] [PubMed]
  77. Leiter, A.; Veluswamy, R.R.; Wisnivesky, J.P. The global burden of lung cancer: Current status and future trends. Nat. Rev. Clin. Oncol. 2023, 20, 624–639. [Google Scholar] [CrossRef] [PubMed]
  78. Ortiz, C.; López-Cuadrado, T.; Rodríguez-Blázquez, C.; Pastor-Barriuso, R.; Galán, I. Clustering of unhealthy lifestyle behaviors, self-rated health and disability. Prev. Med. 2022, 155, 106911. [Google Scholar] [CrossRef] [PubMed]
  79. Ding, D.; Rogers, K.; van der Ploeg, H.; Stamatakis, E.; Bauman, A.E. Traditional and Emerging Lifestyle Risk Behaviors and All-Cause Mortality in Middle-Aged and Older Adults: Evidence from a Large Population-Based Australian Cohort. PLoS Med. 2015, 12, e1001917. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  80. Moore, S.C.; Lee, I.M.; Weiderpass, E.; Campbell, P.T.; Sampson, J.N.; Kitahara, C.M.; Keadle, S.K.; Arem, H.; Berrington de Gonzalez, A.; Hartge, P.; et al. Association of Leisure-Time Physical Activity with Risk of 26 Types of Cancer in 1.44 Million Adults. JAMA Intern. Med. 2016, 176, 816–825. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  81. Xue, X.J.; Gao, Q.; Qiao, J.H.; Zhang, J.; Xu, C.P.; Liu, J. Red and processed meat consumption and the risk of lung cancer: A dose-response meta-analysis of 33 published studies. Int. J. Clin. Exp. Med. 2014, 7, 1542–1553. [Google Scholar] [PubMed] [PubMed Central]
  82. Farvid, M.S.; Sidahmed, E.; Spence, N.D.; Mante Angua, K.; Rosner, B.A.; Barnett, J.B. Consumption of red meat and processed meat and cancer incidence: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2021, 36, 937–951. [Google Scholar] [CrossRef] [PubMed]
  83. Vieira, A.R.; Abar, L.; Vingeliene, S.; Chan, D.S.; Aune, D.; Navarro-Rosenblatt, D.; Stevens, C.; Greenwood, D.; Norat, T. Fruits, vegetables and lung cancer risk: A systematic review and meta-analysis. Ann. Oncol. 2016, 27, 81–96. [Google Scholar] [CrossRef] [PubMed]
  84. Wang, C.; Yang, T.; Guo, X.F.; Li, D. The Associations of Fruit and Vegetable Intake with Lung Cancer Risk in Participants with Different Smoking Status: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2019, 11, 1791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  85. Wei, X.; Zhu, C.; Ji, M.; Fan, J.; Xie, J.; Huang, Y.; Jiang, X.; Xu, J.; Yin, R.; Du, L.; et al. Diet and Risk of Incident Lung Cancer: A Large Prospective Cohort Study in UK Biobank. Am. J. Clin. Nutr. 2021, 114, 2043–2051. [Google Scholar] [CrossRef] [PubMed]
  86. Li, M.; Cao, S.M.; Dimou, N.; Wu, L.; Li, J.B.; Yang, J. Association of Metabolic Syndrome with Risk of Lung Cancer: A Population-Based Prospective Cohort Study. Chest 2024, 165, 213–223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  87. Sin, S.; Lee, C.H.; Choi, S.M.; Han, K.D.; Lee, J. Metabolic Syndrome and Risk of Lung Cancer: An Analysis of Korean National Health Insurance Corporation Database. J. Clin. Endocrinol. Metab. 2020, 105, dgaa596. [Google Scholar] [CrossRef] [PubMed]
  88. López-Jiménez, T.; Duarte-Salles, T.; Plana-Ripoll, O.; Recalde, M.; Xavier-Cos, F.; Puente, D. Association between metabolic syndrome and 13 types of cancer in Catalonia: A matched case-control study. PLoS ONE 2022, 17, e0264634. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  89. Liu, J.; Wang, R.; Tan, S.; Zhao, X.; Hou, A. Association between insulin resistance, metabolic syndrome and its components and lung cancer: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2024, 16, 63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  90. Shen, E.; Chen, X. Prediabetes and the risk of lung cancer incidence and mortality: A meta-analysis. J. Diabetes Investig. 2023, 14, 1209–1220. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  91. Wei, Z.; Hu, Y.; Zuo, F.; Wen, X.; Wu, D.; Sun, X.; Liu, C. The association between metabolic syndrome and lung cancer risk: A Mendelian randomization study. Sci. Rep. 2024, 14, 28494. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  92. Carreras-Torres, R.; Johansson, M.; Haycock, P.C.; Wade, K.H.; Relton, C.L.; Martin, R.M.; Davey Smith, G.; Albanes, D.; Aldrich, M.C.; Andrew, A.; et al. Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian randomization study. PLoS ONE 2017, 12, e0177875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  93. Zhou, W.; Liu, G.; Hung, R.J.; Haycock, P.C.; Aldrich, M.C.; Andrew, A.S.; Arnold, S.M.; Bickeböller, H.; Bojesen, S.E.; Brennan, P.; et al. Causal relationships between body mass index, smoking and lung cancer: Univariable and multivariable Mendelian randomization. Int. J. Cancer 2021, 148, 1077–1086. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  94. Caan, B.J.; Cespedes Feliciano, E.M.; Kroenke, C.H. The Importance of Body Composition in Explaining the Overweight Paradox in Cancer-Counterpoint. Cancer Res. 2018, 78, 1906–1912. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  95. Hidayat, K.; Du, X.; Chen, G.; Shi, M.; Shi, B. Abdominal Obesity and Lung Cancer Risk: Systematic Review and Meta-Analysis of Prospective Studies. Nutrients 2016, 8, 810. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  96. Yu, D.; Zheng, W.; Johansson, M.; Lan, Q.; Park, Y.; White, E.; Matthews, C.E.; Sawada, N.; Gao, Y.T.; Robien, K.; et al. Overall and Central Obesity and Risk of Lung Cancer: A Pooled Analysis. J. Natl. Cancer Inst. 2018, 110, 831–842. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  97. Wood, A.M.; Jonsson, H.; Nagel, G.; Häggström, C.; Manjer, J.; Ulmer, H.; Engeland, A.; Zitt, E.; Jochems, S.H.J.; Ghaderi, S.; et al. The Inverse Association of Body Mass Index with Lung Cancer: Exploring Residual Confounding, Metabolic Aberrations and Within-Person Variability in Smoking. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
  98. Yu, H.; Spitz, M.R.; Mistry, J.; Gu, J.; Hong, W.K.; Wu, X. Plasma levels of insulin-like growth factor-I and lung cancer risk: A case-control analysis. J. Natl. Cancer Inst. 1999, 91, 151–156. [Google Scholar] [CrossRef] [PubMed]
  99. Favoni, R.E.; de Cupis, A.; Ravera, F.; Cantoni, C.; Pirani, P.; Ardizzoni, A.; Noonan, D.; Biassoni, R. Expression and function of the insulin-like growth factor I system in human non-small-cell lung cancer and normal lung cell lines. Int. J. Cancer 1994, 56, 858–866. [Google Scholar] [CrossRef] [PubMed]
  100. Dziadziuszko, R.; Camidge, D.R.; Hirsch, F.R. The insulin-like growth factor pathway in lung cancer. J. Thorac. Oncol. 2008, 3, 815–818. [Google Scholar] [CrossRef] [PubMed]
  101. Yang, M.; Shen, Y.; Tan, L.; Li, W. Prognostic Value of Sarcopenia in Lung Cancer: A Systematic Review and Meta-analysis. Chest 2019, 156, 101–111. [Google Scholar] [CrossRef] [PubMed]
  102. Damluji, A.A.; Alfaraidhy, M.; AlHajri, N.; Rohant, N.N.; Kumar, M.; Al Malouf, C.; Bahrainy, S.; Ji Kwak, M.; Batchelor, W.B.; Forman, D.E.; et al. Sarcopenia and Cardiovascular Diseases. Circulation 2023, 147, 1534–1553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  103. Afzali, A.M.; Müntefering, T.; Wiendl, H.; Meuth, S.G.; Ruck, T. Skeletal muscle cells actively shape (auto)immune responses. Autoimmun. Rev. 2018, 17, 518–529. [Google Scholar] [CrossRef] [PubMed]
  104. Montano, M.; Correa-de-Araujo, R. Maladaptive Immune Activation in Age-Related Decline of Muscle Function. J. Gerontol A Biol. Sci. Med. Sci. 2023, 78 (Suppl. S1), 19–24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  105. Pillon, N.J.; Bilan, P.J.; Fink, L.N.; Klip, A. Cross-talk between skeletal muscle and immune cells: Muscle-derived mediators and metabolic implications. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E453–E465. [Google Scholar] [CrossRef] [PubMed]
  106. Park, M.J.; Choi, K.M. Interplay of skeletal muscle and adipose tissue: Sarcopenic obesity. Metabolism 2023, 144, 155577. [Google Scholar] [CrossRef] [PubMed]
  107. Wang, J.; Cao, L.; Xu, S. Sarcopenia affects clinical efficacy of immune checkpoint inhibitors in non-small cell lung cancer patients: A systematic review and meta-analysis. Int. Immunopharmacol. 2020, 88, 106907. [Google Scholar] [CrossRef] [PubMed]
  108. Ren, B.; Shen, J.; Qian, Y.; Zhou, T. Sarcopenia as a Determinant of the Efficacy of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: A Meta-Analysis. Nutr. Cancer 2023, 75, 685–695. [Google Scholar] [CrossRef] [PubMed]
  109. Zhang, T.; Li, S.; Chang, J.; Qin, Y.; Li, C. Impact of BMI on the survival outcomes of non-small cell lung cancer patients treated with immune checkpoint inhibitors: A meta-analysis. BMC Cancer 2023, 23, 1023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  110. Bu, D.X.; Tarrio, M.; Maganto-Garcia, E.; Stavrakis, G.; Tajima, G.; Lederer, J.; Jarolim, P.; Freeman, G.J.; Sharpe, A.H.; Lichtman, A.H. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arter. Thromb. Vasc. Biol. 2011, 31, 1100–1107. [Google Scholar] [CrossRef]
  111. Fernandez, D.M.; Rahman, A.H.; Fernandez, N.F.; Chudnovskiy, A.; Amir, E.D.; Amadori, L.; Khan, N.S.; Wong, C.K.; Shamailova, R.; Hill, C.A.; et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 2019, 25, 1576–1588. [Google Scholar] [CrossRef]
  112. Vuong, J.T.; Stein-Merlob, A.F.; Nayeri, A.; Sallam, T.; Neilan, T.G.; Yang, E.H. Immune Checkpoint Therapies and Atherosclerosis: Mechanisms and Clinical Implications: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 577–593. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  113. Suero-Abreu, G.A.; Zanni, M.V.; Neilan, T.G. Atherosclerosis with Immune Checkpoint Inhibitor Therapy: Evidence, Diagnosis, and Management: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2022, 4, 598–615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  114. Piras, L.; Zuccanti, M.; Russo, P.; Riccio, F.; Agresti, A.; Lustri, C.; Dardani, D.; Ferrera, A.; Fiorentini, V.; Tocci, G.; et al. Association between Immune Checkpoint Inhibitors and Atherosclerotic Cardiovascular Disease Risk: Another Brick in the Wall. Int. J. Mol. Sci. 2024, 25, 2502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  115. Libby, P.; Lichtman, A.H.; Hansson, G.K. Immune effector mechanisms implicated in atherosclerosis: From mice to humans. Immunity 2013, 38, 1092–1104, Erratum in Immunity 2013, 39, 413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  116. Bergqvist, D.; Björck, M.; Säwe, J.; Troëng, T. Randomized trials or population-based registries. Eur. J. Vasc. Endovasc. Surg. 2007, 34, 253–256. [Google Scholar] [CrossRef] [PubMed]
  117. Rogers, J.R.; Liu, C.; Hripcsak, G.; Cheung, Y.K.; Weng, C. Comparison of clinical characteristics between clinical trial participants and nonparticipants using electronic health record data. JAMA Netw. Open 2021, 4, e214732. [Google Scholar] [CrossRef]
  118. Bonsu, J.; Charles, L.; Guha, A.; Awan, F.; Woyach, J.; Yildiz, V.; Wei, L.; Jneid, H.; Addison, D. Representation of patients with cardiovascular disease in pivotal cancer clinical trials. Circulation 2019, 139, 2594–2596. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  119. Tan, S.; Sivakumar, S.; Segelov, E.; Nicholls, S.J.; Nelson, A.J. Cardiovascular risk factor reporting in immune checkpoint inhibitor trials: A systematic review. Cancer Epidemiol. 2023, 83, 102334. [Google Scholar] [CrossRef]
  120. Johnson, D.B.; Balko, J.M.; Compton, M.L.; Chalkias, S.; Gorham, J.; Xu, Y.; Hicks, M.; Puzanov, I.; Alexander, M.R.; Bloomer, T.L.; et al. Fulminant Myocarditis with Combination Immune Checkpoint Blockade. N. Engl. J. Med. 2016, 375, 1749–1755. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  121. Agostinetto, E.; Eiger, D.; Lambertini, M.; Ceppi, M.; Bruzzone, M.; Pondé, N.; Plummer, C.; Awada, A.H.; Santoro, A.; Piccart-Gebhart, M.; et al. Cardiotoxicity of immune checkpoint inhibitors: A systematic review and meta-analysis of randomised clinical trials. Eur. J. Cancer 2021, 148, 76–91. [Google Scholar] [CrossRef] [PubMed]
  122. Rahouma, M.; Karim, N.A.; Baudo, M.; Yahia, M.; Kamel, M.; Eldessouki, I.; Abouarab, A.; Saad, I.; Elmously, A.; Gray, K.D.; et al. Cardiotoxicity with immune system targeting drugs: A meta-analysis of anti-PD/PD-L1 immunotherapy randomized clinical trials. Immunotherapy 2019, 11, 725–735. [Google Scholar] [CrossRef] [PubMed]
  123. Kanji, S.; Morin, S.; Agtarap, K.; Purkayastha, D.; Thabet, P.; Bosse, D.; Wang, X.; Lunny, C.; Hutton, B. Adverse Events Associated with Immune Checkpoint Inhibitors: Overview of Systematic Reviews. Drugs 2022, 82, 793–809. [Google Scholar] [CrossRef] [PubMed]
  124. Malaty, M.M.; Amarasekera, A.T.; Li, C.; Scherrer-Crosbie, M.; Tan, T.C. Incidence of immune checkpoint inhibitor mediated cardiovascular toxicity: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2022, 52, e13831. [Google Scholar] [CrossRef] [PubMed]
  125. Naqash, A.R.; Moey, M.Y.Y.; Cherie Tan, X.W.; Laharwal, M.; Hill, V.; Moka, N.; Finnigan, S.; Murray, J.; Johnson, D.B.; Moslehi, J.J.; et al. Major Adverse Cardiac Events with Immune Checkpoint Inhibitors: A Pooled Analysis of Trials Sponsored by the National Cancer Institute-Cancer Therapy Evaluation Program. J. Clin. Oncol. 2022, 40, 3439–3452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  126. Dolladille, C.; Akroun, J.; Morice, P.M.; Dompmartin, A.; Ezine, E.; Sassier, M.; Da-Silva, A.; Plane, A.F.; Legallois, D.; L’Orphelin, J.M.; et al. Cardiovascular immunotoxicities associated with immune checkpoint inhibitors: A safety meta-analysis. Eur. Heart J. 2021, 42, 4964–4977. [Google Scholar] [CrossRef] [PubMed]
  127. Salem, J.E.; Manouchehri, A.; Moey, M.; Lebrun-Vignes, B.; Bastarache, L.; Pariente, A.; Gobert, A.; Spano, J.P.; Balko, J.M.; Bonaca, M.P.; et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: An observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018, 19, 1579–1589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  128. Lee, A.; Yuan, Y.; Eccles, L.; Chitkara, A.; Dalén, J.; Varol, N. Treatment patterns for advanced non-small cell lung cancer in the US: A systematic review of observational studies. Cancer Treat. Res. Commun. 2022, 33, 100648. [Google Scholar] [CrossRef] [PubMed]
  129. Carroll, R.; Bortolini, M.; Calleja, A.; Munro, R.; Kong, S.; Daumont, M.J.; Penrod, J.R.; Lakhdari, K.; Lacoin, L.; Cheung, W.Y. Trends in treatment patterns and survival outcomes in advanced non-small cell lung cancer: A Canadian population-based real-world analysis. BMC Cancer 2022, 22, 255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  130. Shin, Y.E.; Kumar, A.; Guo, J.J. Spending, utilization, and price trends for immune checkpoint inhibitors in US medicaid programs: An empirical analysis from 2011 to 2021. Clin. Drug Investig. 2023, 43, 289–298. [Google Scholar] [CrossRef]
  131. Hektoen, H.H.; Tsuruda, K.M.; Fjellbirkeland, L.; Nilssen, Y.; Brustugun, O.T.; Andreassen, B.K. Real-world evidence for pembrolizumab in non-small cell lung cancer: A nationwide cohort study. Br. J. Cancer 2025, 132, 93–102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  132. Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126, Erratum in J. Clin. Oncol. 2022, 40, 315. [Google Scholar] [CrossRef] [PubMed]
  133. Power, J.R.; Dolladille, C.; Ozbay, B.; Procureur, A.; Ederhy, S.; Palaskas, N.L.; Lehmann, L.H.; Cautela, J.; Courand, P.Y.; Hayek, S.S.; et al. International ICI-Myocarditis Registry. Immune checkpoint inhibitor-associated myocarditis: A novel risk score. Eur. Heart J. 2025, ehaf315; Erratum in Eur. Heart J. 2025, ehaf529. [Google Scholar] [CrossRef] [PubMed]
  134. Moslehi, J.J.; Salem, J.E.; Sosman, J.A.; Lebrun-Vignes, B.; Johnson, D.B. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 2018, 391, 933. [Google Scholar] [CrossRef]
  135. Gougis, P.; Jochum, F.; Abbar, B.; Dumas, E.; Bihan, K.; Lebrun-Vignes, B.; Moslehi, J.; Spano, J.P.; Laas, E.; Hotton, J.; et al. Clinical spectrum and evolution of immune-checkpoint inhibitors toxicities over a decade-a worldwide perspective. EClinicalMedicine 2024, 70, 102536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  136. Jain, P.; Bugarin, J.G.; Guha, A.; Jain, C.; Patil, N.; Shen, T.; Stanevich, I.; Nikore, V.; Margolin, K.; Ernstoff, M.; et al. Cardiovascular adverse events are associated with usage of immune checkpoint inhibitors in real-world clinical data across the United States. ESMO Open 2021, 6, 100252, Erratum in ESMO Open 2021, 6, 100286. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  137. Cheng, X.; Lin, J.; Wang, B.; Huang, S.; Liu, M.; Yang, J. Clinical characteristics and influencing factors of anti-PD-1/PD-L1-related severe cardiac adverse event: Based on FAERS and TCGA databases. Sci. Rep. 2024, 14, 22199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  138. D’Souza, M.; Nielsen, D.; Svane, I.M.; Iversen, K.; Rasmussen, P.V.; Madelaire, C.; Fosbøl, E.; Køber, L.; Gustafsson, F.; Andersson, C.; et al. The risk of cardiac events in patients receiving immune checkpoint inhibitors: A nationwide Danish study. Eur. Heart J. 2021, 42, 1621–1631. [Google Scholar] [CrossRef] [PubMed]
  139. Li, H.; Zheng, Y.; Li, B.; Zhi, Y.; Chen, M.; Zeng, J.; Jiao, Q.; Tao, Y.; Liu, X.; Shen, Z.; et al. Association among major adverse cardiovascular events with immune checkpoint inhibitors: A systematic review and meta-analysis. J. Intern. Med. 2025, 297, 36–46. [Google Scholar] [CrossRef] [PubMed]
  140. Delombaerde, D.; Oeste, C.L.; Geldhof, V.; Croes, L.; Bassez, I.; Verbiest, A.; Tack, L.; Hens, D.; Franssen, C.; Debruyne, P.R.; et al. Cardiovascular toxicities in cancer patients treated with immune checkpoint inhibitors: Multicenter study using natural language processing on Belgian hospital data. ESMO Real. World Data Digit. Oncol. 2025, 7, 100111. [Google Scholar] [CrossRef]
  141. Zheng, Y.; Liu, Z.; Chen, D.; Zhang, J.; Yuan, M.; Zhang, Y.; Liu, S.; Zhang, G.; Yang, G. The Cardiotoxicity Risk of Immune Checkpoint Inhibitors Compared with Chemotherapy: A Systematic Review and Meta-analysis of Observational Studies. Cardiovasc. Toxicol. 2025, 25, 805–819. [Google Scholar] [CrossRef] [PubMed]
  142. Poels, K.; van Leent, M.M.T.; Reiche, M.E.; Kusters, P.J.H.; Huveneers, S.; de Winther, M.P.J.; Mulder, W.J.M.; Lutgens, E.; Seijkens, T.T.P. Antibody-Mediated Inhibition of CTLA4 Aggravates Atherosclerotic Plaque Inflammation and Progression in Hyperlipidemic Mice. Cells 2020, 9, 1987. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  143. Strauss, L.; Mahmoud, M.A.A.; Weaver, J.D.; Tijaro-Ovalle, N.M.; Christofides, A.; Wang, Q.; Pal, R.; Yuan, M.; Asara, J.; Patsoukis, N.; et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci. Immunol. 2020, 5, eaay1863. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  144. Gotsman, I.; Grabie, N.; Dacosta, R.; Sukhova, G.; Sharpe, A.; Lichtman, A.H. Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice. J. Clin. Investig. 2007, 117, 2974–2982. [Google Scholar] [CrossRef] [PubMed]
  145. Roy, P.; Orecchioni, M.; Ley, K. How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity. Nat. Rev. Immunol. 2022, 22, 251–265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  146. Poels, K.; van Leent, M.M.T.; Boutros, C.; Tissot, H.; Roy, S.; Meerwaldt, A.E.; Toner, Y.C.A.; Reiche, M.E.; Kusters, P.J.H.; Malinova, T.; et al. Immune Checkpoint Inhibitor Therapy Aggravates T Cell-Driven Plaque Inflammation in Atherosclerosis. JACC CardioOncol. 2020, 2, 599–610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  147. Drobni, Z.D.; Alvi, R.M.; Taron, J.; Zafar, A.; Murphy, S.P.; Rambarat, P.K.; Mosarla, R.C.; Lee, C.; Zlotoff, D.A.; Raghu, V.K.; et al. Association Between Immune Checkpoint Inhibitors with Cardiovascular Events and Atherosclerotic Plaque. Circulation 2020, 142, 2299–2311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  148. Drobni, Z.D.; Gongora, C.; Taron, J.; Suero-Abreu, G.A.; Karady, J.; Gilman, H.K.; Supraja, S.; Nikolaidou, S.; Leeper, N.; Merkely, B.; et al. Impact of immune checkpoint inhibitors on atherosclerosis progression in patients with lung cancer. J. Immunother. Cancer 2023, 11, e007307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  149. Gong, B.; Guo, Y.; Li, Y.; Wang, J.; Zhou, G.; Chen, Y.H.; Nie, T.; Yang, M.; Luo, K.; Zheng, C.; et al. Immune checkpoint inhibitors in cancer: The increased risk of atherosclerotic cardiovascular disease events and progression of coronary artery calcium. BMC Med. 2024, 22, 44. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  150. Pasello, G.; Pavan, A.; Attili, I.; Bortolami, A.; Bonanno, L.; Menis, J.; Conte, P.; Guarneri, V. Real world data in the era of Immune Checkpoint Inhibitors (ICIs): Increasing evidence and future applications in lung cancer. Cancer Treat. Rev. 2020, 87, 102031. [Google Scholar] [CrossRef] [PubMed]
  151. Spigel, D.R.; McCleod, M.; Jotte, R.M.; Einhorn, L.; Horn, L.; Waterhouse, D.M.; Creelan, B.; Babu, S.; Leighl, N.B.; Chandler, J.C.; et al. Efficacy, and Patient-Reported Health-Related Quality of Life and Symptom Burden with Nivolumab in Patients with Advanced Non-Small Cell Lung Cancer, Including Patients Aged 70 Years or Older or with Poor Performance Status (CheckMate 153). J. Thorac. Oncol. 2019, 14, 1628–1639. [Google Scholar] [CrossRef] [PubMed]
  152. La, J.; Cheng, D.; Brophy, M.T.; Do, N.V.; Lee, J.S.; Tuck, D.; Fillmore, N.R. Real-World Outcomes for Patients Treated with Immune Checkpoint Inhibitors in the Veterans Affairs System. JCO Clin. Cancer Inform. 2020, 4, 918–928. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  153. Johns, A.C.; Yang, M.; Wei, L.; Grogan, M.; Patel, S.H.; Li, M.; Husain, M.; Kendra, K.L.; Otterson, G.A.; Burkart, J.T.; et al. Association of medical comorbidities and cardiovascular disease with toxicity and survival among patients receiving checkpoint inhibitor immunotherapy. Cancer Immunol. Immunother. 2023, 72, 2005–2013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  154. Hu, X.; Lin, J.H.; Pan, S.; Salei, Y.V.; Parsons, S.K. The real-world insights on the use, safety, and outcome of immune-checkpoint inhibitors in underrepresented populations with lung cancer. Cancer Treat. Res. Commun. 2024, 40, 100833. [Google Scholar] [CrossRef] [PubMed]
  155. Lee, C.; Drobni, Z.D.; Zafar, A.; Gongora, C.A.; Zlotoff, D.A.; Alvi, R.M.; Taron, J.; Rambarat, P.K.; Schoenfeld, S.; Mosarla, R.C.; et al. Pre-Existing Autoimmune Disease Increases the Risk of Cardiovascular and Noncardiovascular Events After Immunotherapy. JACC CardioOncol. 2022, 4, 660–669. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  156. Teske, A.J.; Moudgil, R.; López-Fernández, T.; Barac, A.; Brown, S.A.; Deswal, A.; Neilan, T.G.; Ganatra, S.; Abdel Qadir, H.; Menon, V.; et al. Global Cardio Oncology Registry (G-COR): Registry Design, Primary Objectives, and Future Perspectives of a Multicenter Global Initiative. Circ. Cardiovasc. Qual. Outcomes 2023, 16, e009905. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  157. Hussaini, S.; Chehade, R.; Boldt, R.G.; Raphael, J.; Blanchette, P.; Vareki, S.M.; Fernandes, R. Association between immune-related side effects and efficacy and benefit of immune checkpoint inhibitors–a systematic review and meta-analysis. Cancer Treat. Rev. 2021, 92, 102134. [Google Scholar] [CrossRef] [PubMed]
  158. Maccio, U.; Wicki, A.; Ruschitzka, F.; Beuschlein, F.; Wolleb, S.; Varga, Z.; Moch, H. Frequency and Consequences of Immune Checkpoint Inhibitor-Associated Inflammatory Changes in Different Organs: An Autopsy Study Over 13-Years. Mod. Pathol. 2024, 38, 100683. [Google Scholar] [CrossRef] [PubMed]
  159. Fujiwara, Y.; Horita, N.; Adib, E.; Zhou, S.; Nassar, A.H.; Asad, Z.U.A.; Cortellini, A.; Naqash, A.R. Treatment-related adverse events, including fatal toxicities, in patients with solid tumours receiving neoadjuvant and adjuvant immune checkpoint blockade: A systematic review and meta-analysis of randomised controlled trials. Lancet Oncol. 2024, 25, 62–75. [Google Scholar] [CrossRef] [PubMed]
  160. Aburaki, R.; Fujiwara, Y.; Chida, K.; Horita, N.; Nagasaka, M. Surgical and safety outcomes in patients with non-small cell lung cancer receiving neoadjuvant chemoimmunotherapy versus chemotherapy alone: A systematic review and meta-analysis. Cancer Treat. Rev. 2024, 131, 102833. [Google Scholar] [CrossRef] [PubMed]
  161. Yu, X.; Huang, C.; Du, L.; Wang, C.; Yang, Y.; Yu, X.; Lin, S.; Yang, C.; Zhao, H.; Cai, S.; et al. Efficacy and safety of perioperative sintilimab plus platinum-based chemotherapy for potentially resectable stage IIIB non-small cell lung cancer (periSCOPE): An open-label, single-arm, phase II trial. EClinicalMedicine 2024, 79, 102997. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  162. Tang, M.; Lee, C.K.; Lewis, C.R.; Boyer, M.; Brown, B.; Schaffer, A.; Pearson, S.A.; Simes, R.J. Generalizability of immune checkpoint inhibitor trials to real-world patients with advanced non-small cell lung cancer. Lung Cancer 2022, 166, 40–48. [Google Scholar] [CrossRef] [PubMed]
  163. Kocher, F.; Fiegl, M.; Mian, M.; Hilbe, W. Cardiovascular Comorbidities and Events in NSCLC: Often Underestimated but Worth Considering. Clin. Lung Cancer 2015, 16, 305–312. [Google Scholar] [CrossRef] [PubMed]
  164. de Jesus, M.; Chanda, A.; Grabauskas, T.; Kumar, M.; Kim, A.S. Cardiovascular disease and lung cancer. Front. Oncol. 2024, 14, 1258991. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  165. Yegya-Raman, N.; Berlin, E.; Feigenberg, S.J.; Ky, B.; Sun, L. Cardiovascular Toxicity and Risk Mitigation with Lung Cancer Treatment. Curr. Oncol. Rep. 2023, 25, 433–444. [Google Scholar] [CrossRef] [PubMed]
  166. Gould, M.K.; Munoz-Plaza, C.E.; Hahn, E.E.; Lee, J.S.; Parry, C.; Shen, E. Comorbidity Profiles and Their Effect on Treatment Selection and Survival among Patients with Lung Cancer. Ann. Am. Thorac. Soc. 2017, 14, 1571–1580. [Google Scholar] [CrossRef] [PubMed]
  167. O’Sullivan, D.E.; Boyne, D.J.; Ford-Sahibzada, C.; Inskip, J.A.; Smith, C.J.; Sripada, K.; Brenner, D.R.; Cheung, W.Y. Real-World Treatment Patterns, Clinical Outcomes, and Healthcare Resource Utilization in Early-Stage Non-Small-Cell Lung Cancer. Curr. Oncol. 2024, 31, 447–461. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  168. Hernandez, D.; Cheng, C.Y.; Hernandez-Villafuerte, K.; Schlander, M. Survival and comorbidities in lung cancer patients: Evidence from administrative claims data in Germany. Oncol. Res. 2023, 30, 173. [Google Scholar] [CrossRef]
  169. Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; Rimner, A.; et al. Five-Year Survival Outcomes from the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311, Erratum in J. Clin. Oncol. 2022, 40, 1965. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  170. Leighl, N.B.; Hellmann, M.D.; Hui, R.; Carcereny, E.; Felip, E.; Ahn, M.-J.; Eder, J.P.; Balmanoukian, A.S.; Aggarwal, C.; Horn, L.; et al. Pembrolizumab in patients with advanced non-small-cell lung cancer (KEYNOTE-001): 3-year results from an open-label, phase 1 study. Lancet Respir. Med. 2019, 7, 347–357. [Google Scholar] [CrossRef] [PubMed]
  171. Walls, G.M.; Bergom, C.; Mitchell, J.D.; Rentschler, S.L.; Hugo, G.D.; Samson, P.P.; Robinson, C.G. Cardiotoxicity following thoracic radiotherapy for lung cancer. Br. J. Cancer 2025, 132, 311–325, Erratum in Br. J. Cancer 2025, 132, 401–407. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  172. Boulet, J.; Peña, J.; Hulten, E.A.; Neilan, T.G.; Dragomir, A.; Freeman, C.; Lambert, C.; Hijal, T.; Nadeau, L.; Brophy, J.M.; et al. Statin Use and Risk of Vascular Events Among Cancer Patients After Radiotherapy to the Thorax, Head, and Neck. J. Am. Heart Assoc. 2019, 8, e005996. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  173. Atkins, K.M.; Bitterman, D.S.; Chaunzwa, T.L.; Williams, C.L.; Rahman, R.; Kozono, D.E.; Baldini, E.H.; Aerts, H.J.; Tamarappoo, B.K.; Hoffmann, U.; et al. Statin Use, Heart Radiation Dose, and Survival in Locally Advanced Lung Cancer. Pract. Radiat. Oncol. 2021, 11, e459–e467. [Google Scholar] [CrossRef] [PubMed]
  174. Gietema, J.A.; Meinardi, M.T.; Messerschmidt, J.; Gelevert, T.; Alt, F.; Uges, D.R.; Sleijfer, D.T. Circulating plasma platinum more than 10 years after cisplatin treatment for testicular cancer. Lancet 2000, 355, 1075–1076. [Google Scholar] [CrossRef] [PubMed]
  175. Chan, S.H.Y.; Fitzpatrick, R.W.; Layton, D.; Webley, S.; Salek, S. Cancer Therapy-Induced Cardiotoxicity: Results of the Analysis of the UK DEFINE Database. Cancers 2025, 17, 311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  176. Demkow, U.; Stelmaszczyk-Emmel, A. Cardiotoxicity of cisplatin-based chemotherapy in advanced non-small cell lung cancer patients. Respir. Physiol. Neurobiol. 2013, 187, 64–67. [Google Scholar] [CrossRef] [PubMed]
  177. Largeau, B.; Cracowski, J.L.; Lengellé, C.; Sautenet, B.; Jonville-Béra, A.P. Drug-induced peripheral oedema: An aetiology-based review. Br. J. Clin. Pharmacol. 2021, 87, 3043–3055. [Google Scholar] [CrossRef] [PubMed]
  178. Alexandre, J.; Moslehi, J.J.; Bersell, K.R.; Funck-Brentano, C.; Roden, D.M.; Salem, J.E. Anticancer drug-induced cardiac rhythm disorders: Current knowledge and basic underlying mechanisms. Pharmacol. Ther. 2018, 189, 89–103. [Google Scholar] [CrossRef] [PubMed]
  179. Chen, S.; He, Z.; Li, M.; Weng, L.; Lin, J. Efficacy and safety of metronomic oral vinorelbine and its combination therapy as second- and later-line regimens for advanced non-small-cell lung cancer: A retrospective analysis. Clin. Transl. Oncol. 2024, 26, 3202–3210. [Google Scholar] [CrossRef] [PubMed]
  180. Cui, Z.; Cheng, F.; Wang, L.; Zou, F.; Pan, R.; Tian, Y.; Zhang, X.; She, J.; Zhang, Y.; Yang, X. A pharmacovigilance study of etoposide in the FDA adverse event reporting system (FAERS) database, what does the real world say? Front. Pharmacol. 2023, 14, 1259908. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  181. Wang, K.; Eblan, M.J.; Deal, A.M.; Lipner, M.; Zagar, T.M.; Wang, Y.; Mavroidis, P.; Lee, C.B.; Jensen, B.C.; Rosenman, J.G.; et al. Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: Pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J. Clin. Oncol. 2017, 35, 1387–1394. [Google Scholar] [CrossRef]
  182. Dess, R.T.; Sun, Y.; Matuszak, M.M.; Sun, G.; Soni, P.D.; Bazzi, L.; Murthy, V.L.; Hearn, J.W.D.; Kong, F.-M.; Kalemkerian, G.P.; et al. Cardiac events after radiation therapy: Combined analysis of prospective multicenter trials for locally advanced non-small-cell lung cancer. J. Clin. Oncol. 2017, 35, 1395–1402. [Google Scholar] [CrossRef]
  183. García-Pardo, M.; Chang, A.; Schmid, S.; Dong, M.; Brown, M.; Christiani, D.; Tindel, H.A.; Brennan, P.; Chen, C.; Zhang, J.; et al. Respiratory and Cardiometabolic Comorbidities and Stages I to III NSCLC Survival: A Pooled Analysis from the International Lung Cancer Consortium. J. Thorac. Oncol. 2023, 18, 313–323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  184. Tohidinezhad, F.; Pennetta, F.; van Loon, J.; Dekker, A.; de Ruysscher, D.; Traverso, A. Prediction models for treatment-induced cardiac toxicity in patients with non-small-cell lung cancer: A systematic review and meta-analysis. Clin. Transl. Radiat. Oncol. 2022, 33, 134–144. [Google Scholar] [CrossRef] [PubMed]
  185. Liu, S.; Gao, W.; Ning, Y.; Zou, X.; Zhang, W.; Zeng, L.; Liu, J. Cardiovascular Toxicity with PD-1/PD-L1 Inhibitors in Cancer Patients: A Systematic Review and Meta-Analysis. Front. Immunol. 2022, 13, 908173. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  186. Bishnoi, R.; Shah, C.; Blaes, A.; Bian, J.; Hong, Y.R. Cardiovascular toxicity in patients treated with immunotherapy for metastatic non-small cell lung cancer: A SEER-medicare study: CVD outcomes with the use of ICI in mNSCLC. Lung Cancer 2020, 150, 172–177. [Google Scholar] [CrossRef] [PubMed]
  187. Sabaté-Ortega, J.; Teixidor-Vilà, E.; Sais, È.; Hernandez-Martínez, A.; Montañés-Ferrer, C.; Coma, N.; Polonio-Alcalá, E.; Pineda, V.; Bosch-Barrera, J. Cardiovascular toxicity induced by immunotherapy in non-small cell lung cancer: A systematic review and meta-analysis of observational studies. Front. Oncol. 2025, 15, 1528950. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  188. Li, F.; Zheng, L.; Xu, X.; Jin, J.; Li, X.; Zhou, L. The impact of chronic obstructive pulmonary disease on the risk of immune-related pneumonitis in lung cancer patients undergoing immunotherapy: A systematic review and meta-analysis. BMC Pulm. Med. 2024, 24, 393. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  189. Al-Nusair, J.; Obeidat, O.; Masoudi, M.D.; Wright, T.; Al-Momani, Z.; Gebremedhen, A.I.; Alnabahneb, N.; Pacioles, T.; Jamil, M.O. Evaluating the impact of COPD exacerbations on survival outcomes in non-small cell lung cancer patients receiving immunotherapy: A retrospective cohort analysis. J. Clin. Oncol. 2025, 43 (Suppl. S16), e20613. [Google Scholar] [CrossRef]
  190. Nguyen, N.N.; Nguyen, T.H.H.; Hoang, K.D.; Vo, T.K.; Minh Pham, Q.H.; Chen, Y.C. The prognostic significance of diabetes in non-small cell lung cancer patients treated with immune checkpoint inhibitors: A meta-analysis. Diabetes Res. Clin. Pract. 2024, 218, 111930. [Google Scholar] [CrossRef] [PubMed]
  191. Oh, S.; Lee, J.; Hong, Y.S.; Kim, K. Increased risk of cardiovascular disease associated with diabetes among adult cancer survivors: A population-based matched cohort study. Eur. J. Prev. Cardiol. 2023, 30, 670–679. [Google Scholar] [CrossRef] [PubMed]
  192. Katagiri, H.; Yamada, T.; Oka, Y. Adiposity and cardiovascular disorders: Disturbance of the regulatory system consisting of humoral and neuronal signals. Circ. Res. 2007, 101, 27–39, Erratum in Circ. Res. 2007, 101, e79. [Google Scholar] [CrossRef] [PubMed]
  193. Larabee, C.M.; Neely, O.C.; Domingos, A.I. Obesity: A neuroimmunometabolic perspective. Nat. Rev. Endocrinol. 2020, 16, 30–43. [Google Scholar] [CrossRef] [PubMed]
  194. Rahal, Z.; El Darzi, R.; Moghaddam, S.J.; Cascone, T.; Kadara, H. Tumour and microenvironment crosstalk in NSCLC progression and response to therapy. Nat. Rev. Clin. Oncol. 2025, 22, 463–482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  195. Tenuta, M.; Gelibter, A.; Pandozzi, C.; Sirgiovanni, G.; Campolo, F.; Venneri, M.A.; Caponnetto, S.; Cortesi, E.; Marchetti, P.; Isidori, A.M.; et al. Impact of Sarcopenia and Inflammation on Patients with Advanced Non-Small Cell Lung Cancer (NCSCL) Treated with Immune Checkpoint Inhibitors (ICIs): A Prospective Study. Cancers 2021, 13, 6355. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  196. Baskaran, G.; Heo, R.H.; Wang, M.K.; Meyre, P.B.; Park, L.; Blum, S.; Devereaux, P.J.; Conen, D. Associations of inflammatory biomarkers with morbidity and mortality after noncardiac surgery: A systematic review and meta-analysis. J. Clin. Anesth. 2024, 97, 111540. [Google Scholar] [CrossRef] [PubMed]
  197. Jin, J.; Yang, L.; Liu, D.; Li, W. Association of the neutrophil to lymphocyte ratio and clinical outcomes in patients with lung cancer receiving immunotherapy: A meta-analysis. BMJ Open 2020, 10, e035031. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  198. Peng, B.; Wang, Y.H.; Liu, Y.M.; Ma, L.X. Prognostic significance of the neutrophil to lymphocyte ratio in patients with non-small cell lung cancer: A systemic review and meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 3098. [Google Scholar]
  199. Liu, K.; Yang, L.; Liu, Y.; Zhang, Y.; Zhu, J.; Zhang, H.; He, Z. Systemic Immune-Inflammation Index (SII) and Neutrophil-to-Lymphocyte Ratio (NLR): A Strong Predictor of Disease Severity in Large-Artery Atherosclerosis (LAA) Stroke Patients. J. Inflamm. Res. 2025, 18, 195–202. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  200. Afari, M.E.; Bhat, T. Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: An update. Expert. Rev. Cardiovasc. Ther. 2016, 14, 573–577. [Google Scholar] [CrossRef] [PubMed]
  201. Zhang, Y.Y.; Liu, F.H.; Wang, Y.L.; Liu, J.X.; Wu, L.; Qin, Y.; Zheng, W.R.; Xing, W.Y.; Xu, J.; Chen, X.; et al. Associations between peripheral whole blood cell counts derived indexes and cancer prognosis: An umbrella review of meta-analyses of cohort studies. Crit. Rev. Oncol. Hematol. 2024, 204, 104525. [Google Scholar] [CrossRef] [PubMed]
  202. Liu, X.Y.; Zhang, X.; Zhang, Q.; Ruan, G.T.; Liu, T.; Xie, H.L.; Ge, Y.Z.; Song, M.M.; Deng, L.; Shi, H.P. The value of CRP-albumin-lymphocyte index (CALLY index) as a prognostic biomarker in patients with non-small cell lung cancer. Support. Care Cancer 2023, 31, 533. [Google Scholar] [CrossRef] [PubMed]
  203. Zhu, D.; Lin, Y.D.; Yao, Y.Z.; Qi, X.J.; Qian, K.; Lin, L.Z. Negative association of C-reactive protein-albumin-lymphocyte index (CALLY index) with all-cause and cause-specific mortality in patients with cancer: Results from NHANES 1999-2018. BMC Cancer 2024, 24, 1499. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  204. Vernooij, L.M.; van Klei, W.A.; Moons, K.G.; Takada, T.; van Waes, J.; Damen, J.A. The comparative and added prognostic value of biomarkers to the Revised Cardiac Risk Index for preoperative prediction of major adverse cardiac events and all-cause mortality in patients who undergo noncardiac surgery. Cochrane Database Syst. Rev. 2021, 12, CD013139. [Google Scholar] [CrossRef]
  205. Lamperti, M.; Romero, C.S.; Guarracino, F.; Cammarota, G.; Vetrugno, L.; Tufegdzic, B.; Lozsan, F.; Macias Frias, J.J.; Duma, A.; Bock, M.; et al. Preoperative assessment of adults undergoing elective noncardiac surgery: Updated guidelines from the European Society of Anaesthesiology and Intensive Care. Eur. J. Anaesthesiol. 2025, 42, 1–35. [Google Scholar] [CrossRef] [PubMed]
  206. Thompson, A.; Fleischmann, K.E.; Smilowitz, N.R.; de Las Fuentes, L.; Mukherjee, D.; Aggarwal, N.R.; Ahmad, F.S.; Allen, R.B.; Altin, S.E.; Auerbach, A.; et al. AHA/ACC/ACS/ASNC/HRS/SCA/SCCT/SCMR/SVM Guideline for Perioperative Cardiovascular Management for Noncardiac Surgery: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 150, e351–e442, Erratum in Circulation 2024, 150, e466. [Google Scholar] [CrossRef] [PubMed]
  207. Parashar, Y.; Awwad, A.; Bagchi, S.; Claggett, B.; Siddiqui, S.A.; Ogheneochuko, A.W.; Ballantyne, C.M.; deFilippi, C. A Meta-Analysis and Systematic Review of Cardiac Troponin I vs T in Community Dwelling Adults: Is Specificity at Risk? Clin. Chem. 2025, hvaf023. [Google Scholar] [CrossRef] [PubMed]
  208. Cortés-Ibáñez, F.O.; Johnson, T.; Mascalchi, M.; Katzke, V.; Delorme, S.; Kaaks, R. Cardiac troponin I as predictor for cardiac and other mortality in the German randomized lung cancer screening trial (LUSI). Sci. Rep. 2024, 14, 7197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  209. Shahraki, N.; Samadi, S.; Arasteh, O.; Dashtbayaz, R.J.; Zarei, B.; Mohammadpour, A.H.; Jomehzadeh, V. Cardiac troponins and coronary artery calcium score: A systematic review. BMC Cardiovasc. Disord. 2024, 24, 96. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  210. Shemesh, J.; Henschke, C.I.; Farooqi, A.; Yip, R.; Yankelevitz, D.F.; Shaham, D.; Miettinen, O.S. Frequency of coronary artery calcification on low-dose computed tomography screening for lung cancer. Clin. Imaging 2006, 30, 181–185. [Google Scholar] [CrossRef] [PubMed]
  211. Dzaye, O.; Berning, P.; Dardari, Z.A.; Mortensen, M.B.; Marshall, C.H.; Nasir, K.; Budoff, M.J.; Blumenthal, R.S.; Whelton, S.P.; Blaha, M.J. Coronary artery calcium is associated with increased risk for lung and colorectal cancer in men and women: The Multi-Ethnic Study of Atherosclerosis (MESA). Eur. Heart J. Cardiovasc. Imaging 2022, 23, 708–716. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  212. Gendarme, S.; Maitre, B.; Hanash, S.; Pairon, J.C.; Canoui-Poitrine, F.; Chouaïd, C. Beyond lung cancer screening, an opportunity for early detection of chronic obstructive pulmonary disease and cardiovascular diseases. JNCI Cancer Spectr. 2024, 8, pkae082. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  213. Mascalchi, M.; Puliti, D.; Romei, C.; Picozzi, G.; De Liperi, A.; Diciotti, S.; Bartolucci, M.; Grazzini, M.; Vannucchi, L.; Falaschi, F.; et al. Moderate-severe coronary calcification predicts long-term cardiovascular death in CT lung cancer screening: The ITALUNG trial. Eur. J. Radiol. 2021, 145, 110040. [Google Scholar] [CrossRef] [PubMed]
  214. Koutroumpakis, E.; Xu, T.; Lopez-Mattei, J.; Pan, T.; Lu, Y.; Irizarry-Caro, J.A.; Mohan, R.; Zhang, X.; Meng, Q.H.; Lin, R.; et al. Coronary artery calcium score on standard of care oncologic CT scans for the prediction of adverse cardiovascular events in patients with non-small cell lung cancer treated with concurrent chemoradiotherapy. Front. Cardiovasc. Med. 2022, 9, 1071701. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  215. Osawa, K.; Bessho, A.; Fuke, S.; Moriyama, S.; Mizobuchi, A.; Daido, S.; Tanaka, M.; Yumoto, A.; Saito, H.; Ito, H. Coronary artery calcification scoring system based on the coronary artery calcium data and reporting system (CAC-DRS) predicts major adverse cardiovascular events or all-cause death in patients with potentially curable lung cancer without a history of cardiovascular disease. Heart Vessel. 2020, 35, 1483–1493. [Google Scholar] [CrossRef] [PubMed]
  216. Zahergivar, A.; Golagha, M.; Stoddard, G.; Anderson, P.S.; Woods, L.; Newman, A.; Carter, M.R.; Wang, L.; Ibrahim, M.; Chamberlin, J.; et al. Prognostic value of coronary artery calcium scoring in patients with non-small cell lung cancer using initial staging computed tomography. BMC Med. Imaging 2024, 24, 350. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  217. Hech, H.S.; Cronin, P.; Blaha, M.J.; Budoff, M.J.; Kazerooni, E.A.; Narula, J.; Yankelevitz, D.; Abbara, S. 2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: A report of the Society of Cardiovascular Computed Tomography and Society of Thoracic Radiology. J. Thorac. Imaging 2017, 32, W54–W66. [Google Scholar] [CrossRef] [PubMed]
  218. Meyer, H.J.; Wienke, A.; Surov, A. CT-Defined Coronary Artery Calcification as a Prognostic Marker for Overall Survival in Lung Cancer: A Systematic Review and Meta-analysis. Acad. Radiol. 2025, 32, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
  219. Cao, W.; Han, S.; Zhang, P.; Mi, L.; Wang, Y.; Nie, J.; Dai, L.; Hu, W.; Zhang, J.; Chen, X.; et al. Immune checkpoint inhibitor-related myocarditis in patients with lung cancer. BMC Cancer 2025, 25, 685. [Google Scholar] [CrossRef]
  220. Faubry, C.; Faure, M.; Toublanc, A.C.; Veillon, R.; Lemaître, A.I.; Vergnenègre, C.; Cochet, H.; Khan, S.; Raherison, C.; Dos Santos, P.; et al. Prospective Study to Detect Immune Checkpoint Inhibitors Associated with Myocarditis Among Patients Treated for Lung Cancer. Front. Cardiovasc. Med. 2022, 9, 878211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  221. Takada, K.; Takamori, S.; Brunetti, L.; Crucitti, P.; Cortellini, A. Impact of neoadjuvant immune checkpoint inhibitors on surgery and perioperative complications in patients with non–small-cell lung cancer: A systematic review. Clin. Lung Cancer 2023, 24, 581–590. [Google Scholar] [CrossRef]
  222. Udumyan, R.; Montgomery, S.; Fang, F.; Valdimarsdottir, U.; Hardardottir, H.; Ekbom, A.; Smedby, K.E.; Fall, K. Beta-Blocker Use and Lung Cancer Mortality in a Nationwide Cohort Study of Patients with Primary Non-Small Cell Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2020, 29, 119–126. [Google Scholar] [CrossRef] [PubMed]
  223. Lei, Z.; Yang, W.; Zuo, Y. Beta-blocker and survival in patients with lung cancer: A meta-analysis. PLoS ONE 2021, 16, e0245773. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  224. Oh, M.S.; Guzner, A.; Wainwright, D.A.; Mohindra, N.A.; Chae, Y.K.; Behdad, A.; Villaflor, V.M. The Impact of Beta Blockers on Survival Outcomes in Patients with Non-small-cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Clin. Lung Cancer 2021, 22, e57–e62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  225. Yan, X.; Liu, P.; Li, D.; Hu, R.; Tao, M.; Zhu, S.; Wu, W.; Yang, M.; Qu, X. Novel evidence for the prognostic impact of β-blockers in solid cancer patients receiving immune checkpoint inhibitors. Int. Immunopharmacol. 2022, 113 Pt A, 109383. [Google Scholar] [CrossRef] [PubMed]
  226. Yazawa, T.; Kaira, K.; Shimizu, K.; Shimizu, A.; Mori, K.; Nagashima, T.; Ohtaki, Y.; Oyama, T.; Mogi, A.; Kuwano, H. Prognostic significance of β2-adrenergic receptor expression in non-small cell lung cancer. Am. J. Transl. Res. 2016, 8, 5059–5070. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  227. Dong, Z.K.; Wang, Y.F.; Li, W.P.; Jin, W.L. Neurobiology of cancer: Adrenergic signaling and drug repurposing. Pharmacol. Ther. 2024, 264, 108750. [Google Scholar] [CrossRef] [PubMed]
  228. Leshem, Y.; Etan, T.; Dolev, Y.; Nikolaevski-Berlin, A.; Miodovnik, M.; Shamai, S.; Merimsky, O.; Wolf, I.; Havakuk, O.; Tzuberi, M.; et al. The prognostic value of beta-1 blockers in patients with non-small-cell lung carcinoma treated with pembrolizumab. Int. J. Cardiol. 2024, 397, 131642. [Google Scholar] [CrossRef] [PubMed]
  229. Bhalraam, U.; Veerni, R.B.; Paddock, S.; Meng, J.; Piepoli, M.; López-Fernández, T.; Tsampasian, V.; Vassiliou, V.S. Impact of sodium-glucose cotransporter-2 inhibitors on heart failure outcomes in cancer patients and survivors: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2025, zwaf026. [Google Scholar] [CrossRef] [PubMed]
  230. Luo, J.; Hendryx, M.; Dong, Y. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and non-small cell lung cancer survival. Br. J. Cancer 2023, 128, 1541–1547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  231. Perelman, M.G.; Brzezinski, R.Y.; Waissengrin, B.; Leshem, Y.; Bainhoren, O.; Rubinstein, T.A.; Perelman, M.; Rozenbaum, Z.; Havakuk, O.; Topilsky, Y.; et al. Sodium-glucose co-transporter-2 inhibitors in patients treated with immune checkpoint inhibitors. Cardiooncology 2024, 10, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  232. Zhang, L.; Wang, H.; Tian, J.; Sui, L.; Chen, X. Concomitant Statins and the Survival of Patients with Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors: A Meta-Analysis. Int. J. Clin. Pract. 2022, 2022, 3429462. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  233. Marrone, M.T.; Reuss, J.E.; Crawford, A.; Neelon, B.; Liu, J.O.; Brahmer, J.R.; Platz, E.A. Statin Use with Immune Checkpoint Inhibitors and Survival in Non-small Cell Lung Cancer. Clin. Lung Cancer 2025, 26, 201–209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  234. Cantini, L.; Pecci, F.; Hurkmans, D.P.; Belderbos, R.A.; Lanese, A.; Copparoni, C.; Aerts, S.; Cornelissen, R.; Dumoulin, D.W.; Fiordoliva, I.; et al. High-intensity statins are associated with improved clinical activity of PD-1 inhibitors in malignant pleural mesothelioma and advanced non-small cell lung cancer patients. Eur. J. Cancer 2021, 144, 41–48. [Google Scholar] [CrossRef] [PubMed]
  235. Liao, Y.; Lin, Y.; Ye, X.; Shen, J. Concomitant Statin Use and Survival in Patients with Cancer on Immune Checkpoint Inhibitors: A Meta-Analysis. JCO Oncol. Pract. 2025, 21, 989–1000. [Google Scholar] [CrossRef] [PubMed]
  236. Sun, Y.; Liu, Y.; Dian, Y.; Zeng, F.; Deng, G.; Lei, S. Association of glucagon-like peptide-1 receptor agonists with risk of cancers-evidence from a drug target Mendelian randomization and clinical trials. Int. J. Surg. 2024, 110, 4688–4694. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  237. Song, J.; Cali Daylan, A.E.; Chi, K.Y.; Prem Anand, D.; Chang, Y.; Chiang, C.H.; Cheng, H. Association Between GLP-1 Receptor Agonists and Incidence of Lung Cancer in Treatment-Naïve Type 2 Diabetes. J. Gen. Intern. Med. 2025, 40, 973–976. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  238. Wang, J.; Kim, C.H. Differential Risk of Cancer Associated with Glucagon-like Peptide-1 Receptor Agonists: Analysis of Real-world Databases. Endocr. Res. 2022, 47, 18–25. [Google Scholar] [CrossRef] [PubMed]
  239. Sazgary, L.; Puelacher, C.; Lurati Buse, G.; Glarner, N.; Lampart, A.; Bolliger, D.; Steiner, L.; Gürke, L.; Wolff, T.; Mujagic, E.; et al. BASEL-PMI Investigators. Incidence of major adverse cardiac events following non-cardiac surgery. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 550–558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  240. Smilowitz, N.R.; Gupta, N.; Ramakrishna, H.; Guo, Y.; Berger, J.S.; Bangalore, S. Perioperative Major Adverse Cardiovascular and Cerebrovascular Events Associated with Noncardiac Surgery. JAMA Cardiol. 2017, 2, 181–187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  241. Strickland, S.S.; Quintela, E.M.; Wilson, M.J.; Lee, M.J. Long-term major adverse cardiovascular events following myocardial injury after non-cardiac surgery: Meta-analysis. BJS Open 2023, 7, zrad021. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  242. Smilowitz, N.R.; Gupta, N.; Guo, Y.; Beckman, J.A.; Bangalore, S.; Berger, J.S. Trends in cardiovascular risk factor and disease prevalence in patients undergoing non-cardiac surgery. Heart 2018, 104, 1180–1186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  243. Schneider, L.; Farrokhyar, F.; Schieman, C.; Shargall, Y.; D’Souza, J.; Camposilvan, I.; Hanna, W.C.; Finley, C.J. Pneumonectomy: The burden of death after discharge and predictors of surgical mortality. Ann. Thorac. Surg. 2014, 98, 1976–1981; discussion 1981–1982. [Google Scholar] [CrossRef] [PubMed]
  244. Benker, M.; Citak, N.; Neuer, T.; Opitz, I.; Inci, I. Impact of preoperative comorbidities on postoperative complication rate and outcome in surgically resected non-small cell lung cancer patients. Gen. Thorac. Cardiovasc. Surg. 2022, 70, 248–256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  245. Brunelli, A.; Rocco, G.; Szanto, Z.; Thomas, P.; Falcoz, P.E. Morbidity and mortality of lobectomy or pneumonectomy after neoadjuvant treatment: An analysis from the ESTS database. Eur. J. Cardiothorac. Surg. 2020, 57, 740–746. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  246. Ichinose, J.; Yamamoto, H.; Aokage, K.; Kondo, H.; Sato, Y.; Suzuki, K.; Chida, M. Real-world perioperative outcomes of segmentectomy versus lobectomy for early-stage lung cancer: A propensity score-matched analysis. Eur. J. Cardiothorac. Surg. 2022, 63, ezac529. [Google Scholar] [CrossRef] [PubMed]
  247. Shelley, B.; Glass, A.; Keast, T.; McErlane, J.; Hughes, C.; Lafferty, B.; Marczin, N.; McCall, P. Perioperative cardiovascular pathophysiology in patients undergoing lung resection surgery: A narrative review. Br. J. Anaesth. 2023, 130, e66–e79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  248. Shah, S.; Chahil, V.; Battisha, A.; Haq, S.; Kalra, D.K. Postoperative Atrial Fibrillation: A Review. Biomedicines 2024, 12, 1968. [Google Scholar] [CrossRef]
  249. Xin, Y.; Hida, Y.; Kaga, K.; Iimura, Y.; Shiina, N.; Ohtaka, K.; Muto, J.; Kubota, S.; Matsui, Y. Left lobectomy might be a risk factor for atrial fibrillation following pulmonary lobectomy. Eur. J. Cardiothorac. Surg. 2014, 45, 247–250. [Google Scholar] [CrossRef] [PubMed]
  250. Kimura, D.; Yamamoto, H.; Endo, S.; Fukuchi, E.; Miyata, H.; Fukuda, I.; Ogino, H.; Sawa, Y.; Chida, M.; Minakawa, M. Postoperative cerebral infarction and arrhythmia after pulmonary lobectomy in Japan: A retrospective analysis of 77,060 cases in a national clinical database. Surg. Today 2023, 53, 1388–1395. [Google Scholar] [CrossRef] [PubMed]
  251. Tong, B.C.; Gu, L.; Wang, X.; Wigle, D.A.; Phillips, J.D.; Harpole, D.H.; Klapper, J.A.; Sporn, T.; Ready, N.E.; D’Amico, T.A. Perioperative outcomes of pulmonary resection after neoadjuvant pembrolizumab in patients with non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2022, 163, 427–436. [Google Scholar] [CrossRef] [PubMed]
  252. Nishizawa, N.; Okawara, M.; Mori, M.; Fujino, Y.; Matsuda, S.; Fushimi, K.; Tanaka, F. Postoperative cerebral infarction risk is related to lobectomy site in lung cancer: A retrospective cohort study of nationwide data in Japan. BMJ Open Respir. Res. 2022, 9, e001327. [Google Scholar] [CrossRef]
  253. Frendl, G.; Sodickson, A.C.; Chung, M.K.; Waldo, A.L.; Gersh, B.J.; Tisdale, J.E.; Calkins, H.; Aranki, S.; Kaneko, T.; Cassivi, S.; et al. American Association for Thoracic Surgery 2014 AATS guidelines for the prevention and management of perioperative atrial fibrillation and flutter for thoracic surgical procedures. J. Thorac. Cardiovasc. Surg. 2014, 148, e153–e193. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  254. Gaudino, M.; Di Franco, A.; Rong, L.Q.; Piccini, J.; Mack, M. Postoperative atrial fibrillation: From mechanisms to treatment. Eur. Heart J. 2023, 44, 1020–1039. [Google Scholar] [CrossRef]
  255. Proietti, M.; Romiti, G.F.; Raparelli, V.; Diemberger, I.; Boriani, G.; Dalla Vecchia, L.A.; Bellelli, G.; Marzetti, E.; Lip, G.Y.; Cesari, M. Frailty prevalence and impact on outcomes in patients with atrial fibrillation: A systematic review and meta-analysis of 1,187,000 patients. Ageing Res. Rev. 2022, 79, 101652. [Google Scholar] [CrossRef] [PubMed]
  256. Amar, D.; Zhang, H.; Tan, K.S.; Piening, D.; Rusch, V.W.; Jones, D.R. A brain natriuretic peptide-based prediction model for atrial fibrillation after thoracic surgery: Development and internal validation. J. Thorac. Cardiovasc. Surg. 2019, 157, 2493–2499.e1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  257. Toufektzian, L.; Zisis, C.; Balaka, C.; Roussakis, A. Effectiveness of brain natriuretic peptide in predicting postoperative atrial fibrillation in patients undergoing non-cardiac thoracic surgery. Interact. Cardiovasc. Thorac. Surg. 2015, 20, 654–657. [Google Scholar] [CrossRef] [PubMed]
  258. Albini, A.; Malavasi, V.L.; Vitolo, M.; Imberti, J.F.; Marietta, M.; Lip, G.Y.; Boriani, G. Long-term outcomes of postoperative atrial fibrillation following non cardiac surgery: A systematic review and metanalysis. Eur. J. Intern. Med. 2021, 85, 27–33. [Google Scholar] [CrossRef]
  259. Higuchi, S.; Kabeya, Y.; Matsushita, K.; Arai, N.; Tachibana, K.; Tanaka, R.; Kawachi, R.; Takei, H.; Suzuki, Y.; Kogure, M.; et al. Perioperative Atrial Fibrillation in Noncardiac Surgeries for Malignancies and One-Year Recurrence. Can. J. Cardiol. 2019, 35, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
  260. Tamargo, J.; Villacastín, J.; Caballero, R.; Delpón, E. Drug-induced atrial fibrillation. A narrative review of a forgotten adverse effect. Pharmacol. Res. 2024, 200, 107077. [Google Scholar] [CrossRef] [PubMed]
  261. Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2024, 83, 109–279, Erratum in J. Am. Coll. Cardiol. 2024, 83, 2714. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  262. Van Gelder, L.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. ESC Scientific Document Group 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef] [PubMed]
  263. POISE Study Group; Devereaux, P.J.; Yang, H.; Yusuf, S.; Guyatt, G.; Leslie, K.; Villar, J.C.; Xavier, D.; Chrolavicius, S.; Greenspan, L.; et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): A randomised controlled trial. Lancet 2008, 371, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
  264. Van Mieghem, W.; Coolen, L.; Malysse, I.; Lacquet, L.M.; Deneffe, G.J.; Demedts, M.G. Amiodarone and the development of ARDS after lung surgery. Chest 1994, 105, 1642–1645. [Google Scholar] [CrossRef] [PubMed]
  265. Jiang, L.; Jiang, S.; Miao, W.; Shen, Y.; Bolotina, L.; Zhu, H.; Zou, N.; Tian, Y.; Pan, H.; Huang, J.; et al. Clinical Characteristics and Management of Checkpoint Inhibitor Pneumonitis in Non-Small-Cell Lung Cancer Patients After Neoadjuvant Immunotherapy. Clin. Lung Cancer 2025, 26, e91–e98. [Google Scholar] [CrossRef] [PubMed]
  266. Atterman, A.; Friberg, L.; Asplund, K.; Engdahl, J. Net benefit of oral anticoagulants in patients with atrial fibrillation and active cancer: A nationwide cohort study. Europace 2020, 22, 58–65. [Google Scholar] [CrossRef] [PubMed]
  267. Li, M.; Huang, B.; Lam, S.H.M.; Ishiguchi, H.; Liu, Y.; Olshansky, B.; Huisman, M.V.; Chao, T.F.; Lip, G.Y.H. Long-term risks and benefits of oral anticoagulation in atrial fibrillation patients with cancer: A report from the GLORIA-AF registry. Eur. J. Clin. Investig. 2025, 55, e14347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  268. Chang, S.H.; Chou, I.J.; Yeh, Y.H.; Chiou, M.J.; Wen, M.S.; Kuo, C.T.; See, L.C.; Kuo, C.F. Association Between Use of Non-Vitamin K Oral Anticoagulants with and Without Concurrent Medications and Risk of Major Bleeding in Nonvalvular Atrial Fibrillation. JAMA 2017, 318, 1250–1259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  269. Wong, C.K.; Wong, Y.K.; Chan, Y.H.; Lin, M.; Hai, J.S.H.; Yiu, K.H.; Lip, G.Y.; Lau, K.K.; Tse, H.F. Concomitant Drug Interactions with Non-Vitamin K Oral Anticoagulants Are Associated with Bleeding and Mortality Risk in Patients with Nonvalvular Atrial Fibrillation. J. Am. Heart Assoc. 2025, 14, e038668. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  270. Spence, J.; LeManach, Y.; Chan, M.T.V.; Wang, C.Y.; Sigamani, A.; Xavier, D.; Pearse, R.; Alonso-Coello, P.; Garutti, I.; Srinathan, S.K.; et al. Vascular Events in Noncardiac Surgery Patients Cohort Evaluation (VISION) Study Investigators. Association between complications and death within 30 days after noncardiac surgery. CMAJ 2019, 191, E830–E837. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  271. Uchoa, R.B.; Caramelli, B. Troponin I as a mortality marker after lung resection surgery—A prospective cohort study. BMC Anesthesiol. 2020, 20, 118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  272. Mateos, J.J.; De la Fuente, E.; Valero, P.; Martínez, D.; De la Gala, F.; Bellón, J.M.; Duque, P.; Piñeiro, P.; Calvo, A.; Reyes, A.; et al. Utility of High-Sensitivity Cardiac Troponin Monitoring in Thoracic Surgery for Predicting Severe Postoperative Complications. J. Cardiothorac. Vasc. Anesth. 2025, 39, 1763–1773. [Google Scholar] [CrossRef] [PubMed]
  273. Beattie, W.S.; Lalu, M.; Bocock, M.; Feng, S.; Wijeysundera, D.N.; Nagele, P.; Fleisher, L.A.; Kurz, A.; Biccard, B.; Leslie, K.; et al. Systematic review and consensus definitions for the Standardized Endpoints in Perioperative Medicine (StEP) initiative: Cardiovascular outcomes. Br. J. Anaesth. 2021, 126, 56–66. [Google Scholar] [CrossRef] [PubMed]
  274. Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint European Society of Cardiology (ESC); American College of Cardiology (ACC); American Heart Association (AHA); et al. Fourth Universal Definition of Myocardial Infarction. Circulation 2018, 138, e618–e651, Erratum in Circulation 2018, 138, e652. [Google Scholar] [CrossRef] [PubMed]
  275. Smilowitz, N.R.; Gupta, N.; Guo, Y.; Berger, J.S.; Bangalore, S. Perioperative acute myocardial infarction associated with non-cardiac surgery. Eur. Heart J. 2017, 38, 2409–2417. [Google Scholar] [CrossRef] [PubMed]
  276. Sanaiha, Y.; Khoury, H.; Kavianpour, B.; Yazdani, S.; Gowland, L.; Iyengar, A.; Juo, Y.Y.; Benharash, P. Impact of Approach and Hospital Volume on Cardiovascular Complications After Pulmonary Lobectomy. J. Surg. Res. 2019, 235, 202. [Google Scholar] [CrossRef] [PubMed]
  277. Ruetzler, K.; Smilowitz, N.R.; Berger, J.S.; Devereaux, P.J.; Maron, B.A.; Newby, L.K.; de Jesus Perez, V.; Sessler, D.I.; Wijeysundera, D.N. Diagnosis and Management of Patients with Myocardial Injury After Noncardiac Surgery: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e287–e305. [Google Scholar] [CrossRef] [PubMed]
  278. Ghosh, A.K.; Crake, T.; Manisty, C.; Westwood, M. Pericardial Disease in Cancer Patients. Curr. Treat. Options Cardiovasc. Med. 2018, 20, 60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  279. Lorenzo-Esteller, L.; Ramos-Polo, R.; Pons Riverola, A.; Morillas, H.; Berdejo, J.; Pernas, S.; Pomares, H.; Asiain, L.; Garay, A.; Martínez Pérez, E.; et al. Pericardial Disease in Patients with Cancer: Clinical Insights on Diagnosis and Treatment. Cancers 2024, 16, 3466. [Google Scholar] [CrossRef]
  280. Altan, M.; Toki, M.I.; Gettinger, S.N.; Carvajal-Hausdorf, D.E.; Zugazagoitia, J.; Sinard, J.H.; Herbst, R.S.; Rimm, D.L. Immune Checkpoint Inhibitor-Associated Pericarditis. J. Thorac. Oncol. 2019, 14, 1102–1108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  281. Ha, D.M.; Jacob, R.A.; Bade, B.C. Survivorship Challenges and Supportive Care in Lung Cancer. Semin. Respir. Crit. Care Med. 2025. epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
  282. Florido, R.; Lee, A.K.; McEvoy, J.W.; Hoogeveen, R.C.; Koton, S.; Vitolins, M.Z.; Shenoy, C.; Russell, S.D.; Blumenthal, R.S.; Ndumele, C.E.; et al. Cancer Survivorship and Subclinical Myocardial Damage. Am. J. Epidemiol. 2019, 188, 2188–2195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  283. Yoon, D.W.; Shin, D.W.; Cho, J.H.; Yang, J.H.; Jeong, S.M.; Han, K.; Park, S.H. Increased risk of coronary heart disease and stroke in lung cancer survivors: A Korean nationwide study of 20,458 patients. Lung Cancer 2019, 136, 115–121. [Google Scholar] [CrossRef] [PubMed]
  284. Hu, H.; Zhu, Q.; Tang, H.; Zhang, S.C.; Huang, Y.Z.; Wang, Y.F.; Xu, Z.Y.; Yang, X.W.; Zheng, J.H.; Guo, C.Y. The risk of treatment-related toxicities with PD-1/PD-L1 inhibitors in patients with lung cancer. Int. J. Cancer 2025, 156, 608–622. [Google Scholar] [CrossRef] [PubMed]
  285. Wagle, N.S.; Nogueira, L.; Devasia, T.P.; Mariotto, A.B.; Yabroff, K.R.; Islami, F.; Jemal, A.; Alteri, R.; Ganz, P.A.; Siegel, R.L. Cancer treatment and survivorship statistics, 2025. CA Cancer J. Clin. 2025, 75, 308–340. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  286. Soh, C.H.; Chen, J.; Marwick, T.H. Incidence rate of coronary atherosclerosis among cancer types during survivorship: A systematic review and meta-analysis. Am. Heart J. 2025, 288, 159–168. [Google Scholar] [CrossRef] [PubMed]
  287. Watson, H.; Holley, N.; Nkongho, T.N.; Patel, B. New onset of hypertension associated with immune checkpoint inhibitor therapy in cancer patients. Immunotherapy 2025, 17, 491–499. [Google Scholar] [CrossRef] [PubMed]
  288. Kaneko, H.; Suzuki, Y.; Ueno, K.; Okada, A.; Fujiu, K.; Matsuoka, S.; Michihata, N.; Jo, T.; Takeda, N.; Morita, H.; et al. Association of Life’s Simple 7 with incident cardiovascular disease in 53 974 patients with cancer. Eur. J. Prev. Cardiol. 2022, 29, 2324–2332. [Google Scholar] [CrossRef] [PubMed]
  289. Zhang, N.; Wei, Z.; Zhang, Y.; Zhang, Q.; Chen, Z.; Tse, G.; Liu, T.; Wu, S. Association of Life’s Essential 8 with incident atherosclerotic cardiovascular disease in cancer patients: The Kailuan prospective cohort study. Eur. J. Prev. Cardiol. 2023, 30, e78–e80. [Google Scholar] [CrossRef] [PubMed]
  290. Peng, Y.; Wang, P.; Liu, F.; Wang, X.; Si, C.; Gong, J.; Zhou, H.; Song, F. Role of Cardiovascular Health in the Bidirectional Progression Trajectories Between Cardiovascular Disease, Type 2 Diabetes, and Cancer. J. Am. Heart Assoc. 2025, 14, e038180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  291. Caro-Codón, J.; López-Fernández, T.; Álvarez-Ortega, C.; Zamora Auñón, P.; Rodríguez, I.R.; Gómez Prieto, P.; Buño Soto, A.; Canales Albendea, M.; Albaladejo, A.; Mediavilla, G.; et al. CARDIOTOX registry investigators. Cardiovascular risk factors during cancer treatment. Prevalence and prognostic relevance: Insights from the CARDIOTOX registry. Eur. J. Prev. Cardiol. 2022, 29, 859–868. [Google Scholar] [CrossRef] [PubMed]
  292. Cho, I.Y.; Han, K.; Shin, D.W.; Park, S.H.; Yoon, D.W.; Shin, S.; Jeong, S.M.; Cho, J.H. Cardiovascular risk and undertreatment of dyslipidemia in lung cancer survivors: A nationwide population-based study. Curr. Probl. Cancer 2021, 45, 100615. [Google Scholar] [CrossRef] [PubMed]
  293. Bergerot, C.; Jacobsen, P.B.; Rosa, W.E.; Lam, W.W.T.; Dunn, J.; Fernández-González, L.; Mehnert-Theuerkauf, A.; Veeraiah, S.; Li, M. Global unmet psychosocial needs in cancer care: Health policy. EClinicalMedicine 2024, 78, 102942. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  294. Zullig, L.L.; Drake, C.; Shahsahebi, M.; Avecilla, R.A.; Whitney, C.; Mills, C.; Oeffinger, K.C. Adherence to cardiovascular disease risk factor medications among patients with cancer: A systematic review. J. Cancer Surviv. 2023, 17, 595–618. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  295. Riba, M.B.; Donovan, K.A.; Ahmed, K.; Andersen, B.; Braun, I.; Breitbart, W.S.; Brewer, B.W.; Corbett, C.; Fann, J.; Fleishman, S.; et al. NCCN Guidelines® Insights: Distress Management, Version 2.2023. J. Natl. Compr. Cancer Netw. 2023, 21, 450–457. [Google Scholar] [CrossRef] [PubMed]
  296. Gilchrist, S.C.; Barac, A.; Ades, P.A.; Alfano, C.M.; Franklin, B.A.; Jones, L.W.; La Gerche, A.; Ligibel, J.A.; Lopez, G.; Madan, K.; et al. Cardio-Oncology Rehabilitation to Manage Cardiovascular Outcomes in Cancer Patients and Survivors: A Scientific Statement from the American Heart Association. Circulation 2019, 139, e997–e1012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  297. Cavalheri, V.; Burtin, C.; Formico, V.R.; Nonoyama, M.L.; Jenkins, S.; Spruit, M.A.; Hill, K. Exercise training undertaken by people within 12 months of lung resection for non-small cell lung cancer. Cochrane Database Syst. Rev. 2019, 6, CD009955. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  298. Voorn, M.J.J.; Franssen, R.F.W.; Hoogeboom, T.J.; van Kampen-van den Boogaart, V.E.M.; Bootsma, G.P.; Bongers, B.C.; Janssen-Heijnen, M.L.G. Evidence base for exercise prehabilitation suggests favourable outcomes for patients undergoing surgery for non-small cell lung cancer despite being of low therapeutic quality: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2023, 49, 879–894. [Google Scholar] [CrossRef] [PubMed]
  299. Cho, A.R.; Najafi, T.; Ramanakumar, A.V.; Ferri, L.; Spicer, J.; Najmeh, S.; Cools-Lartigue, J.; Sirois, C.; Soh, S.; Kim, D.J.; et al. The effect of multimodal prehabilitation on postoperative outcomes in lung cancer surgery. J. Thorac. Cardiovasc. Surg. 2025, 169, 1631–1644.e2. [Google Scholar] [CrossRef] [PubMed]
  300. Ligibel, J.A.; Bohlke, K.; May, A.M.; Clinton, S.K.; Demark-Wahnefried, W.; Gilchrist, S.C.; Irwin, M.L.; Late, M.; Mansfield, S.; Marshall, T.F.; et al. Exercise, Diet, and Weight Management During Cancer Treatment: ASCO Guideline. J. Clin. Oncol. 2022, 40, 2491–2507. [Google Scholar] [CrossRef] [PubMed]
  301. Götze, H.; Taubenheim, S.; Dietz, A.; Lordick, F.; Mehnert, A. Comorbid conditions and health-related quality of life in long-term cancer survivors-associations with demographic and medical characteristics. J. Cancer Surviv. 2018, 12, 712–720. [Google Scholar] [CrossRef] [PubMed]
  302. Boen, H.M.; Cherubin, M.; Franssen, C.; Gevaert, A.B.; Witvrouwen, I.; Bosman, M.; Guns, P.J.; Heidbuchel, H.; Loeys, B.; Alaerts, M.; et al. Circulating MicroRNA as Biomarkers of Anthracycline-Induced Cardiotoxicity: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2024, 6, 183–199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  303. Lin, E.; Calvano, S.E.; Lowry, S.F. Inflammatory cytokines and cell response in surgery. Surgery 2000, 127, 117e26. [Google Scholar] [CrossRef] [PubMed]
  304. Kaufmann, K.B.; Heinrich, S.; Staehle, H.F.; Bogatyreva, L.; Buerkle, H.; Goebel, U. Perioperative cytokine profile during lung surgery predicts patients at risk for postoperative complications—A prospective, clinical study. PLoS ONE 2018, 13, e0199807. [Google Scholar] [CrossRef]
  305. Neff, T.A.; Braun, J.; Rana, D.; Puhan, M.; Filipovic, M.; Seeberger, M.; Stüber, F.; Neff, S.B.; Beck-Schimmer, B.; Schläpfer, M. Interleukin-6 Is an Early Plasma Marker of Severe Postoperative Complications in Thoracic Surgery: Exploratory Results from a Substudy of a Randomized Controlled Multicenter Trial. Anesth. Analg. 2022, 134, 123–132. [Google Scholar] [CrossRef] [PubMed]
  306. Gallucci, G.; Larocca, M.; Navazio, A.; Turazza, F.M.; Inno, A.; Canale, M.L.; Oliva, S.; Besutti, G.; Tedeschi, A.; Aschieri, D.; et al. Atherosclerosis and the Bidirectional Relationship Between Cancer and Cardiovascular Disease: From Bench to Bedside, Part 2 Management. Int. J. Mol. Sci. 2025, 26, 334. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  307. Fa’ak, F.; Buni, M.; Falohun, A.; Lu, H.; Song, J.; Johnson, D.H.; Zobniw, C.M.; Trinh, V.A.; Awiwi, M.O.; Tahon, N.H.; et al. Selective immune suppression using interleukin-6 receptor inhibitors for management of immune-related adverse events. J. Immunother. Cancer 2023, 11, e006814, Erratum in J. Immunother. Cancer 2023, 11, e006814corr1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  308. Ridker, P.M. hsCRP, High-Risk Plaque, and Pan-Coronary Atherosclerosis: Implications for Patient Care During Acute Myocardial Infarction. JACC Cardiovasc. Interv. 2025, 18, 1229–1231. [Google Scholar] [CrossRef] [PubMed]
  309. Bianchini, E.; Alqahtani, F.; Alsubai, S.; Del Sole, P.A.; Elzomor, H.; Sharif, R.; McCormick, J.; Revaiah, P.C.; Andreotti, F.; Burzotta, F.; et al. Advanced Analyses of Coronary Computed Tomography Angiography to Predict Future Cardiac Events: A Meta-Analysis. JACC Cardiovasc. Imaging 2025. epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
  310. Szilveszter, B.; Vattay, B.; Boussoussou, M.; Nagy-Vecsey, M.; Rokszin, G.; Fábián, I.; Simon, J.; Merkely, B.; Maurovich-Horvat, P.; Kolossváry, M. Interaction Between Statin Use, Coronary Artery Disease Phenotypes, on Computed Tomography Angiography, and Cardiovascular Outcomes. JACC Cardiovasc. Imaging 2025, 18, 10. [Google Scholar] [CrossRef] [PubMed]
  311. Wykrzykowska, J.; Lehman, S.; Williams, G.; Parker, J.A.; Palmer, M.R.; Varkey, S.; Kolodny, G.; Laham, R. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J. Nucl. Med. 2009, 50, 563–568. [Google Scholar] [CrossRef] [PubMed]
  312. Calabretta, R.; Beer, L.; Prosch, H.; Kifjak, D.; Zisser, L.; Binder, P.; Grünert, S.; Langsteger, W.; Li, X.; Hacker, M. Induction of Arterial Inflammation by Immune Checkpoint Inhibitor Therapy in Lung Cancer Patients as Measured by 2-[18F]FDG Positron Emission Tomography/Computed Tomography Depends on Pre-Existing Vascular Inflammation. Life 2024, 14, 146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  313. Bacmeister, L.; Hempfling, N.; Maier, A.; Weber, S.; Buellesbach, A.; Heidenreich, A.; Bojti, I.; Gissler, M.C.; Hilgendorf, I.; von Zur Muehlen, C.; et al. Longitudinal Assessment of Subclinical Arterial Inflammation in Patients Receiving Immune Checkpoint Inhibitors by Sequential [18F]FDG PET Scans. Circ. Cardiovasc. Imaging 2025, 18, e016851. [Google Scholar] [CrossRef] [PubMed]
  314. McEwen, B.S.; Stellar, E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 1993, 153, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
  315. McEwen, B.S. Stress, adaptation, and disease. Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1998, 840, 33–44. [Google Scholar] [CrossRef] [PubMed]
  316. Guha, A.; Shah, V.; Nahle, T.; Singh, S.; Kunhiraman, H.H.; Shehnaz, F.; Nain, P.; Makram, O.M.; Mahmoudi, M.; Al-Kindi, S.; et al. Artificial Intelligence Applications in Cardio-Oncology: A Comprehensive Review. Curr. Cardiol. Rep. 2025, 27, 56. [Google Scholar] [CrossRef] [PubMed]
  317. Ravera, F.; Gilardi, N.; Ballestrero, A.; Zoppoli, G. Applications, challenges and future directions of artificial intelligence in cardio-oncology. Eur. J. Clin. Investig. 2025, 55 (Suppl. S1), e14370. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  318. Qureshi, A.; Shah, Y.A.R.; Qureshi, S.M.; Shah, S.U.R.; Shiwlani, A.; Ahmad, A. The promising role of artificial intelligence in navigating lung cancer prognosis. Int. J. Multidiscip. Res. 2024, 6, 1–21. [Google Scholar]
  319. Lococo, F.; Boldrini, L.; Diepriye, C.D.; Evangelista, J.; Nero, C.; Flamini, S.; Minucci, A.; De Paolis, E.; Vita, E.; Cesario, A.; et al. Lung cancer multi-omics digital human avatars for integrating precision medicine into clinical practice: The LANTERN study. BMC Cancer 2023, 23, 540, Erratum in BMC Cancer 2023, 23, 1082. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  320. Addison, D.; Branch, M.; Baik, A.H.; Fradley, M.G.; Okwuosa, T.; Reding, K.W.; Simpson, K.E.; Suero-Abreu, G.A.; Yang, E.H.; Yancy, C.W.; et al. Equity in Cardio-Oncology Care and Research: A Scientific Statement from the American Heart Association. Circulation 2023, 148, 297–308. [Google Scholar] [CrossRef] [PubMed]
  321. Stabellini, N.; Cullen, J.; Bittencourt, M.S.; Moore, J.X.; Sutton, A.; Nain, P.; Hamerschlak, N.; Weintraub, N.L.; Dent, S.; Tsai, M.H.; et al. Allostatic Load/Chronic Stress and Cardiovascular Outcomes in Patients Diagnosed with Breast, Lung, or Colorectal Cancer. J. Am. Heart Assoc. 2024, 13, e033295. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  322. Obeng-Gyasi, S.; Li, Y.; Carson, W.E.; Reisenger, S.; Presley, C.J.; Shields, P.G.; Carbone, D.P.; Ceppa, D.P.; Carlos, R.C.; Andersen, B.L. Association of Allostatic Load with Overall Mortality Among Patients with Metastatic Non-Small Cell Lung Cancer. JAMA Netw. Open 2022, 5, e2221626, Erratum in JAMA Netw. Open 2023, 6, e236766. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  323. Khan, H.M.; Ramsey, S.; Shankaran, V. Financial Toxicity in Cancer Care: Implications for Clinical Care and Potential Practice Solutions. J. Clin. Oncol. 2023, 41, 3051–3058. [Google Scholar] [CrossRef] [PubMed]
  324. Vancoppenolle, J.; Franzen, N.; Azarang, L.; Juslin, T.; Krini, M.; Lubbers, T.; Mattson, J.; Mayeur, D.; Menezes, R.; Schmitt, J.; et al. Financial toxicity and socioeconomic impact of cancer in Europe. ESMO Open 2025, 10, 105293. [Google Scholar] [CrossRef] [PubMed]
Table 1. Key studies in perioperative, neoadjuvant, and adjuvant settings.
Table 1. Key studies in perioperative, neoadjuvant, and adjuvant settings.
Perioperative Trials
Study/RefTreatmentnSurgeryR0 ResectionpCREFS HROS HR
Checkmate 77T [67]Nivo vs.
Pbo + PBC
229
232
77.7%
76.7%
89.3%
90.4%
25.3%
4.7%
0.58
(0.42–0.81) p < 0.001
-
KEYNOTE-671
[51]
Pembro vs.
Pbo + PBC
397
400
82.1%
79.4%
92%
84.2%
18.1%
4%
0.58
(0.46–0.72) p < 0.001)
0.72
(0.56–0.93) p = 0.0052
AEGEAN [50]Durva vs.
Pbo + PBC
366
374
77.6%
76.6%
94.7%
91.3%
17.2%
4.3%
0.68
(0.53–0.88) p = 0.004
-
Neoadjuvant trials
StudyTreatmentnSurgeryR0 resectionpCREFS HROS HR
Checkmate 816 (1st study)
[49]
Checkmate 816
(final analysis) [68]
Nivo vs.
Pbo + PBC
Nivo vs.
Pbo + PBC
179
179
179
179
83.2
75.4
83.2%
77.8%
24%
2.2%
0.63
(0.43–0.91) p = 0.005
0.57
(0.30–1.07) p = 0.008 *
0.72 (95% CI 0.523 to 0.998, p = 0.048
Adjuvant trials
StudyTreatmentnDFS HR (ITT)DFS HR
(PD-L1 ≥ 50%)
OS HR (ITT)OS HR
(PDL1 ≥ 50)
IMPOWER-010
[63]
IMPOWER-010
(DFS final analysis, 2nd OS interim analysis) [64]
PBC → Atezo vs.
BSC
PBC → Atezo vs.
BSC
442 §
440 §
442 §
440 §
0.81 (0.67–0.99) p = 0.040 *
0.85 (0.71–1.01) p = 0.07 *
0.43
(0.27–0.68)
0.48 (0.32–0.72)
0.995
(0.78–1.28)
0.97 (0.78–1.22)
0.43
(0.24–0.78) p = 0.005
0.47 (0.28–0.77)
KEYNOTE-091
[65]
Optional PBC → Pembro vs. Pbo590
587
0.76
(0.63–0.91) p = 0.0014
0.82
(0.57–1.18)
0.87 **-
* did not cross the boundary for statistical significance; ** Immature data. § In both the IMPOWER 010 initial study and in the final analysis, 442 patients were treated with adjuvant PBC followed by atezo and 440 with BSC. Atezo: atezolizumab; BSC: best supportive care; DFS: disease-free survival; Durva: durvalumab; EFS: event-free survival; HR: hazard ratio; n: number of patients; Nivo: nivolumab; OS: overall survival; Pembro: pembrolizumab; PBC: platinum-based chemotherapy; Pbo: placebo.
Table 2. Chemo-radio lung cancer therapies associated with ICIs and their risk of both acute and long-term cardiovascular toxicities.
Table 2. Chemo-radio lung cancer therapies associated with ICIs and their risk of both acute and long-term cardiovascular toxicities.
AgentCardiovascular ToxicityGaps in Knowledge
Chest radiation
[169,170,171,172,173]
Pericardial effusion
Atrial arrhythmias
HF
MI, CAD
Conduction abnormalities
Constrictive pericarditis
Timing of ICI administrations: Delayed PD-1/PD-L1 inhibitors administration after chest RT may lower early immune-related toxicities while preserving clinical benefit in selected patients.
Indications: there are still limitations in elderly, multimorbid patients, and those with structural heart disease.
RT-induced cardiovascular damage is still underestimated; cardiovascular toxicity of chest radiation + ICIs is not well defined. These concerns dictate an individualized surveillance and intensive risk factor control. Timing and targets of cardiovascular risk factors are not completely defined.
Lipid-lowering therapies show promising effects in reducing CAD risk, but further validation is required.
Platinum-based therapies
[174,175,176]
Hypertension
Venous/arterial Thrombosis
Long-term risk for CAD
Atrial arrhythmias
Cardiotoxicity of platinum + immunotherapy in first-line lung cancer is understudied in real-world practice.
Mechanisms of cardiovascular toxicity are not precisely defined yet.
Patient risk stratification: individuals with pre-existing cardiovascular disease appear at higher risk, although sporadic events have also been reported in patients without risk factors.
The optimal cardio-oncology surveillance and proactive risk factor management are yet to be defined.
Taxanes
[59]
Atrial arrhythmias
Transient sinus bradycardia
Conduction disturbances (AV nodal blocks, LBBB)
Increased thromboembolic risk
Current data suggest that the combination with ICI does not significantly increase cardiotoxicity compared with taxanes alone, but real-world evidence is limited.
The modality of cardiac monitoring is yet to be defined in patients with preexisting cardiovascular disease.
Pemetrexed
[177]
Peripheral edemaPemetrexed is generally safe, but preexisting cardiovascular disease can be a liability. Modalities of cardiac monitoring have not been defined in this population.
Gemcitabine
[178]
Venous/arterial Thrombosis
CAD
Atrial arrhythmias
Monitoring is recommended only in high-risk patients, but adverse cardiovascular events may occur in patients with no risk factors. Surveillance modalities are not well defined for patients treated with gemcitabine and ICIs
Vinorelbine
[179]
HF
CAD,
arrhythmias
Sporadic cases of vinorelbine-induced bradycardia, supraventricular arrhythmias, or ischemic events are reported, mainly in patients with preexisting cardiovascular disease or when used in combination with other cardiotoxic drugs. Modalities of cardiac monitoring when vinorelbine is administered with ICIs have not been defined.
Etoposide [180,181]HF
CAD
Sporadic adverse cardiovascular events are reported mainly in patients with
preexisting cardiovascular disease. Modalities of cardiac monitoring when etoposide is administered with ICIs have not been defined.
Abbreviations: AV: atrioventricular; CAD: coronary artery disease; HF: heart failure; ICIs: immune checkpoint inhibitors; LBBB: left bundle branch block; MI: myocardial infarction; RT: radiotherapy.
Table 3. (Summary table): Phenotypes of cardiovasculotoxicity of oncologic treatments associated with ICIs: chemotherapy (PBC, taxanes, pemetrexed, gemcitabine, vinorelbine, and etoposide) and chest radiotherapy (RT).
Table 3. (Summary table): Phenotypes of cardiovasculotoxicity of oncologic treatments associated with ICIs: chemotherapy (PBC, taxanes, pemetrexed, gemcitabine, vinorelbine, and etoposide) and chest radiotherapy (RT).
Arrhythmias/
Conduction Abnormalities
CADHFHypertensionVenous/Arterial ThrombosisPeripheral EdemaPericardial Disease
Chest RT
PBC
Taxanes
Chest RT
PBC
Gemcitabine
Vinorelbine
Etoposide
Chest RT#
PBC
Vinorelbine
Etoposide
PBCPBC
Taxanes
Gemcitabine
PemetrexedChest RT
CAD: coronary artery disease; HF: heart failure; ICIs: immune checkpoint inhibitors; PBC: platinum-based chemotherapy; RT: radiotherapy.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Tarantini, L.; Gallucci, G.; Inno, A.; Camerini, A.; Canale, M.L.; Larocca, M.; Zanelli, F.; Pagano, M.; Alberti, G.; Ciammella, P.; et al. A New Era, New Risks: The Cardio-Oncology Perspective on Immunotherapy in Non-Small Cell Lung Cancer. Cancers 2025, 17, 3443. https://doi.org/10.3390/cancers17213443

AMA Style

Tarantini L, Gallucci G, Inno A, Camerini A, Canale ML, Larocca M, Zanelli F, Pagano M, Alberti G, Ciammella P, et al. A New Era, New Risks: The Cardio-Oncology Perspective on Immunotherapy in Non-Small Cell Lung Cancer. Cancers. 2025; 17(21):3443. https://doi.org/10.3390/cancers17213443

Chicago/Turabian Style

Tarantini, Luigi, Giuseppina Gallucci, Alessandro Inno, Andrea Camerini, Maria Laura Canale, Mario Larocca, Francesca Zanelli, Maria Pagano, Giulia Alberti, Patrizia Ciammella, and et al. 2025. "A New Era, New Risks: The Cardio-Oncology Perspective on Immunotherapy in Non-Small Cell Lung Cancer" Cancers 17, no. 21: 3443. https://doi.org/10.3390/cancers17213443

APA Style

Tarantini, L., Gallucci, G., Inno, A., Camerini, A., Canale, M. L., Larocca, M., Zanelli, F., Pagano, M., Alberti, G., Ciammella, P., Maurea, N., Gori, S., Navazio, A., & Pinto, C. (2025). A New Era, New Risks: The Cardio-Oncology Perspective on Immunotherapy in Non-Small Cell Lung Cancer. Cancers, 17(21), 3443. https://doi.org/10.3390/cancers17213443

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop