Masters of Gene Expression: Transcription Factors in Pediatric Cancers
Simple Summary
Abstract
1. Introduction
2. Chromosomal Rearrangements in TFs
2.1. Chromosomal Translocations
2.2. Chromosomal Inversions
2.3. Chromosomal Deletions
2.4. Chromosomal Amplifications
2.5. Complex Structural Variations (SVs)
3. Point Mutations
4. TFs as Therapeutic Targets in Pediatric Cancers
5. Concluding Remarks
Funding
Conflicts of Interest
Abbreviations
| TFs | Transcription factors |
| NB | Neuroblastoma |
| RMS | Rhabdomyosarcoma |
| CNS | Central nervous system |
| ALL | Acute lymphoblastic leukemia |
| SHH | Sonic Hedgehog |
| MB | Medulloblastoma |
| HDACs | Histone deacetylases |
| MLL | Mixed-lineage leukemia |
| AML | Acute myeloid leukemia |
| SEC | Super Elongation Complex |
| BCP-ALL | B-cell precursor ALL |
| MM | Metanephric mesenchyme |
| BMP | Bone morphogenetic protein |
| pHGGs | Pediatric high-grade gliomas |
| HAT | Histone acetyltransferase |
| FDA | Food and Drug Administration |
| GR | Glucocorticoid receptor |
| GRE | Glucocorticoid response elements |
| T-LL | T-lymphoblastic lymphoma |
| B-LL | B-lymphoblastic lymphoma |
References
- Hancock, S.P.; Ghane, T.; Cascio, D.; Rohs, R.; Di Felice, R.; Johnson, R.C. Control of DNA minor groove width and Fis protein binding by the purine 2-amino group. Nucleic Acids Res. 2013, 41, 6750–6760. [Google Scholar] [CrossRef] [PubMed]
- Dantas Machado, A.C.; Cooper, B.H.; Lei, X.; Di Felice, R.; Chen, L.; Rohs, R. Landscape of DNA binding signatures of myocyte enhancer factor-2B reveals a unique interplay of base and shape readout. Nucleic Acids Res. 2020, 48, 8529–8544. [Google Scholar] [CrossRef] [PubMed]
- Inukai, S.; Kock, K.H.; Bulyk, M.L. Transcription factor-DNA binding: Beyond binding site motifs. Curr. Opin. Genet. Dev. 2017, 43, 110–119. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, H.; Yang, W.; Maillard, M.; Yoshimura, S.; Hsiao, Y.-C.; Huang, X.; Gocho, Y.; Rowland, L.; Brown, A.; et al. Molecular and pharmacological heterogeneity of ETV6::RUNX1 acute lymphoblastic leukemia. Nat. Commun. 2025, 16, 1153. [Google Scholar] [CrossRef]
- Oksa, L.; Moisio, S.; Maqbool, K.; Kramer, R.; Nikkilä, A.; Jayasingha, B.; Mäkinen, A.; Foroughi-Asl, H.; Rounioja, S.; Suhonen, J.; et al. Genomic determinants of therapy response in ETV6::RUNX1 leukemia. Leukemia 2025, 39, 2125–2139. [Google Scholar] [CrossRef]
- Lin, C.; Smith, E.R.; Takahashi, H.; Lai, K.C.; Martin-Brown, S.; Florens, L.; Washburn, M.P.; Conaway, J.W.; Conaway, R.C.; Shilatifard, A. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol. Cell 2010, 37, 429–437. [Google Scholar] [CrossRef]
- Luo, Z.; Lin, C.; Shilatifard, A. The super elongation complex (SEC) family in transcriptional control. Nat. Rev. Mol. Cell Biol. 2012, 13, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Kubota, H.; Kato, I.; Isobe, K.; Ueno, H.; Kozuki, K.; Tanaka, K.; Kawabata, N.; Mikami, T.; Tamefusa, K.; et al. PAX5 alterations in an infant case of KMT2A-rearranged leukemia with lineage switch. Cancer Sci. 2022, 113, 2472–2476. [Google Scholar] [CrossRef]
- Thompson, B.; Davidson, E.A.; Liu, W.; Nebert, D.W.; Bruford, E.A.; Zhao, H.; Dermitzakis, E.T.; Thompson, D.C.; Vasiliou, V. Overview of PAX gene family: Analysis of human tissue-specific variant expression and involvement in human disease. Hum. Genet. 2021, 140, 381–400. [Google Scholar] [CrossRef]
- Linardic, C.M. PAX3-FOXO1 fusion gene in rhabdomyosarcoma. Cancer Lett. 2008, 270, 10–18. [Google Scholar] [CrossRef]
- Davis, R.J.; D’Cruz, C.M.; Lovell, M.A.; Biegel, J.A.; Barr, F.G. Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 1994, 54, 2869–2872. [Google Scholar]
- Raze, T.; Lapouble, E.; Lacour, B.; Guissou, S.; Defachelles, A.S.; Gaspar, N.; Delattre, O.; Pierron, G.; Desandes, E. PAX-FOXO1 fusion status in children and adolescents with alveolar rhabdomyosarcoma: Impact on clinical, pathological, and survival features. Pediatr. Blood Cancer 2023, 70, e30228. [Google Scholar] [CrossRef]
- Barr, F.G.; Nauta, L.E.; Davis, R.J.; Schafer, B.W.; Nycum, L.M.; Biegel, J.A. In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum. Mol. Genet. 1996, 5, 15–21. [Google Scholar] [CrossRef]
- Teppo, S.; Mehtonen, J.; Eldfors, S.; Heckman, C.A.; Müschen, M.; Heinäniemi, M.; Lohi, O. Transcriptional Regulatory Landscape of TCF3-PBX1-Positive Leukemia and Novel Targeted Treatments. Blood 2016, 128, 4077. [Google Scholar] [CrossRef]
- Yen, H.J.; Chen, S.H.; Chang, T.Y.; Yang, C.P.; Lin, D.T.; Hung, I.J.; Lin, K.H.; Chen, J.S.; Hsiao, C.C.; Chang, T.T.; et al. Pediatric acute lymphoblastic leukemia with t(1;19)/TCF3-PBX1 in Taiwan. Pediatr. Blood Cancer 2017, 64, e26557. [Google Scholar] [CrossRef]
- Kager, L.; Lion, T.; Attarbaschi, A.; Koenig, M.; Strehl, S.; Haas, O.A.; Dworzak, M.N.; Schrappe, M.; Gadner, H.; Mann, G. Incidence and outcome of TCF3-PBX1-positive acute lymphoblastic leukemia in Austrian children. Haematologica 2007, 92, 1561–1564. [Google Scholar] [CrossRef]
- Basso, K.; Frascella, E.; Zanesco, L.; Rosolen, A. Improved long-distance polymerase chain reaction for the detection of t(8;14)(q24;q32) in Burkitt’s lymphomas. Am. J. Pathol. 1999, 155, 1479–1485. [Google Scholar] [CrossRef] [PubMed]
- Zampini, M.; Tregnago, C.; Bisio, V.; Simula, L.; Borella, G.; Manara, E.; Zanon, C.; Zonta, F.; Serafin, V.; Accordi, B.; et al. Epigenetic heterogeneity affects the risk of relapse in children with t(8;21)RUNX1-RUNX1T1-rearranged AML. Leukemia 2018, 32, 1124–1134. [Google Scholar] [CrossRef] [PubMed]
- Gibson, B.E.; Webb, D.K.; Howman, A.J.; De Graaf, S.S.; Harrison, C.J.; Wheatley, K.; United Kingdom Childhood Leukaemia Working, G.; the Dutch Childhood Oncology, G. Results of a randomized trial in children with Acute Myeloid Leukaemia: Medical research council AML12 trial. Br. J. Haematol. 2011, 155, 366–376. [Google Scholar] [CrossRef]
- Al-Harbi, S.; Aljurf, M.; Mohty, M.; Almohareb, F.; Ahmed, S.O.A. An update on the molecular pathogenesis and potential therapeutic targeting of AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1. Blood Adv. 2020, 4, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, M.F.; Berg, H.E.; Meyer, R.G.; Sukov, W.R.; Van Dyke, D.L.; Jenkins, R.B.; Greipp, P.T.; Thorland, E.C.; Hoppman, N.L.; Xu, X.; et al. Typical, atypical and cryptic t(15;17)(q24;q21) (PML::RARA) observed in acute promyelocytic leukemia: A retrospective review of 831 patients with concurrent chromosome and PML::RARA dual-color dual-fusion FISH studies. Genes Chromosomes Cancer 2022, 61, 629–634. [Google Scholar] [CrossRef]
- Larmonie, N.S.; Dik, W.A.; Meijerink, J.P.; Homminga, I.; van Dongen, J.J.; Langerak, A.W. Breakpoint sites disclose the role of the V(D)J recombination machinery in the formation of T-cell receptor (TCR) and non-TCR associated aberrations in T-cell acute lymphoblastic leukemia. Haematologica 2013, 98, 1173–1184. [Google Scholar] [CrossRef]
- Dik, W.A.; Nadel, B.; Przybylski, G.K.; Asnafi, V.; Grabarczyk, P.; Navarro, J.M.; Verhaaf, B.; Schmidt, C.A.; Macintyre, E.A.; van Dongen, J.J.M.; et al. Different chromosomal breakpoints impact the level of LMO2 expression in T-ALL. Blood 2007, 110, 388–392. [Google Scholar] [CrossRef]
- Kalinova, M.; Mrhalova, M.; Kabickova, E.; Svaton, M.; Skotnicova, A.; Prouzova, Z.; Krenova, Z.; Kolenova, A.; Divoka, M.; Fronkova, E.; et al. Molecular Screening in Anaplastic Lymphoma Kinase-Positive Anaplastic Large Cell Lymphoma: Anaplastic Lymphoma Kinase Analysis, Next-Generation Sequencing Fusion Gene Detection, and T-Cell Receptor Immunoprofiling. Mod. Pathol. 2024, 37, 100428. [Google Scholar] [CrossRef]
- Sawyer, J.R.; Tryka, A.F.; Lewis, J.M. A novel reciprocal chromosome translocation t(11;22)(p13;q12) in an intraabdominal desmoplastic small round-cell tumor. Am. J. Surg. Pathol. 1992, 16, 411–416. [Google Scholar] [CrossRef]
- Slotkin, E.K.; Bowman, A.S.; Levine, M.F.; Dela Cruz, F.; Coutinho, D.F.; Sanchez, G.I.; Rosales, N.; Modak, S.; Tap, W.D.; Gounder, M.M.; et al. Comprehensive Molecular Profiling of Desmoplastic Small Round Cell Tumor. Mol. Cancer Res. 2021, 19, 1146–1155. [Google Scholar] [CrossRef]
- Boulay, G.; Broye, L.C.; Dong, R.; Iyer, S.; Sanalkumar, R.; Xing, Y.-H.; Buisson, R.; Rengarajan, S.; Naigles, B.; Duc, B.; et al. EWS-WT1 fusion isoforms establish oncogenic programs and therapeutic vulnerabilities in desmoplastic small round cell tumors. Nat. Commun. 2024, 15, 7460. [Google Scholar] [CrossRef]
- Knezevich, S.R.; McFadden, D.E.; Tao, W.; Lim, J.F.; Sorensen, P.H. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat. Genet. 1998, 18, 184–187. [Google Scholar] [CrossRef]
- Lannon, C.L.; Sorensen, P.H.B. ETV6–NTRK3: A chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin. Cancer Biol. 2005, 15, 215–223. [Google Scholar] [CrossRef]
- Rubin, B.P.; Chen, C.J.; Morgan, T.W.; Xiao, S.; Grier, H.E.; Kozakewich, H.P.; Perez-Atayde, A.R.; Fletcher, J.A. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: Cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am. J. Pathol. 1998, 153, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Ladanyi, M.; Lui, M.Y.; Antonescu, C.R.; Krause-Boehm, A.; Meindl, A.; Argani, P.; Healey, J.H.; Ueda, T.; Yoshikawa, H.; Meloni-Ehrig, A.; et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 2001, 20, 48–57. [Google Scholar] [CrossRef]
- Argani, P.; Antonescu, C.R.; Illei, P.B.; Lui, M.Y.; Timmons, C.F.; Newbury, R.; Reuter, V.E.; Garvin, A.J.; Perez-Atayde, A.R.; Fletcher, J.A.; et al. Primary Renal Neoplasms with the ASPL-TFE3 Gene Fusion of Alveolar Soft Part Sarcoma: A Distinctive Tumor Entity Previously Included among Renal Cell Carcinomas of Children and Adolescents. Am. J. Pathol. 2001, 159, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.; Sultan, I.; Huang, T.T.; Rodriguez-Galindo, C.; Shehadeh, A.; Meazza, C.; Ness, K.K.; Casanova, M.; Spunt, S.L. Soft tissue sarcoma across the age spectrum: A population-based study from the Surveillance Epidemiology and End Results database. Pediatr. Blood Cancer 2011, 57, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Chuaychob, S.; Homme, M.; Yamazaki, Y.; Lyu, R.; Yamashita, K.; Ae, K.; Matsumoto, S.; Kumegawa, K.; Maruyama, R.; et al. ASPSCR1::TFE3 orchestrates the angiogenic program of alveolar soft part sarcoma. Nat. Commun. 2023, 14, 1957. [Google Scholar] [CrossRef]
- Speleman, F.; Cauwelier, B.; Dastugue, N.; Cools, J.; Verhasselt, B.; Poppe, B.; Van Roy, N.; Vandesompele, J.; Graux, C.; Uyttebroeck, A.; et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 2005, 19, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Nagel, S.; Venturini, L.; Meyer, C.; Kaufmann, M.; Scherr, M.; Drexler, H.G.; MacLeod, R.A. Multiple mechanisms induce ectopic expression of LYL1 in subsets of T-ALL cell lines. Leuk. Res. 2010, 34, 521–528. [Google Scholar] [CrossRef]
- Sinclair, P.B.; Cranston, R.E.; Raninga, P.; Cheng, J.; Hanna, R.; Hawking, Z.; Hair, S.; Ryan, S.L.; Enshaei, A.; Nakjang, S.; et al. Disruption to the FOXO-PRDM1 axis resulting from deletions of chromosome 6 in acute lymphoblastic leukaemia. Leukemia 2023, 37, 636–649. [Google Scholar] [CrossRef]
- Heerema, N.A.; Sather, H.N.; Sensel, M.G.; Lee, M.K.; Hutchinson, R.; Lange, B.J.; Bostrom, B.C.; Nachman, J.B.; Steinherz, P.G.; Gaynon, P.S.; et al. Clinical significance of deletions of chromosome arm 6q in childhood acute lymphoblastic leukemia: A report from the Children’s Cancer Group. Leuk. Lymphoma 2000, 36, 467–478. [Google Scholar] [CrossRef]
- Hayashi, Y.; Raimondi, S.C.; Look, A.T.; Behm, F.G.; Kitchingman, G.R.; Pui, C.H.; Rivera, G.K.; Williams, D.L. Abnormalities of the long arm of chromosome 6 in childhood acute lymphoblastic leukemia. Blood 1990, 76, 1626–1630. [Google Scholar] [CrossRef]
- Cavé, H.; Cacheux, V.; Raynaud, S.; Brunie, G.; Bakkus, M.; Cochaux, P.; Preudhomme, C.; Laï, J.L.; Vilmer, E.; Grandchamp, B. ETV6 is the target of chromosome 12p deletions in t(12;21) childhood acute lymphocytic leukemia. Leukemia 1997, 11, 1459–1464. [Google Scholar] [CrossRef]
- Stanulla, M.; Cave, H.; Moorman, A.V. IKZF1 deletions in pediatric acute lymphoblastic leukemia: Still a poor prognostic marker? Blood 2020, 135, 252–260. [Google Scholar] [CrossRef]
- Mendoza-Londono, R.; Kashork, C.D.; Shaffer, L.G.; Krance, R.; Plon, S.E. Acute lymphoblastic leukemia in a patient with Greig cephalopolysyndactyly and interstitial deletion of chromosome 7 del(7)(p11.2 p14) involving the GLI3 and ZNFN1A1 genes. Genes Chromosomes Cancer 2005, 42, 82–86. [Google Scholar] [CrossRef] [PubMed]
- McNerney, M.E.; Brown, C.D.; Wang, X.; Bartom, E.T.; Karmakar, S.; Bandlamudi, C.; Yu, S.; Ko, J.; Sandall, B.P.; Stricker, T.; et al. CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia. Blood 2013, 121, 975–983. [Google Scholar] [CrossRef] [PubMed]
- van der Sligte, N.E.; Scherpen, F.J.; Ter Elst, A.; Guryev, V.; van Leeuwen, F.N.; de Bont, E.S. Effect of IKZF1 deletions on signal transduction pathways in Philadelphia chromosome negative pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Exp. Hematol. Oncol. 2015, 4, 23. [Google Scholar] [CrossRef]
- Umeda, M.; Ma, J.; Westover, T.; Ni, Y.; Song, G.; Maciaszek, J.L.; Rusch, M.; Rahbarinia, D.; Foy, S.; Huang, B.J.; et al. A new genomic framework to categorize pediatric acute myeloid leukemia. Nat. Genet. 2024, 56, 281–293. [Google Scholar] [CrossRef]
- Stoddart, A.; Qian, Z.; Fernald, A.A.; Bergerson, R.J.; Wang, J.; Karrison, T.; Anastasi, J.; Bartom, E.T.; Sarver, A.L.; McNerney, M.E.; et al. Retroviral insertional mutagenesis identifies the del(5q) genes, CXXC5, TIFAB and ETF1, as well as the Wnt pathway, as potential targets in del(5q) myeloid neoplasms. Haematologica 2016, 101, e232–e236. [Google Scholar] [CrossRef]
- Emadian, S.M.; McDonald, J.D.; Gerken, S.C.; Fults, D. Correlation of chromosome 17p loss with clinical outcome in medulloblastoma. Clin. Cancer Res. 1996, 2, 1559–1564. [Google Scholar]
- Cogen, P.H.; Daneshvar, L.; Metzger, A.K.; Edwards, M.S.B. Deletion mapping of the medulloblastoma locus on chromosome 17p. Genomics 1990, 8, 279–285. [Google Scholar] [CrossRef]
- Park, A.K.; Lee, S.J.; Phi, J.H.; Wang, K.C.; Kim, D.G.; Cho, B.K.; Haberler, C.; Fattet, S.; Dufour, C.; Puget, S.; et al. Prognostic classification of pediatric medulloblastoma based on chromosome 17p loss, expression of MYCC and MYCN, and Wnt pathway activation. Neuro Oncol. 2012, 14, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.K.; Straughton, D.; Cole, M.; Bailey, S.; Ellison, D.W.; Clifford, S.C. Identification and analysis of tumor suppressor loci at chromosome 10q23.3-10q25.3 in medulloblastoma. Cell Cycle 2006, 5, 2381–2389. [Google Scholar] [CrossRef] [PubMed]
- Schwalbe, E.C.; Williamson, D.; Lindsey, J.C.; Hamilton, D.; Ryan, S.L.; Megahed, H.; Garami, M.; Hauser, P.; Dembowska-Baginska, B.; Perek, D.; et al. DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies. Acta Neuropathol. 2013, 125, 359–371. [Google Scholar] [CrossRef]
- Sztán, M.; Pápai, Z.; Szendrôi, M.; Looij, M.; Oláh, E. Allelic Losses from Chromosome 17 in Human Osteosarcomas. Pathol. Oncol. Res. 1997, 3, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Toguchida, J.; Yamamuro, T.; Kotoura, Y.; Takada, N.; Kawaguchi, N.; Kaneko, Y.; Nakamura, Y.; Sasaki, M.S.; Ishizaki, K. Allelotype analysis in osteosarcomas: Frequent allele loss on 3q, 13q, 17p, and 18q. Cancer Res. 1992, 52, 2419–2423. [Google Scholar]
- Barros, J.S.; Aguiar, T.F.M.; Costa, S.S.; Rivas, M.P.; Cypriano, M.; Toledo, S.R.C.; Novak, E.M.; Odone, V.; Cristofani, L.M.; Carraro, D.M.; et al. Copy Number Alterations in Hepatoblastoma: Literature Review and a Brazilian Cohort Analysis Highlight New Biological Pathways. Front. Oncol. 2021, 11, 741526. [Google Scholar] [CrossRef]
- Henrich, K.O.; Schwab, M.; Westermann, F. 1p36 tumor suppression—A matter of dosage? Cancer Res. 2012, 72, 6079–6088. [Google Scholar] [CrossRef]
- van Belzen, I.; van Tuil, M.; Badloe, S.; Strengman, E.; Janse, A.; Verwiel, E.T.P.; van der Leest, D.F.M.; de Vos, S.; Baker-Hernandez, J.; Groenendijk, A.; et al. Molecular Characterization Reveals Subclasses of 1q Gain in Intermediate Risk Wilms Tumors. Cancers 2022, 14, 4872. [Google Scholar] [CrossRef]
- Royer-Pokora, B.; Beier, M.; Brandt, A.; Duhme, C.; Busch, M.; de Torres, C.; Royer, H.D.; Mora, J. Chemotherapy and terminal skeletal muscle differentiation in WT1-mutant Wilms tumors. Cancer Med. 2018, 7, 1359–1368. [Google Scholar] [CrossRef]
- Harrison, C.J.; Moorman, A.V.; Schwab, C.; Carroll, A.J.; Raetz, E.A.; Devidas, M.; Strehl, S.; Nebral, K.; Harbott, J.; Teigler-Schlegel, A.; et al. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): Cytogenetic characterization and outcome. Leukemia 2014, 28, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Koleilat, A.; Smadbeck, J.B.; Zepeda-Mendoza, C.J.; Williamson, C.M.; Pitel, B.A.; Golden, C.L.; Xu, X.; Greipp, P.T.; Ketterling, R.P.; Hoppman, N.L.; et al. Characterization of unusual iAMP21 B-lymphoblastic leukemia (iAMP21-ALL) from the Mayo Clinic and Children’s Oncology Group. Genes Chromosomes Cancer 2022, 61, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Sood, R.; Kamikubo, Y.; Liu, P. Role of RUNX1 in hematological malignancies. Blood 2017, 129, 2070–2082. [Google Scholar] [CrossRef] [PubMed]
- Jean, J.; Kovach, A.E.; Doan, A.; Oberley, M.; Ji, J.; Schmidt, R.J.; Biegel, J.A.; Bhojwani, D.; Raca, G. Characterization of PAX5 intragenic tandem multiplication in pediatric B-lymphoblastic leukemia by optical genome mapping. Blood Adv. 2022, 6, 3343–3346. [Google Scholar] [CrossRef]
- Medvedovic, J.; Ebert, A.; Tagoh, H.; Busslinger, M. Pax5: A master regulator of B cell development and leukemogenesis. Adv. Immunol. 2011, 111, 179–206. [Google Scholar] [CrossRef]
- Jia, Z.; Gu, Z. PAX5 alterations in B-cell acute lymphoblastic leukemia. Front. Oncol. 2022, 12, 1023606. [Google Scholar] [CrossRef]
- Martin, J.W.; Squire, J.A.; Zielenska, M. The genetics of osteosarcoma. Sarcoma 2012, 2012, 627254. [Google Scholar] [CrossRef]
- Gupta, S.; Ito, T.; Alex, D.; Vanderbilt, C.M.; Chang, J.C.; Islamdoust, N.; Zhang, Y.; Nafa, K.; Healey, J.; Ladanyi, M.; et al. RUNX2 (6p21.1) amplification in osteosarcoma. Hum. Pathol. 2019, 94, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.W.; Zielenska, M.; Stein, G.S.; van Wijnen, A.J.; Squire, J.A. The Role of RUNX2 in Osteosarcoma Oncogenesis. Sarcoma 2011, 2011, 282745. [Google Scholar] [CrossRef]
- Mandoli, A.; Singh, A.A.; Jansen, P.W.; Wierenga, A.T.; Riahi, H.; Franci, G.; Prange, K.; Saeed, S.; Vellenga, E.; Vermeulen, M.; et al. CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia. Leukemia 2014, 28, 770–778. [Google Scholar] [CrossRef]
- Wilkinson, A.; Walker, D.A.; Smith, N.M.; Calvert, A.; Monk, A.J.; Parkin, C.A. Inversion (14)(q11q32) in a patient with childhood T-cell acute lymphoblastic leukemia. Cancer Genet. Cytogenet. 1996, 88, 76–79. [Google Scholar] [CrossRef]
- Virgilio, L.; Narducci, M.G.; Isobe, M.; Billips, L.G.; Cooper, M.D.; Croce, C.M.; Russo, G. Identification of the TCL1 gene involved in T-cell malignancies. Proc. Natl. Acad. Sci. USA 1994, 91, 12530–12534. [Google Scholar] [CrossRef]
- Maire, G.; Brown, C.W.; Bayani, J.; Pereira, C.; Gravel, D.H.; Bell, J.C.; Zielenska, M.; Squire, J.A. Complex rearrangement of chromosomes 19, 21, and 22 in Ewing sarcoma involving a novel reciprocal inversion-insertion mechanism of EWS-ERG fusion gene formation: A case analysis and literature review. Cancer Genet. Cytogenet. 2008, 181, 81–92. [Google Scholar] [CrossRef]
- Wilzén, A.; Nilsson, S.; Sjöberg, R.M.; Kogner, P.; Martinsson, T.; Abel, F. The Phox2 pathway is differentially expressed in neuroblastoma tumors, but no mutations were found in the candidate tumor suppressor gene PHOX2A. Int. J. Oncol. 2009, 34, 697–705. [Google Scholar] [CrossRef]
- Santo, E.E.; Ebus, M.E.; Koster, J.; Schulte, J.H.; Lakeman, A.; van Sluis, P.; Vermeulen, J.; Gisselsson, D.; Ora, I.; Lindner, S.; et al. Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma. Oncogene 2012, 31, 1571–1581. [Google Scholar] [CrossRef]
- Siaw, J.T.; Javanmardi, N.; Van den Eynden, J.; Lind, D.E.; Fransson, S.; Martinez-Monleon, A.; Djos, A.; Sjoberg, R.M.; Ostensson, M.; Caren, H.; et al. 11q Deletion or ALK Activity Curbs DLG2 Expression to Maintain an Undifferentiated State in Neuroblastoma. Cell Rep. 2020, 32, 108171. [Google Scholar] [CrossRef]
- Hu, H.; Du, L.; Nagabayashi, G.; Seeger, R.C.; Gatti, R.A. ATM is down-regulated by N-Myc-regulated microRNA-421. Proc. Natl. Acad. Sci. USA 2010, 107, 1506–1511. [Google Scholar] [CrossRef]
- Garcia-Lopez, J.; Wallace, K.; Otero, J.H.; Olsen, R.; Wang, Y.D.; Finkelstein, D.; Gudenas, B.L.; Rehg, J.E.; Northcott, P.; Davidoff, A.M.; et al. Large 1p36 Deletions Affecting Arid1a Locus Facilitate Mycn-Driven Oncogenesis in Neuroblastoma. Cell Rep. 2020, 30, 454–464.e455. [Google Scholar] [CrossRef]
- Schumacher, V.; Schneider, S.; Figge, A.; Wildhardt, G.; Harms, D.; Schmidt, D.; Weirich, A.; Ludwig, R.; Royer-Pokora, B. Correlation of germ-line mutations and two-hit inactivation of the WT1 gene with Wilms tumors of stromal-predominant histology. Proc. Natl. Acad. Sci. USA 1997, 94, 3972–3977. [Google Scholar] [CrossRef]
- Ruteshouser, E.C.; Robinson, S.M.; Huff, V. Wilms tumor genetics: Mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer 2008, 47, 461–470. [Google Scholar] [CrossRef]
- Motamedi, F.J.; Badro, D.A.; Clarkson, M.; Lecca, M.R.; Bradford, S.T.; Buske, F.A.; Saar, K.; Hubner, N.; Brandli, A.W.; Schedl, A. WT1 controls antagonistic FGF and BMP-pSMAD pathways in early renal progenitors. Nat. Commun. 2014, 5, 4444. [Google Scholar] [CrossRef]
- Wagner, N.; Wagner, K.D.; Xing, Y.; Scholz, H.; Schedl, A. The major podocyte protein nephrin is transcriptionally activated by the Wilms’ tumor suppressor WT1. J. Am. Soc. Nephrol. 2004, 15, 3044–3051. [Google Scholar] [CrossRef]
- Palmer, R.E.; Kotsianti, A.; Cadman, B.; Boyd, T.; Gerald, W.; Haber, D.A. WT1 regulates the expression of the major glomerular podocyte membrane protein Podocalyxin. Curr. Biol. CB 2001, 11, 1805–1809. [Google Scholar] [CrossRef]
- Guo, J.K.; Menke, A.L.; Gubler, M.C.; Clarke, A.R.; Harrison, D.; Hammes, A.; Hastie, N.D.; Schedl, A. WT1 is a key regulator of podocyte function: Reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum. Mol. Genet. 2002, 11, 651–659. [Google Scholar] [CrossRef]
- Baird, P.N.; Simmons, P.J. Expression of the Wilms’ tumor gene (WT1) in normal hemopoiesis. Exp. Hematol. 1997, 25, 312–320. [Google Scholar]
- Tosello, V.; Mansour, M.R.; Barnes, K.; Paganin, M.; Sulis, M.L.; Jenkinson, S.; Allen, C.G.; Gale, R.E.; Linch, D.C.; Palomero, T.; et al. WT1 mutations in T-ALL. Blood 2009, 114, 1038–1045. [Google Scholar] [CrossRef]
- Abbas, S.; Erpelinck-Verschueren, C.A.; Goudswaard, C.S.; Lowenberg, B.; Valk, P.J. Mutant Wilms’ tumor 1 (WT1) mRNA with premature termination codons in acute myeloid leukemia (AML) is sensitive to nonsense-mediated RNA decay (NMD). Leukemia 2010, 24, 660–663. [Google Scholar] [CrossRef]
- Bordin, F.; Piovan, E.; Masiero, E.; Ambesi-Impiombato, A.; Minuzzo, S.; Bertorelle, R.; Sacchetto, V.; Pilotto, G.; Basso, G.; Zanovello, P.; et al. WT1 loss attenuates the TP53-induced DNA damage response in T-cell acute lymphoblastic leukemia. Haematologica 2018, 103, 266–277. [Google Scholar] [CrossRef]
- Maris, J.M.; Hogarty, M.D.; Bagatell, R.; Cohn, S.L. Neuroblastoma. Lancet 2007, 369, 2106–2120. [Google Scholar] [CrossRef]
- Gogolin, S.; Ehemann, V.; Becker, G.; Brueckner, L.M.; Dreidax, D.; Bannert, S.; Nolte, I.; Savelyeva, L.; Bell, E.; Westermann, F. CDK4 inhibition restores G(1)-S arrest in MYCN-amplified neuroblastoma cells in the context of doxorubicin-induced DNA damage. Cell Cycle 2013, 12, 1091–1104. [Google Scholar] [CrossRef]
- Koppen, A.; Ait-Aissa, R.; Hopman, S.; Koster, J.; Haneveld, F.; Versteeg, R.; Valentijn, L.J. Dickkopf-1 is down-regulated by MYCN and inhibits neuroblastoma cell proliferation. Cancer Lett. 2007, 256, 218–228. [Google Scholar] [CrossRef]
- Valli, E.; Trazzi, S.; Fuchs, C.; Erriquez, D.; Bartesaghi, R.; Perini, G.; Ciani, E. CDKL5, a novel MYCN-repressed gene, blocks cell cycle and promotes differentiation of neuronal cells. Biochim. Biophys. Acta 2012, 1819, 1173–1185. [Google Scholar] [CrossRef]
- Lasorella, A.; Boldrini, R.; Dominici, C.; Donfrancesco, A.; Yokota, Y.; Inserra, A.; Iavarone, A. Id2 is critical for cellular proliferation and is the oncogenic effector of N-myc in human neuroblastoma. Cancer Res. 2002, 62, 301–306. [Google Scholar]
- Liu, Y.; Liu, D.; Wan, W. MYCN-induced E2F5 promotes neuroblastoma cell proliferation through regulating cell cycle progression. Biochem. Biophys. Res. Commun. 2019, 511, 35–40. [Google Scholar] [CrossRef]
- Xue, C.; Yu, D.M.; Gherardi, S.; Koach, J.; Milazzo, G.; Gamble, L.; Liu, B.; Valli, E.; Russell, A.J.; London, W.B.; et al. MYCN promotes neuroblastoma malignancy by establishing a regulatory circuit with transcription factor AP4. Oncotarget 2016, 7, 54937–54951. [Google Scholar] [CrossRef]
- Brenner, C.; Deplus, R.; Didelot, C.; Loriot, A.; Vire, E.; De Smet, C.; Gutierrez, A.; Danovi, D.; Bernard, D.; Boon, T.; et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 2005, 24, 336–346. [Google Scholar] [CrossRef]
- Marshall, G.M.; Gherardi, S.; Xu, N.; Neiron, Z.; Trahair, T.; Scarlett, C.J.; Chang, D.K.; Liu, P.Y.; Jankowski, K.; Iraci, N.; et al. Transcriptional upregulation of histone deacetylase 2 promotes Myc-induced oncogenic effects. Oncogene 2010, 29, 5957–5968. [Google Scholar] [CrossRef]
- Marshall, G.M.; Liu, P.Y.; Gherardi, S.; Scarlett, C.J.; Bedalov, A.; Xu, N.; Iraci, N.; Valli, E.; Ling, D.; Thomas, W.; et al. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability. PLoS Genet. 2011, 7, e1002135. [Google Scholar] [CrossRef]
- Lodrini, M.; Oehme, I.; Schroeder, C.; Milde, T.; Schier, M.C.; Kopp-Schneider, A.; Schulte, J.H.; Fischer, M.; De Preter, K.; Pattyn, F.; et al. MYCN and HDAC2 cooperate to repress miR-183 signaling in neuroblastoma. Nucleic Acids Res. 2013, 41, 6018–6033. [Google Scholar] [CrossRef]
- Malone, C.F.; Mabe, N.W.; Forman, A.B.; Alexe, G.; Engel, K.L.; Chen, Y.C.; Soeung, M.; Salhotra, S.; Basanthakumar, A.; Liu, B.; et al. The KAT module of the SAGA complex maintains the oncogenic gene expression program in MYCN-amplified neuroblastoma. Sci. Adv. 2024, 10, eadm9449. [Google Scholar] [CrossRef]
- Guerrini-Rousseau, L.; Tauziede-Espariat, A.; Castel, D.; Rouleau, E.; Sievers, P.; Saffroy, R.; Beccaria, K.; Blauwblomme, T.; Hasty, L.; Bourdeaut, F.; et al. Pediatric high-grade glioma MYCN is frequently associated with Li-Fraumeni syndrome. Acta Neuropathol. Commun. 2023, 11, 3. [Google Scholar] [CrossRef]
- Schwalbe, E.C.; Lindsey, J.C.; Danilenko, M.; Hill, R.M.; Crosier, S.; Ryan, S.L.; Williamson, D.; Castle, J.; Hicks, D.; Kool, M.; et al. Molecular and clinical heterogeneity within MYC-family amplified medulloblastoma is associated with survival outcomes: A multicenter cohort study. Neuro Oncol. 2025, 27, 222–236. [Google Scholar] [CrossRef]
- Buccoliero, A.M.; Giunti, L.; Moscardi, S.; Castiglione, F.; Provenzano, A.; Sardi, I.; Scagnet, M.; Genitori, L.; Caporalini, C. Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. Genes 2022, 13, 624. [Google Scholar] [CrossRef]
- Schoof, M.; Godbole, S.; Albert, T.K.; Dottermusch, M.; Walter, C.; Ballast, A.; Qin, N.; Olivera, M.B.; Gobel, C.; Neyazi, S.; et al. Mouse models of pediatric high-grade gliomas with MYCN amplification reveal intratumoral heterogeneity and lineage signatures. Nat. Commun. 2023, 14, 7717. [Google Scholar] [CrossRef]
- Mackay, A.; Burford, A.; Carvalho, D.; Izquierdo, E.; Fazal-Salom, J.; Taylor, K.R.; Bjerke, L.; Clarke, M.; Vinci, M.; Nandhabalan, M.; et al. Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell 2017, 32, 520–537.e525. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro Oncol 2021, 23, iii1–iii105. [Google Scholar] [CrossRef]
- Northcott, P.A.; Robinson, G.W.; Kratz, C.P.; Mabbott, D.J.; Pomeroy, S.L.; Clifford, S.C.; Rutkowski, S.; Ellison, D.W.; Malkin, D.; Taylor, M.D.; et al. Medulloblastoma. Nat. Rev. Dis. Primers 2019, 5, 11. [Google Scholar] [CrossRef]
- Wang, W.; Du, Y.; Datta, S.; Fowler, J.F.; Sang, H.T.; Albadari, N.; Li, W.; Foster, J.; Zhang, R. Targeting the MYCN-MDM2 pathways for cancer therapy: Are they druggable? Genes Dis. 2025, 12, 101156. [Google Scholar] [CrossRef]
- Northcott, P.A.; Jones, D.T.; Kool, M.; Robinson, G.W.; Gilbertson, R.J.; Cho, Y.J.; Pomeroy, S.L.; Korshunov, A.; Lichter, P.; Taylor, M.D.; et al. Medulloblastomics: The end of the beginning. Nat. Rev. Cancer 2012, 12, 818–834. [Google Scholar] [CrossRef]
- Northcott, P.A.; Shih, D.J.; Remke, M.; Cho, Y.J.; Kool, M.; Hawkins, C.; Eberhart, C.G.; Dubuc, A.; Guettouche, T.; Cardentey, Y.; et al. Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathol. 2012, 123, 615–626. [Google Scholar] [CrossRef]
- Northcott, P.A.; Korshunov, A.; Witt, H.; Hielscher, T.; Eberhart, C.G.; Mack, S.; Bouffet, E.; Clifford, S.C.; Hawkins, C.E.; French, P.; et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 2011, 29, 1408–1414. [Google Scholar] [CrossRef]
- Kool, M.; Koster, J.; Bunt, J.; Hasselt, N.E.; Lakeman, A.; van Sluis, P.; Troost, D.; Meeteren, N.S.; Caron, H.N.; Cloos, J.; et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 2008, 3, e3088. [Google Scholar] [CrossRef]
- Northcott, P.A.; Shih, D.J.; Peacock, J.; Garzia, L.; Morrissy, A.S.; Zichner, T.; Stutz, A.M.; Korshunov, A.; Reimand, J.; Schumacher, S.E.; et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 2012, 488, 49–56. [Google Scholar] [CrossRef]
- Hill, R.M.; Kuijper, S.; Lindsey, J.C.; Petrie, K.; Schwalbe, E.C.; Barker, K.; Boult, J.K.; Williamson, D.; Ahmad, Z.; Hallsworth, A.; et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell 2015, 27, 72–84. [Google Scholar] [CrossRef]
- Juraschka, K.; Taylor, M.D. Medulloblastoma in the age of molecular subgroups: A review. J. Neurosurg. Pediatr. 2019, 24, 353–363. [Google Scholar] [CrossRef]
- Pugh, T.J.; Weeraratne, S.D.; Archer, T.C.; Pomeranz Krummel, D.A.; Auclair, D.; Bochicchio, J.; Carneiro, M.O.; Carter, S.L.; Cibulskis, K.; Erlich, R.L.; et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 2012, 488, 106–110. [Google Scholar] [CrossRef]
- Driman, D.; Thorner, P.S.; Greenberg, M.L.; Chilton-MacNeill, S.; Squire, J. MYCN gene amplification in rhabdomyosarcoma. Cancer 1994, 73, 2231–2237. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, S.S.; Clarke, S.; Veschi, V.; Thiele, C.J. Targeting MYCN in Pediatric and Adult Cancers. Front. Oncol. 2020, 10, 623679. [Google Scholar] [CrossRef]
- Zugbi, S.; Ganiewich, D.; Bhattacharyya, A.; Aschero, R.; Ottaviani, D.; Sampor, C.; Cafferata, E.G.; Mena, M.; Sgroi, M.; Winter, U.; et al. Clinical, Genomic, and Pharmacological Study of MYCN-Amplified RB1 Wild-Type Metastatic Retinoblastoma. Cancers 2020, 12, 2714. [Google Scholar] [CrossRef]
- Williams, R.D.; Chagtai, T.; Alcaide-German, M.; Apps, J.; Wegert, J.; Popov, S.; Vujanic, G.; van Tinteren, H.; van den Heuvel-Eibrink, M.M.; Kool, M.; et al. Multiple mechanisms of MYCN dysregulation in Wilms tumour. Oncotarget 2015, 6, 7232–7243. [Google Scholar] [CrossRef]
- Williamson, D.; Lu, Y.J.; Gordon, T.; Sciot, R.; Kelsey, A.; Fisher, C.; Poremba, C.; Anderson, J.; Pritchard-Jones, K.; Shipley, J. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J. Clin. Oncol. 2005, 23, 880–888. [Google Scholar] [CrossRef]
- Walters, Z.S.; Leongamornlert, D.; Villarejo-Balcells, B.; Tse, C.; Pengelly, R.; Titley, I.; Shipley, J. Transcriptional regulation of genes by MYCN in PAX3::FOXO1-positive rhabdomyosarcomas and their roles in cell cycle progression. EJC Paediatr. Oncol. 2025, 5, 100230. [Google Scholar] [CrossRef]
- Blake, C.; Widmeyer, K.; K, D.A.; Mochizuki, A.; Smolarek, T.A.; Pillay-Smiley, N.; Kim, S.Y. 14q22.3 duplication including OTX2 in a girl with medulloblastoma: A case report with literature review. Am. J. Med. Genet. A 2024, 194, e63604. [Google Scholar] [CrossRef]
- Li, S.; Chen, K.; Zhang, Y.; Barnes, S.D.; Jaichander, P.; Zheng, Y.; Hassan, M.; Malladi, V.S.; Skapek, S.X.; Xu, L.; et al. Twist2 amplification in rhabdomyosarcoma represses myogenesis and promotes oncogenesis by redirecting MyoD DNA binding. Genes Dev. 2019, 33, 626–640. [Google Scholar] [CrossRef]
- Tietze, A.; Bison, B.; Engelhardt, J.; Fenouil, T.; Figarella-Branger, D.; Goebell, E.; Hakumaki, J.; Koscielniak, E.; Ludlow, L.E.; Meyronet, D.; et al. CNS Embryonal Tumor with PLAGL Amplification, a New Tumor in Children and Adolescents: Insights from a Comprehensive MRI Analysis. AJNR Am. J. Neuroradiol. 2025, 46, 536–543. [Google Scholar] [CrossRef]
- van Belzen, I.; Schonhuth, A.; Kemmeren, P.; Hehir-Kwa, J.Y. Structural variant detection in cancer genomes: Computational challenges and perspectives for precision oncology. NPJ Precis. Oncol. 2021, 5, 15. [Google Scholar] [CrossRef]
- van Belzen, I.; van Tuil, M.; Badloe, S.; Janse, A.; Verwiel, E.T.P.; Santoso, M.; de Vos, S.; Baker-Hernandez, J.; Kerstens, H.H.D.; Solleveld-Westerink, N.; et al. Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors. Cell Genom. 2024, 4, 100675. [Google Scholar] [CrossRef]
- Gao, C.; Wang, Y.; Broaddus, R.; Sun, L.; Xue, F.; Zhang, W. Exon 3 mutations of CTNNB1 drive tumorigenesis: A review. Oncotarget 2018, 9, 5492–5508. [Google Scholar] [CrossRef]
- Alaña, L.; Nunes-Xavier, C.E.; Zaldumbide, L.; Martin-Guerrero, I.; Mosteiro, L.; Alba-Pavón, P.; Villate, O.; García-Obregón, S.; González-García, H.; Herraiz, R.; et al. Identification and Functional Analysis of a Novel CTNNB1 Mutation in Pediatric Medulloblastoma. Cancers 2022, 14, 421. [Google Scholar] [CrossRef]
- Park, J.T.; Oh, S. The translational landscape as regulated by the RNA helicase DDX3. BMB Rep. 2022, 55, 125–135. [Google Scholar] [CrossRef]
- Swarup, A.; Bolger, T.A. The Role of the RNA Helicase DDX3X in Medulloblastoma Progression. Biomolecules 2024, 14, 803. [Google Scholar] [CrossRef]
- Donson, A.M.; Kleinschmidt-DeMasters, B.K.; Aisner, D.L.; Bemis, L.T.; Birks, D.K.; Levy, J.M.; Smith, A.A.; Handler, M.H.; Foreman, N.K.; Rush, S.Z. Pediatric brainstem gangliogliomas show BRAF(V600E) mutation in a high percentage of cases. Brain Pathol. 2014, 24, 173–183. [Google Scholar] [CrossRef]
- Pearson, A.D.; DuBois, S.G.; Macy, M.E.; de Rojas, T.; Donoghue, M.; Weiner, S.; Knoderer, H.; Bernardi, R.; Buenger, V.; Canaud, G.; et al. Paediatric strategy forum for medicinal product development of PI3-K, mTOR, AKT and GSK3beta inhibitors in children and adolescents with cancer. Eur. J. Cancer 2024, 207, 114145. [Google Scholar] [CrossRef]
- Demir, S.; Boldrin, E.; Sun, Q.; Hampp, S.; Tausch, E.; Eckert, C.; Ebinger, M.; Handgretinger, R.; Kronnie, G.T.; Wiesmuller, L.; et al. Therapeutic targeting of mutant p53 in pediatric acute lymphoblastic leukemia. Haematologica 2020, 105, 170–181. [Google Scholar] [CrossRef]
- Johnson, A.; Severson, E.; Gay, L.; Vergilio, J.A.; Elvin, J.; Suh, J.; Daniel, S.; Covert, M.; Frampton, G.M.; Hsu, S.; et al. Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures. Oncologist 2017, 22, 1478–1490. [Google Scholar] [CrossRef]
- Wasserman, J.D.; Novokmet, A.; Eichler-Jonsson, C.; Ribeiro, R.C.; Rodriguez-Galindo, C.; Zambetti, G.P.; Malkin, D. Prevalence and functional consequence of TP53 mutations in pediatric adrenocortical carcinoma: A children’s oncology group study. J. Clin. Oncol. 2015, 33, 602–609. [Google Scholar] [CrossRef]
- Zhukova, N.; Ramaswamy, V.; Remke, M.; Pfaff, E.; Shih, D.J.; Martin, D.C.; Castelo-Branco, P.; Baskin, B.; Ray, P.N.; Bouffet, E.; et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J. Clin. Oncol. 2013, 31, 2927–2935. [Google Scholar] [CrossRef] [PubMed]
- Mullighan, C.G.; Zhang, J.; Kasper, L.H.; Lerach, S.; Payne-Turner, D.; Phillips, L.A.; Heatley, S.L.; Holmfeldt, L.; Collins-Underwood, J.R.; Ma, J.; et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 2011, 471, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Janczar, S.; Janczar, K.; Pastorczak, A.; Harb, H.; Paige, A.J.; Zalewska-Szewczyk, B.; Danilewicz, M.; Mlynarski, W. The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia. Cancers 2017, 9, 2. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, S.; Yao, H.; Wen, L.; Qiu, H.; Qin, L.; Ma, L.; Chen, S. ETV6 mutation in a cohort of 970 patients with hematologic malignancies. Haematologica 2014, 99, e176–e178. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Goyal, A.; Weichenhan, D.; Allemand, E.; Mayakonda, A.; Toprak, U.; Riedel, A.; Balducci, E.; Manojkumar, M.; Pejkovska, A.; et al. TAL1 activation in T-cell acute lymphoblastic leukemia: A novel oncogenic 3′ neo-enhancer. Haematologica 2023, 108, 1259–1271. [Google Scholar] [CrossRef]
- Mansour, M.R.; Sanda, T.; Lawton, L.N.; Li, X.; Kreslavsky, T.; Novina, C.D.; Brand, M.; Gutierrez, A.; Kelliher, M.A.; Jamieson, C.H.; et al. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J. Exp. Med. 2013, 210, 1545–1557. [Google Scholar] [CrossRef]
- Darnell, J.E., Jr. Transcription factors as targets for cancer therapy. Nat. Rev. Cancer 2002, 2, 740–749. [Google Scholar] [CrossRef]
- Neel, D.V.; Shulman, D.S.; DuBois, S.G. Timing of first-in-child trials of FDA-approved oncology drugs. Eur. J. Cancer 2019, 112, 49–56. [Google Scholar] [CrossRef]
- Pourhassan, H.; Murphy, L.; Aldoss, I. Glucocorticoid Therapy in Acute Lymphoblastic Leukemia: Navigating Short-Term and Long-Term Effects and Optimal Regimen Selection. Curr. Hematol. Malig. Rep. 2024, 19, 175–185. [Google Scholar] [CrossRef]
- Rao, M.; McDuffie, E.; Srivastava, S.; Plaisted, W.; Sachs, C. Safety Implications of Modulating Nuclear Receptors: A Comprehensive Analysis from Non-Clinical and Clinical Perspectives. Pharmaceuticals 2024, 17, 875. [Google Scholar] [CrossRef]
- Rogatsky, I.; Hittelman, A.B.; Pearce, D.; Garabedian, M.J. Distinct glucocorticoid receptor transcriptional regulatory surfaces mediate the cytotoxic and cytostatic effects of glucocorticoids. Mol. Cell. Biol. 1999, 19, 5036–5049. [Google Scholar] [CrossRef]
- Weikum, E.R.; Knuesel, M.T.; Ortlund, E.A.; Yamamoto, K.R. Glucocorticoid receptor control of transcription: Precision and plasticity via allostery. Nat. Rev. Mol. Cell Biol. 2017, 18, 159–174. [Google Scholar] [CrossRef]
- Petta, I.; Dejager, L.; Ballegeer, M.; Lievens, S.; Tavernier, J.; De Bosscher, K.; Libert, C. The Interactome of the Glucocorticoid Receptor and Its Influence on the Actions of Glucocorticoids in Combatting Inflammatory and Infectious Diseases. Microbiol. Mol. Biol. Rev. 2016, 80, 495–522. [Google Scholar] [CrossRef] [PubMed]
- Scheijen, B. Molecular mechanisms contributing to glucocorticoid resistance in lymphoid malignancies. Cancer Drug Resist. 2019, 2, 647–664. [Google Scholar] [CrossRef] [PubMed]
- van der Zwet, J.C.G.; Smits, W.; Buijs-Gladdines, J.; Pieters, R.; Meijerink, J.P.P. Recurrent NR3C1 Aberrations at First Diagnosis Relate to Steroid Resistance in Pediatric T-Cell Acute Lymphoblastic Leukemia Patients. Hemasphere 2021, 5, e513. [Google Scholar] [CrossRef]
- de Rooij, J.D.; Beuling, E.; van den Heuvel-Eibrink, M.M.; Obulkasim, A.; Baruchel, A.; Trka, J.; Reinhardt, D.; Sonneveld, E.; Gibson, B.E.; Pieters, R.; et al. Recurrent deletions of IKZF1 in pediatric acute myeloid leukemia. Haematologica 2015, 100, 1151–1159. [Google Scholar] [CrossRef]
- Kosmider, K.; Karska, K.; Kozakiewicz, A.; Lejman, M.; Zawitkowska, J. Overcoming Steroid Resistance in Pediatric Acute Lymphoblastic Leukemia-The State-of-the-Art Knowledge and Future Prospects. Int. J. Mol. Sci. 2022, 23, 3795. [Google Scholar] [CrossRef]
- Marke, R.; Havinga, J.; Cloos, J.; Demkes, M.; Poelmans, G.; Yuniati, L.; van Ingen Schenau, D.; Sonneveld, E.; Waanders, E.; Pieters, R.; et al. Tumor suppressor IKZF1 mediates glucocorticoid resistance in B-cell precursor acute lymphoblastic leukemia. Leukemia 2016, 30, 1599–1603. [Google Scholar] [CrossRef]
- Laane, E.; Panaretakis, T.; Pokrovskaja, K.; Buentke, E.; Corcoran, M.; Soderhall, S.; Heyman, M.; Mazur, J.; Zhivotovsky, B.; Porwit, A.; et al. Dexamethasone-induced apoptosis in acute lymphoblastic leukemia involves differential regulation of Bcl-2 family members. Haematologica 2007, 92, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Bortner, C.D.; Oakley, R.H.; Cidlowski, J.A. Overcoming apoptotic resistance afforded by Bcl-2 in lymphoid tumor cells: A critical role for dexamethasone. Cell Death Discov. 2022, 8, 494. [Google Scholar] [CrossRef]
- Aries, I.M.; Hansen, B.R.; Koch, T.; van den Dungen, R.; Evans, W.E.; Pieters, R.; den Boer, M.L. The synergism of MCL1 and glycolysis on pediatric acute lymphoblastic leukemia cell survival and prednisolone resistance. Haematologica 2013, 98, 1905–1911. [Google Scholar] [CrossRef]
- Stam, R.W.; Den Boer, M.L.; Schneider, P.; de Boer, J.; Hagelstein, J.; Valsecchi, M.G.; de Lorenzo, P.; Sallan, S.E.; Brady, H.J.; Armstrong, S.A.; et al. Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia. Blood 2010, 115, 1018–1025. [Google Scholar] [CrossRef]
- Malyukova, A.; Brown, S.; Papa, R.; O’Brien, R.; Giles, J.; Trahair, T.N.; Dalla Pozza, L.; Sutton, R.; Liu, T.; Haber, M.; et al. FBXW7 regulates glucocorticoid response in T-cell acute lymphoblastic leukaemia by targeting the glucocorticoid receptor for degradation. Leukemia 2013, 27, 1053–1062. [Google Scholar] [CrossRef]
- Meyer, L.K.; Huang, B.J.; Delgado-Martin, C.; Roy, R.P.; Hechmer, A.; Wandler, A.M.; Vincent, T.L.; Fortina, P.; Olshen, A.B.; Wood, B.L.; et al. Glucocorticoids paradoxically facilitate steroid resistance in T cell acute lymphoblastic leukemias and thymocytes. J. Clin. Investig. 2020, 130, 863–876. [Google Scholar] [CrossRef] [PubMed]
- Piovan, E.; Yu, J.; Tosello, V.; Herranz, D.; Ambesi-Impiombato, A.; Da Silva, A.C.; Sanchez-Martin, M.; Perez-Garcia, A.; Rigo, I.; Castillo, M.; et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell 2013, 24, 766–776. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.P.; Reynolds, C.P.; Kang, M.H. Modulation of Glucocorticoid Resistance in Pediatric T-cell Acute Lymphoblastic Leukemia by Increasing BIM Expression with the PI3K/mTOR Inhibitor BEZ235. Clin. Cancer Res. 2016, 22, 621–632. [Google Scholar] [CrossRef]
- Imanaga, H.; Semba, Y.; Sasaki, K.; Setoguchi, K.; Maniriho, H.; Yamauchi, T.; Terasaki, T.; Hirabayashi, S.; Nakao, F.; Nogami, J.; et al. Central role of the mTORC1 pathway in glucocorticoid activity against B-ALL cells. Blood Neoplasia 2024, 1, 100015. [Google Scholar] [CrossRef]
- Junk, S.; Cario, G.; Wittner, N.; Stanulla, M.; Scherer, R.; Schlegelberger, B.; Schrappe, M.; von Neuhoff, N.; Lauten, M. Bortezomib Treatment can Overcome Glucocorticoid Resistance in Childhood B-cell Precursor Acute Lymphoblastic Leukemia Cell Lines. Klin. Padiatr. 2015, 227, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.J.; Ziegler, D.S.; Bautista, F.; Attarbaschi, A.; Gore, L.; Locatelli, F.; M, M.O.B.; Pauly, M.; Kormany, W.N.; Tian, S.; et al. Phase 1b study of carfilzomib with induction chemotherapy in pediatric relapsed/refractory acute lymphoblastic leukemia. Pediatr. Blood Cancer 2022, 69, e29999. [Google Scholar] [CrossRef]
- Niewerth, D.; Franke, N.E.; Jansen, G.; Assaraf, Y.G.; van Meerloo, J.; Kirk, C.J.; Degenhardt, J.; Anderl, J.; Schimmer, A.D.; Zweegman, S.; et al. Higher ratio immune versus constitutive proteasome level as novel indicator of sensitivity of pediatric acute leukemia cells to proteasome inhibitors. Haematologica 2013, 98, 1896–1904. [Google Scholar] [CrossRef]
- Horton, T.M.; Whitlock, J.A.; Lu, X.; O’Brien, M.M.; Borowitz, M.J.; Devidas, M.; Raetz, E.A.; Brown, P.A.; Carroll, W.L.; Hunger, S.P. Bortezomib reinduction chemotherapy in high-risk ALL in first relapse: A report from the Children’s Oncology Group. Br. J. Haematol. 2019, 186, 274–285. [Google Scholar] [CrossRef]
- Messinger, Y.H.; Gaynon, P.S.; Sposto, R.; van der Giessen, J.; Eckroth, E.; Malvar, J.; Bostrom, B.C.; Therapeutic Advances in Childhood, L.; Lymphoma, C. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood 2012, 120, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Teachey, D.T.; Devidas, M.; Wood, B.L.; Chen, Z.; Hayashi, R.J.; Hermiston, M.L.; Annett, R.D.; Archer, J.H.; Asselin, B.L.; August, K.J.; et al. Children’s Oncology Group Trial AALL1231: A Phase III Clinical Trial Testing Bortezomib in Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia and Lymphoma. J. Clin. Oncol. 2022, 40, 2106–2118. [Google Scholar] [CrossRef] [PubMed]
- Nishiguchi, G.; Mascibroda, L.G.; Young, S.M.; Caine, E.A.; Abdelhamed, S.; Kooijman, J.J.; Miller, D.J.; Das, S.; McGowan, K.; Mayasundari, A.; et al. Selective CK1alpha degraders exert antiproliferative activity against a broad range of human cancer cell lines. Nat. Commun. 2024, 15, 482. [Google Scholar] [CrossRef]
- Chamberlain, P.P.; D’Agostino, L.A.; Ellis, J.M.; Hansen, J.D.; Matyskiela, M.E.; McDonald, J.J.; Riggs, J.R.; Hamann, L.G. Evolution of Cereblon-Mediated Protein Degradation as a Therapeutic Modality. ACS Med. Chem. Lett. 2019, 10, 1592–1602. [Google Scholar] [CrossRef]
- Kronke, J.; Udeshi, N.D.; Narla, A.; Grauman, P.; Hurst, S.N.; McConkey, M.; Svinkina, T.; Heckl, D.; Comer, E.; Li, X.; et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 2014, 343, 301–305. [Google Scholar] [CrossRef]
- Lu, G.; Middleton, R.E.; Sun, H.; Naniong, M.; Ott, C.J.; Mitsiades, C.S.; Wong, K.K.; Bradner, J.E.; Kaelin, W.G., Jr. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 2014, 343, 305–309. [Google Scholar] [CrossRef]
- Park, S.M.; Miyamoto, D.K.; Han, G.Y.Q.; Chan, M.; Curnutt, N.M.; Tran, N.L.; Velleca, A.; Kim, J.H.; Schurer, A.; Chang, K.; et al. Dual IKZF2 and CK1alpha degrader targets acute myeloid leukemia cells. Cancer Cell 2023, 41, 726–739.e711. [Google Scholar] [CrossRef] [PubMed]
- Surka, C.; Jin, L.; Mbong, N.; Lu, C.C.; Jang, I.S.; Rychak, E.; Mendy, D.; Clayton, T.; Tindall, E.; Hsu, C.; et al. CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood 2021, 137, 661–677. [Google Scholar] [CrossRef]
- Li, Y.D.; Ma, M.W.; Hassan, M.M.; Hunkeler, M.; Teng, M.; Puvar, K.; Rutter, J.C.; Lumpkin, R.J.; Sandoval, B.; Jin, C.Y.; et al. Template-assisted covalent modification underlies activity of covalent molecular glues. Nat. Chem. Biol. 2024, 20, 1640–1649. [Google Scholar] [CrossRef]
- Simonetta, K.R.; Taygerly, J.; Boyle, K.; Basham, S.E.; Padovani, C.; Lou, Y.; Cummins, T.J.; Yung, S.L.; von Soly, S.K.; Kayser, F.; et al. Prospective discovery of small molecule enhancers of an E3 ligase-substrate interaction. Nat. Commun. 2019, 10, 1402. [Google Scholar] [CrossRef]
- Fan, A.T.; Boyle, B.T.; Ferguson, F.M. A new avenue for molecular glues: Rapid discovery of a NFKB1 degrader. Cell Chem. Biol. 2023, 30, 340–342. [Google Scholar] [CrossRef] [PubMed]
- Warren, K.E.; Vezina, G.; Krailo, M.; Springer, L.; Buxton, A.; Peer, C.J.; Figg, W.D.; William-Hughes, C.; Kessel, S.; Fouladi, M.; et al. Phase II Randomized Trial of Lenalidomide in Children With Pilocytic Astrocytomas and Optic Pathway Gliomas: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2023, 41, 3374–3383. [Google Scholar] [CrossRef]
- O’Brien, M.M.; Alonzo, T.A.; Cooper, T.M.; Levine, J.E.; Brown, P.A.; Slone, T.; August, K.J.; Benettaib, B.; Biserna, N.; Poon, J.; et al. Results of a phase 2, multicenter, single-arm, open-label study of lenalidomide in pediatric patients with relapsed or refractory acute myeloid leukemia. Pediatr. Blood Cancer 2021, 68, e28946. [Google Scholar] [CrossRef]
- Fangusaro, J.; Mitchell, D.A.; Kocak, M.; Robinson, G.W.; Baxter, P.A.; Hwang, E.I.; Huang, J.; Onar-Thomas, A.; Dunkel, I.J.; Fouladi, M.; et al. Phase 1 study of pomalidomide in children with recurrent, refractory, and progressive central nervous system tumors: A Pediatric Brain Tumor Consortium trial. Pediatr. Blood Cancer 2021, 68, e28756. [Google Scholar] [CrossRef]
- Gandhi, A.K.; Kang, J.; Havens, C.G.; Conklin, T.; Ning, Y.; Wu, L.; Ito, T.; Ando, H.; Waldman, M.F.; Thakurta, A.; et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br. J. Haematol. 2014, 164, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Jiang, Y.; Hong, Y.; Chu, X.; Zhang, Z.; Tao, Y.; Fan, Z.; Bai, Z.; Li, X.; Chen, Y.; et al. BRD4 PROTAC degrader ARV-825 inhibits T-cell acute lymphoblastic leukemia by targeting ‘Undruggable’ Myc-pathway genes. Cancer Cell Int. 2021, 21, 230. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lim, S.L.; Tao, Y.; Li, X.; Xie, Y.; Yang, C.; Zhang, Z.; Jiang, Y.; Zhang, X.; Cao, X.; et al. PROTAC Bromodomain Inhibitor ARV-825 Displays Anti-Tumor Activity in Neuroblastoma by Repressing Expression of MYCN or c-Myc. Front. Oncol. 2020, 10, 574525. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Zhang, Y.; Fang, F.; Ling, J.; Chu, X.; Zhang, Z.; Tao, Y.; Li, X.; Tian, Y.; et al. BRD4 PROTAC degrader MZ1 exerts anticancer effects in acute myeloid leukemia by targeting c-Myc and ANP32B genes. Cancer Biol. Ther. 2022, 23, 1–15. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Zhuo, R.; Tao, Y.; Liang, W.; Yang, R.; Chen, Y.; Cao, H.; Jia, S.; Yu, J.; et al. BRD4 inhibitor MZ1 exerts anti-cancer effects by targeting MYCN and MAPK signaling in neuroblastoma. Biochem. Biophys. Res. Commun. 2022, 604, 63–69. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, L.; Wang, J.; Chu, X.; Zhang, Z.; Zhang, Y.; Fang, F.; Tao, Y.; Li, X.; Tian, Y.; et al. A Novel BRD Family PROTAC Inhibitor dBET1 Exerts Great Anti-Cancer Effects by Targeting c-MYC in Acute Myeloid Leukemia Cells. Pathol. Oncol. Res. 2022, 28, 1610447. [Google Scholar] [CrossRef]
- Li, D.; Yu, X.; Kottur, J.; Gong, W.; Zhang, Z.; Storey, A.J.; Tsai, Y.H.; Uryu, H.; Shen, Y.; Byrum, S.D.; et al. Discovery of a dual WDR5 and Ikaros PROTAC degrader as an anti-cancer therapeutic. Oncogene 2022, 41, 3328–3340. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Shao, Y.; Sun, D.; Meng, S.; Zang, Y.; Zhou, Y.; Li, J.; Lu, W.; Zhu, S. Design, synthesis, and biological evaluation of BRD4 degraders. Bioorganic Med. Chem. 2023, 78, 117134. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Yin, H.; Yang, C.; Zhang, Z.; Fang, F.; Wang, J.; Li, X.; Xie, Y.; Hu, X.; Zhuo, R.; et al. The BET PROTAC inhibitor GNE-987 displays anti-tumor effects by targeting super-enhancers regulated gene in osteosarcoma. BMC Cancer 2024, 24, 928. [Google Scholar] [CrossRef] [PubMed]
- Sang, X.; Zhang, Y.; Fang, F.; Gao, L.; Tao, Y.; Li, X.; Zhang, Z.; Wang, J.; Tian, Y.; Li, Z.; et al. BRD4 Inhibitor GNE-987 Exerts Anticancer Effects by Targeting Super-Enhancer-Related Gene LYL1 in Acute Myeloid Leukemia. J. Immunol. Res. 2022, 2022, 7912484. [Google Scholar] [CrossRef]
- Bharathy, N.; Cleary, M.M.; Kim, J.A.; Nagamori, K.; Crawford, K.A.; Wang, E.; Saha, D.; Settelmeyer, T.P.; Purohit, R.; Skopelitis, D.; et al. SMARCA4 biology in alveolar rhabdomyosarcoma. Oncogene 2022, 41, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Gechijian, L.N.; Buckley, D.L.; Lawlor, M.A.; Reyes, J.M.; Paulk, J.; Ott, C.J.; Winter, G.E.; Erb, M.A.; Scott, T.G.; Xu, M.; et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat. Chem. Biol. 2018, 14, 405–412. [Google Scholar] [CrossRef]
- Mota, M.; Sweha, S.R.; Pun, M.; Natarajan, S.K.; Ding, Y.; Chung, C.; Hawes, D.; Yang, F.; Judkins, A.R.; Samajdar, S.; et al. Targeting SWI/SNF ATPases in H3.3K27M diffuse intrinsic pontine gliomas. Proc. Natl. Acad. Sci. USA 2023, 120, e2221175120. [Google Scholar] [CrossRef]
- Jia, Y.; Han, L.; Ramage, C.L.; Wang, Z.; Weng, C.C.; Yang, L.; Colla, S.; Ma, H.; Zhang, W.; Andreeff, M.; et al. Co-targeting BCL-XL and BCL-2 by PROTAC 753B eliminates leukemia cells and enhances efficacy of chemotherapy by targeting senescent cells. Haematologica 2023, 108, 2626–2638. [Google Scholar] [CrossRef] [PubMed]
- Durbin, A.D.; Wang, T.; Wimalasena, V.K.; Zimmerman, M.W.; Li, D.; Dharia, N.V.; Mariani, L.; Shendy, N.A.M.; Nance, S.; Patel, A.G.; et al. EP300 Selectively Controls the Enhancer Landscape of MYCN-Amplified Neuroblastoma. Cancer Discov. 2022, 12, 730–751. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Yang, Z.; Gao, H.; Yang, H.; Zhu, S.; An, Z.; Wang, J.; Li, Q.; Chandarlapaty, S.; Deng, H.; et al. Potent and Preferential Degradation of CDK6 via Proteolysis Targeting Chimera Degraders. J. Med. Chem. 2019, 62, 7575–7582. [Google Scholar] [CrossRef]
- De Dominici, M.; Porazzi, P.; Xiao, Y.; Chao, A.; Tang, H.Y.; Kumar, G.; Fortina, P.; Spinelli, O.; Rambaldi, A.; Peterson, L.F.; et al. Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and -independent effects by CDK6-specific PROTACs. Blood 2020, 135, 1560–1573. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Chen, H.; Qiu, X.; Kaniskan, H.U.; Xie, L.; Chen, X.; Jin, J.; Liu, P. (GGAA)(3)-Based TF-PROTACs Enable Targeted Degradation of ETV6 to Inhibit Ewing Sarcoma Growth. J. Am. Chem. Soc. 2025, 147, 13396–13404. [Google Scholar] [CrossRef] [PubMed]
- Perzolli, A.; Steinebach, C.; Kronke, J.; Gutschow, M.; Zwaan, C.M.; Barneh, F.; Heidenreich, O. PROTAC-Mediated GSPT1 Degradation Impairs the Expression of Fusion Genes in Acute Myeloid Leukemia. Cancers 2025, 17, 211. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Takwale, A.D.; Lee, J.E.; Yu, N.; Kim, Y.H.; Lee, J.Y.; Cho, Y.H.; Cho, J.H.; Moon, J.H.; Lee, G.; et al. Discovery of a novel molecular glue degrader targeting GSPT1/2 with a non-IMiD-based CRBN binder. Eur. J. Med. Chem. 2025, 291, 117642. [Google Scholar] [CrossRef]
- Jung, H.; Lee, Y. Targeting the Undruggable: Recent Progress in PROTAC-Induced Transcription Factor Degradation. Cancers 2025, 17, 1871. [Google Scholar] [CrossRef]
- Hu, J.; Jarusiewicz, J.; Du, G.; Nishiguchi, G.; Yoshimura, S.; Panetta, J.C.; Li, Z.; Min, J.; Yang, L.; Chepyala, D.; et al. Preclinical evaluation of proteolytic targeting of LCK as a therapeutic approach in T cell acute lymphoblastic leukemia. Sci. Transl. Med. 2022, 14, eabo5228. [Google Scholar] [CrossRef]
- Garralda, E.; Beaulieu, M.E.; Moreno, V.; Casacuberta-Serra, S.; Martinez-Martin, S.; Foradada, L.; Alonso, G.; Masso-Valles, D.; Lopez-Estevez, S.; Jauset, T.; et al. MYC targeting by OMO-103 in solid tumors: A phase 1 trial. Nat. Med. 2024, 30, 762–771. [Google Scholar] [CrossRef]
- Wei, E.; Mitanoska, A.; O’Brien, Q.; Porter, K.; Molina, M.; Ahsan, H.; Jung, U.; Mills, L.; Kyba, M.; Bosnakovski, D. Pharmacological targeting of P300/CBP reveals EWS::FLI1-mediated senescence evasion in Ewing sarcoma. Mol. Cancer 2024, 23, 222. [Google Scholar] [CrossRef]
- Shendy, N.A.M.; Bikowitz, M.; Sigua, L.H.; Zhang, Y.; Mercier, A.; Khashana, Y.; Nance, S.; Liu, Q.; Delahunty, I.M.; Robinson, S.; et al. Group 3 medulloblastoma transcriptional networks collapse under domain specific EP300/CBP inhibition. Nat. Commun. 2024, 15, 3483. [Google Scholar] [CrossRef] [PubMed]


| Chromosomal Abnormality | Cancer Type | TFs Involved | Genes Rearrangement | Incidence | Functional Impact |
|---|---|---|---|---|---|
| Chromosomal translocations: | |||||
| TCF3::PBX1 (t(1;19)(q23;p13)) [14,15,16] | B-ALL | TCF3 PBX1 | TCF3 on Chr19p13 is translocated to PBX1 gene on Chr1q23 | ~5% of B-ALL | Oncogenic fusion TF |
| IGH::MYC t(8;14)(q24;q32) [17] | BL | MYC | MYC gene translocated from Chr8q24 to the IGH locus on Chr14q32 | ~75% of BL | High MYC expression |
| RUNX1::RUNX1T1 (t(8;21)(q22;q22)) [18,19,20] | AML | RUNX1 | RUNX1 on Chr21 is translocated to RUNX1T1 gene on Chr8 | ~4–8% of AML | Fusion gene block RUNX1 functions |
| PML::RARA (t(15;17)(q24;q21)) [21] | APL | PML RARA | PML on Chr15 is fused with RARA gene on Chr17 | >90% of APL | It acts as transcriptional repressor and blocks differentiation |
| TCRD::LMO2 t(11;14)(p13;q11) [22,23] | T-ALL | LMO2 | LMO2 on Chr11p13 is translocated next to the regulatory elements of TCRD locus on Chr14q11 | ~7% of T-ALL | LMO2 overexpression via TCR enhancer hijacking |
| NPM1::ALK t(2;5)(p23;q35) [24] | ALCL | NPM1 | NPM1 gene on Chr5q35 is fused to the ALK gene on Chr2p23 | ~80–90% of ALCL | NPM1::ALK is constitutively active RTK |
| EWSR1::WT1 t(11;22)(p13;q12) [25,26,27] | DSRCT | WT1 | This reciprocal translocation fuses EWSR1 gene on Chr22q12 with WT1 on Chr11p13 | 100% cases | EWSR1::WT1 acts as a powerful chromatin activator |
| ETV6::NTRK3 t(12;15)(p13;q25) [28,29,30] | CFS CMN | ETV6 | Translocation fuses the N-terminal SAM domain of ETV6 on Chr12p13 to C-terminal PTK domain of NTRK3 on Chr15q25. | ~70% of CFS | ETV6::NTRK3 is constitutively active RTK |
| ASPSCR1::TFE3 t(X;17)(p11;q25) [31,32,33,34] | ASPS | TFE3 | This non-reciprocal translocation fuses ASPSCR1 on Chr17q25 with the TFE3 gene on Chr Xp11 | <1% of soft-tissue sarcomas | ASPSCR1::TFE3 is oncogenic TF |
| Chromosomal inversions: | |||||
| inv(7)(p15q34) [35,36] | T-ALL | HOXA10 HOXA11 | It places HOXA cluster genes near TCRβ locus, overexpressing HOXA10 and HOXA11 | rare | Inversion blocks T-cell differentiation |
| Chromosomal deletions: | |||||
| del(6q) q13-q25 [37,38,39] | ALL | PRDM1 FOXO3 | del(6q) leads to loss of tumor suppressor genes PRDM1 and FOXO3 | 4–15% | Loss of PRDM1 and FOXO3 activity promotes leukemia |
| del(12p) [40] | ALL | ETV6 | ETV6 located at 12p13 is deleted due to del(12p). Deletion strongly associated with the t(12;21)(p13;q22) | ~15% of ALL | Genes loss contribute to leukemia pathogenesis |
| del(7p or 7q) [41,42,43,44] | ALL AML | IKZF1 ZNFN1A1 GLI3 CUX1 | IKZF1 on 7p12, GLI3 on 7p13 and CUX1 on 7q22 deleted in del(7p) or del(7q) leukemia | 4–5% | IKZF1, ZNFN1A1 and CUX1 are tumor suppressors |
| del(5q) [45,46] | AML | EGR1 APC | EGR1 at 5q31.2 and APC at 5q22.2 are key genes haploinsufficient due to del(5q) | 1.5% | EGR1 and APC are tumor suppressors |
| del(17p) [47,48,49] | SHH-MB | TP53 | TP53 located at 17p13.1. deleted due to del(17p). 17p deletion occurs together with gain or duplication of 17q | 25–50% | p53 loss promote tumor progression |
| del(10q) [50,51] | MB | MXI1 | Deleted 10q region harbors MXI1 gene on chromosome 10q24 (around 10q24–q25 region) | 15–20% | MXI1 is a transcriptional repressor |
| del(17p) [52,53] | Osteosarcoma | TP53 | Deleted 17p region harbors TP53 gene on 17p13.1. | 40–70% | p53 loss promote tumor progression |
| del(1p36) [54,55] | Hepatoblastoma | CAMTA1 CASZ1 | These TFs deleted due to 1p36 deletion | 27% | CAMTA1 and CASZ1 are tumor suppressors |
| Chromosomal amplifications: | |||||
| 1q Gain [56,57] | WT | MYOG | MYOG located at 1q and amplified due to 1q gain | ~30% | MYOG linked to differentiation and chemotherapy resistance |
| iAMP21 [58,59,60] | B-ALL | RUNX1 | Extra copies of the RUNX1 gene on Chr21 due to complex rearrangements within the chromosome | 2–5% | RUNX1 along with other gene amplifications in this region drive leukemia |
| iAmp-PAX5 [61,62,63] | B-ALL | PAX5 | Extra copies of internal region of the PAX5 gene are gained, rather than amplification of the entire gene | 0.5–1.4% | PAX5 amplification disrupts B-cell differentiation |
| 6p12-p21 [64,65,66] | Osteosarcoma | RUNX2 | 6p12-p21 amplification leads to increased RUNX2 copy number | 16–75% | RUNX2 acts as an oncogenic TF |
| Name | E3 Ubiquitin Ligase | Target TFs | Cancer Type | Clinical Status |
|---|---|---|---|---|
| Molecular Glue Degraders: | ||||
| Lenalidomide [176,177] | CRBN | IKZF1, IKZF3 | Low-grade gliomas: pilocytic astrocytoma, optic pathway glioma, relapsed or refractory AML | Phase II |
| Pomalidomide [178,179] | CRBN | IKZF1, IKZF3 | Recurrent, progressive/refractory CNS tumors | Phase I |
| Thalidomide alone (NCT03257631) or in combination with cyclophosphamide (NCT00003754), chemo (NCT06470464), carboplatin (NCT00179881) | CRBN | IKZF1, IKZF3, SALL4 | Recurrent or progressive primary brain tumors, recurrent or refractory childhood cancers, yolk sac tumor and pediatric brain stem gliomas. | Phase II |
| PROTACs: | ||||
| ARV-825 [180,180,181] | CRBN | BRD2, BRD3, BRD4, MYC | T-ALL Neuroblastoma | Preclinical |
| MZ1 [182,183] | VHL | BRD2, BRD3, BRD4, MYC, MYCN | AML Neuroblastoma | Preclinical |
| dBET1 [184] | CRBN | BRD2, BRD3, BRD4 | AML | Preclinical |
| MS40 [185] | CRBN | IKZF1, IKZF3 | MLL-rearranged leukemias | Preclinical |
| PROTAC 8b [186] | VHL | BRD4 | BAL | Preclinical |
| GNE-987 [187,188] | VHL | BRD4 | Osteosarcoma AML | Preclinical |
| PROTACs targeting transcriptional regulators (TRs): | ||||
| Name | E3 Ubiquitin Ligase | Target TRs | Cancer Type | Status |
| ACBI-1 [189] | VHL | SMARCA2 SMARCA4 (chromatin remodeler) | Alveolar RMS | Preclinical |
| dTRIM24 [190] | VHL | TRIM24 (transcriptional activator) | AML | Preclinical |
| AU-15330 [191] | VHL | SMARCA2 SMARCA4 | DIPGs | Preclinical |
| 753B [192] | VHL | BCL-XL BCL-2 (anti-apoptotic) | AML | Preclinical |
| JQAD1 [193] | CRBN | EP300 | Neuroblastoma | Preclinical |
| CP-10 [194] | CRBN | CDK6 | AML | Preclinical |
| YX-2-107 [195] | CRBN | CDK6 | Ph+ALL | Preclinical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathania, A.S. Masters of Gene Expression: Transcription Factors in Pediatric Cancers. Cancers 2025, 17, 3439. https://doi.org/10.3390/cancers17213439
Pathania AS. Masters of Gene Expression: Transcription Factors in Pediatric Cancers. Cancers. 2025; 17(21):3439. https://doi.org/10.3390/cancers17213439
Chicago/Turabian StylePathania, Anup S. 2025. "Masters of Gene Expression: Transcription Factors in Pediatric Cancers" Cancers 17, no. 21: 3439. https://doi.org/10.3390/cancers17213439
APA StylePathania, A. S. (2025). Masters of Gene Expression: Transcription Factors in Pediatric Cancers. Cancers, 17(21), 3439. https://doi.org/10.3390/cancers17213439
