Evaluating the Role of Liquid Biopsy to Detect Pathogenic Homologous Recombination Repair (HRR) Gene Alterations in Metastatic Prostate Cancer
Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patient Population, Characteristics, and Outcome
2.2. Definitions of Molecular Testing Results
2.3. Statistical Analysis
2.4. Ethics Approval
3. Results
3.1. Patients’ Characteristics
3.2. Germline Molecular Testing
3.3. Somatic Molecular Testing
3.4. Single vs. Dual Modality Somatic Testing
3.5. Treatment with PARPi: Results and Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brenner, D.R.; Poirier, A.; Woods, R.R.; Ellison, L.F.; Billette, J.-M.; Demers, A.A.; Zhang, S.X.; Yao, C.; Finley, C.; Fitzgerald, N.; et al. Projected estimates of cancer in Canada in 2022. Can. Med Assoc. J. 2022, 194, E601–E607. [Google Scholar] [CrossRef]
- Sweeney, C.J.; Chen, Y.-H.; Carducci, M.; Liu, G.; Jarrard, D.F.; Eisenberger, M.; Wong, Y.-N.; Hahn, N.; Kohli, M.; Cooney, M.M.; et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N. Engl. J. Med. 2015, 373, 737–746. [Google Scholar] [CrossRef]
- James, N.D.; Sydes, M.R.; Clarke, N.W.; Mason, M.D.; Dearnaley, D.P.; Spears, M.R.; Ritchie, A.W.S.; Parker, C.C.; Russell, J.M.; Attard, G.; et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016, 387, 1163–1177. [Google Scholar] [CrossRef]
- Armstrong, A.J.; Szmulewitz, R.Z.; Petrylak, D.P.; Holzbeierlein, J.; Villers, A.; Azad, A.; Alcaraz, A.; Alekseev, B.; Iguchi, T.; Shore, N.D.; et al. ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy With Enzalutamide or Placebo in Men With Metastatic Hormone-Sensitive Prostate Cancer. J. Clin. Oncol. 2019, 37, 2974–2986. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.N.; Agarwal, N.; Bjartell, A.; Chung, B.H.; Gomes, A.J.P.D.S.; Given, R.; Soto, A.J.; Merseburger, A.S.; Özgüroglu, M.; Uemura, H.; et al. Apalutamide for Metastatic, Castration-Sensitive Prostate Cancer. N. Engl. J. Med. 2019, 381, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Tran, N.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Özgüroğlu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; et al. Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. N. Engl. J. Med. 2017, 377, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Foulon, S.; Carles, J.; Roubaud, G.; McDermott, R.; Fléchon, A.; Tombal, B.; Supiot, S.; Berthold, D.; Ronchin, P.; et al. Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): A multicentre, open-label, randomised, phase 3 study with a 2 × 2 factorial design. Lancet 2022, 399, 1695–1707. [Google Scholar] [CrossRef]
- Smith, M.R.; Hussain, M.; Saad, F.; Fizazi, K.; Sternberg, C.N.; Crawford, E.D.; Kopyltsov, E.; Park, C.H.; Alekseev, B.; Montesa-Pino, Á.; et al. Darolutamide and Survival in Metastatic, Hormone-Sensitive Prostate Cancer. N. Engl. J. Med. 2022, 386, 1132–1142. [Google Scholar] [CrossRef]
- Kluth, L.A.; Shariat, S.F.; Kratzik, C.; Tagawa, S.; Sonpavde, G.; Rieken, M.; Scherr, D.S.; Pummer, K. The hypothalamic–pituitary–gonadal axis and prostate cancer: Implications for androgen deprivation therapy. World J. Urol. 2013, 32, 669–676. [Google Scholar] [CrossRef]
- Abida, W.; Armenia, J.; Gopalan, A.; Brennan, R.; Walsh, M.; Barron, D.; Danila, D.; Rathkopf, D.; Morris, M.; Slovin, S.; et al. Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making. JCO Precis. Oncol. 2017, 2017, 1–16. [Google Scholar] [CrossRef]
- Robinson, D.; Van Allen, E.M.; Wu, Y.-M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.-M.; Montgomery, B.; Taplin, M.-E.; Pritchard, C.C.; Attard, G.; et al. Integrative Clinical Genomics of Advanced Prostate Cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, C.C.; Mateo, J.; Walsh, M.F.; De Sarkar, N.; Abida, W.; Beltran, H.; Garofalo, A.; Gulati, R.; Carreira, S.; Eeles, R.; et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N. Engl. J. Med. 2016, 375, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.; Goh, C.; Olmos, D.; Saunders, E.; Leongamornlert, D.; Tymrakiewicz, M.; Mahmud, N.; Dadaev, T.; Govindasami, K.; Guy, M.; et al. Germline BRCA Mutations Are Associated With Higher Risk of Nodal Involvement, Distant Metastasis, and Poor Survival Outcomes in Prostate Cancer. J. Clin. Oncol. 2013, 31, 1748–1757. [Google Scholar] [CrossRef] [PubMed]
- Fettke, H.; Dai, C.; Kwan, E.M.; Zheng, T.; Du, P.; Ng, N.; Bukczynska, P.; Docanto, M.; Kostos, L.; Foroughi, S.; et al. BRCA-deficient metastatic prostate cancer has an adverse prognosis and distinct genomic phenotype. EBioMedicine 2023, 95, 104738. [Google Scholar] [CrossRef]
- Kote-Jarai, Z.; Leongamornlert, D.; Saunders, E.; Tymrakiewicz, M.; Castro, E.; Mahmud, N.; Guy, M.; Edwards, S.; O’Brien, L.; Sawyer, E.; et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: Implications for genetic testing in prostate cancer patients. Br. J. Cancer 2011, 105, 1230–1234. [Google Scholar] [CrossRef]
- Collaborators, T.U.; Leongamornlert, D.; Saunders, E.; Dadaev, T.; Tymrakiewicz, M.; Goh, C.; Jugurnauth-Little, S.; Kozarewa, I.; Fenwick, K.; Assiotis, I.; et al. Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br. J. Cancer 2014, 110, 1663–1672. [Google Scholar] [CrossRef]
- Kaufman, B.; Shapira-Frommer, R.; Schmutzler, R.K.; Audeh, M.W.; Friedlander, M.; Balmaña, J.; Mitchell, G.; Fried, G.; Stemmer, S.M.; Hubert, A.; et al. Olaparib Monotherapy in Patients With Advanced Cancer and a Germline BRCA1/2 Mutation. J. Clin. Oncol. 2015, 33, 244–250. [Google Scholar] [CrossRef]
- Mateo, J.; Porta, N.; Bianchini, D.; McGovern, U.; Elliott, T.; Jones, R.; Syndikus, I.; Ralph, C.; Jain, S.; Varughese, M.; et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020, 21, 162–174. [Google Scholar] [CrossRef]
- De Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef]
- Agarwal, N.; A Azad, A.; Carles, J.; Fay, A.P.; Matsubara, N.; Heinrich, D.; Szczylik, C.; De Giorgi, U.; Joung, J.Y.; Fong, P.C.C.; et al. Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): A randomised, placebo-controlled, phase 3 trial. Lancet 2023, 402, 291–303. [Google Scholar] [CrossRef]
- Agarwal, N.; Azad, A.; Carles, J.; Fay, A.P.; Matsubara, N.; Szczylik, C.; De Giorgi, U.; Joung, J.Y.; Fong, P.C.; Voog, E.; et al. Final overall survival (OS) with talazoparib (TALA) + enzalutamide (ENZA) as first-line treatment in unselected patients with metastatic castration-resistant prostate cancer (mCRPC) in the phase 3 TALAPRO-2 trial. J. Clin. Oncol. 2025, 43. [Google Scholar] [CrossRef]
- Fizazi, K.; Azad, A.; Matsubara, N.; Carles, J.; Fay, A.P.; De Giorgi, U.; Joung, J.Y.; Fong, P.C.; Voog, E.; Jones, R.J.; et al. Final overall survival (OS) with talazoparib (TALA) + enzalutamide (ENZA) as first-line (1L) treatment in patients (pts) with homologous recombination repair (HRR)-deficient metastatic castration-resistant prostate cancer (mCRPC) in the phase 3 TALAPRO-2 trial. J. Clin. Oncol. 2025, 43. [Google Scholar] [CrossRef]
- Clarke, N.W.; Armstrong, A.J.; Thiery-Vuillemin, A.; Oya, M.; Shore, N.; Loredo, E.; Procopio, G.; de Menezes, J.; Girotto, G.; Arslan, C.; et al. Abiraterone and Olaparib for Metastatic Castration-Resistant Prostate Cancer. NEJM Évid. 2022, 1, EVIDoa2200043. [Google Scholar] [CrossRef]
- Chi, K.; Sandhu, S.; Smith, M.; Attard, G.; Saad, M.; Olmos, D.; Castro, E.; Roubaud, G.; Gomes, A.P.d.S.; Small, E.; et al. Niraparib plus abiraterone acetate with prednisone in patients with metastatic castration-resistant prostate cancer and homologous recombination repair gene alterations: Second interim analysis of the randomized phase III MAGNITUDE trial. Ann. Oncol. 2023, 34, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Saad, F.; A Azad, A.; Mateo, J.; Matsubara, N.; Shore, N.D.; Chakrabarti, J.; Chen, H.-C.; Lanzalone, S.; Niyazov, A.; et al. TALAPRO-3 Clinical Trial Protocol: Phase III Study of Talazoparib Plus Enzalutamide in Metastatic Castration-Sensitive Prostate Cancer. Futur. Oncol. 2023, 20, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Rose, A.A.N.; Hotte, S.J.; Winquist, E.; Macfarlane, R.J.; Chi, K.N.; Kolinsky, M.P.; Salim, M.; Jiang, D.M.; Ong, M.; Ferrario, C.; et al. Substudy G of the Canadian cancer trials group (CCTG) IND.234: PC_BETS (V)—A circulating tumor DNA (ctDNA)–directed phase II study of carboplatin in patients (Pts) with previously treated metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2025, 43, 5058. [Google Scholar] [CrossRef]
- Yu, E.Y.; Rumble, R.B.; Agarwal, N.; Cheng, H.H.; Eggener, S.E.; Bitting, R.L.; Beltran, H.; Giri, V.N.; Spratt, D.; Mahal, B.; et al. Germline and Somatic Genomic Testing for Metastatic Prostate Cancer: ASCO Guideline. J. Clin. Oncol. 2025, 43, 748–758. [Google Scholar] [CrossRef]
- Rendon, R.A.; Selvarajah, S.; Wyatt, A.W.; Kolinsky, M.; Schrader, K.A.; Fleshner, N.E.; Kinnaird, A.; Merrimen, J.; Niazi, T.; Saad, F.; et al. 2023 Canadian Urological Association guideline: Genetic testing in prostate cancer. Can. Urol. Assoc. J. 2023, 17, 314–325. [Google Scholar] [CrossRef]
- Giri, V.N.; Rumble, R.B.; Yu, E.Y.; Lu, K. Germline and Somatic Genomic Testing for Metastatic Prostate Cancer: ASCO Guideline Clinical Insights. JCO Oncol. Pr. 2025, OP2500186. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabières, C. Circulating tumour cells in cancer patients: Challenges and perspectives. Trends Mol. Med. 2010, 16, 398–406. [Google Scholar] [CrossRef]
- Schwarzenbach, H.; Hoon, D.S.B.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 2011, 11, 426–437. [Google Scholar] [CrossRef]
- Alix-Panabières, C.; Pantel, K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov. 2021, 11, 858–873. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.; Mateo, J.; Stenzinger, A.; Rojo, F.; Shiller, M.; Wyatt, A.W.; Penault-Llorca, F.; Gomella, L.G.; Eeles, R.; Bjartell, A. Practical considerations for optimising homologous recombination repair mutation testing in patients with metastatic prostate cancer. J. Pathol. Clin. Res. 2021, 7, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Messina, C.; Cattrini, C.; Soldato, D.; Vallome, G.; Caffo, O.; Castro, E.; Olmos, D.; Boccardo, F.; Zanardi, E. BRCA Mutations in Prostate Cancer: Prognostic and Predictive Implications. J. Oncol. 2020, 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mateo, J.; Carreira, S.; Sandhu, S.; Miranda, S.; Mossop, H.; Perez-Lopez, R.; Nava Rodrigues, D.; Robinson, D.; Omlin, A.; Tunariu, N.; et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N. Engl. J. Med. 2015, 373, 1697–1708. [Google Scholar] [CrossRef]
- Cheng, H.H.; Pritchard, C.C.; Boyd, T.; Nelson, P.S.; Montgomery, B. Biallelic Inactivation of BRCA2 in Platinum-sensitive Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2016, 69, 992–995. [Google Scholar] [CrossRef]
- Yip, S.M.; Morash, C.; Kolinsky, M.P.; Kapoor, A.; Ong, M.; Selvarajah, S.; Nuk, J.; Compton, K.; Pouliot, F.; Lavallée, L.T.; et al. Genetic testing practices among specialist physicians who treat prostate cancer. Can. Urol. Assoc. J. 2023, 17, 326–336. [Google Scholar] [CrossRef]
- Tuffaha, H.; Edmunds, K.; Fairbairn, D.; Roberts, M.J.; Chambers, S.; Smith, D.P.; Horvath, L.; Arora, S.; Scuffham, P. Guidelines for genetic testing in prostate cancer: A scoping review. Prostate Cancer Prostatic Dis. 2023, 27, 594–603. [Google Scholar] [CrossRef]
- Scott, R.J.; Mehta, A.; Macedo, G.S.; Borisov, P.S.; Kanesvaran, R.; El Metnawy, W. Genetic testing for homologous recombination repair (HRR) in metastatic castration-resistant prostate cancer (mCRPC): Challenges and solutions. Oncotarget 2021, 12, 1600–1614. [Google Scholar] [CrossRef]
- Damodaran, S.; Berger, M.F.; Roychowdhury, S. Clinical tumor sequencing: Opportunities and challenges for precision cancer medicine. Am. Soc. Clin. Oncol. Educ. Book 2015, e175–e182. [Google Scholar] [CrossRef]
- Hawkins, R. Managing the Pre- and Post-analytical Phases of the Total Testing Process. Ann. Lab. Med. 2012, 32, 5–16. [Google Scholar] [CrossRef]
- Zhen, J.T.; Syed, J.; Nguyen, K.A.; Leapman, M.S.; Agarwal, N.; Brierley, K.; Llor, X.; Hofstatter, E.; Shuch, B. Genetic testing for hereditary prostate cancer: Current status and limitations. Cancer 2018, 124, 3105–3117. [Google Scholar] [CrossRef]
- Sarsfield, P.; Wickham, C.L.; Joyner, M.V.; Ellard, S.; Jones, D.B.; Wilkins, B.S. Formic acid decalcification of bone marrow trephines degrades DNA: Alternative use of EDTA allows the amplification and sequencing of relatively long PCR products: Figure 1. Mol. Pathol. 2000, 53, 336. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Corcoran, C.; Sibilla, C.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Mateo, J.; Olmos, D.; Mehra, N.; et al. Tumor Genomic Testing for >4,000 Men with Metastatic Castration-resistant Prostate Cancer in the Phase III Trial PROfound (Olaparib). Clin. Cancer Res. 2022, 28, 1518–1530. [Google Scholar] [CrossRef] [PubMed]
- Kokkat, T.J.; Patel, M.S.; McGarvey, D.; LiVolsi, V.A.; Baloch, Z.W. Archived Formalin-Fixed Paraffin-Embedded (FFPE) Blocks: A Valuable Underexploited Resource for Extraction of DNA, RNA, and Protein. Biopreservation Biobanking 2013, 11, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Hashida, S.; Yamamoto, H.; Matsubara, T.; Ohtsuka, T.; Suzawa, K.; Maki, Y.; Soh, J.; Asano, H.; Tsukuda, K.; et al. Estimation of age-related DNA degradation from formalin-fixed and paraffin-embedded tissue according to the extraction methods. Exp. Ther. Med. 2017, 14, 2683–2688. [Google Scholar] [CrossRef]
- Warner, E.W.; Van der Eecken, K.; Murtha, A.J.; Kwan, E.M.; Herberts, C.; Sipola, J.; Ng, S.W.S.; Chen, X.E.; Fonseca, N.M.; Ritch, E.; et al. Multiregion sampling of de novo metastatic prostate cancer reveals complex polyclonality and augments clinical genotyping. Nat. Cancer 2024, 5, 114–130. [Google Scholar] [CrossRef]
- Park, J.J.; Chu, A.; Li, J.; Ali, A.; McKay, R.R.; Hwang, C.; Labriola, M.K.; Jang, A.; Kilari, D.; Mo, G.; et al. Repeat Next-Generation Sequencing Testing on Progression in Men With Metastatic Prostate Cancer Can Identify New Actionable Alterations. JCO Precis. Oncol. 2024, 8, e2300567. [Google Scholar] [CrossRef]
- Kwan, E.M.; Wyatt, A.W.; Chi, K.N. Towards clinical implementation of circulating tumor DNA in metastatic prostate cancer: Opportunities for integration and pitfalls to interpretation. Front. Oncol. 2022, 12, 1054497. [Google Scholar] [CrossRef]
- Razavi, P.; Li, B.T.; Brown, D.N.; Jung, B.; Hubbell, E.; Shen, R.; Abida, W.; Juluru, K.; De Bruijn, I.; Hou, C.; et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat. Med. 2019, 25, 1928–1937. [Google Scholar] [CrossRef]
- Jensen, K.; Konnick, E.Q.; Schweizer, M.T.; Sokolova, A.O.; Grivas, P.; Cheng, H.H.; Klemfuss, N.M.; Beightol, M.; Yu, E.Y.; Nelson, P.S.; et al. Association of Clonal Hematopoiesis in DNA Repair Genes With Prostate Cancer Plasma Cell-free DNA Testing Interference. JAMA Oncol. 2021, 7, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, M.T.; Gulati, R.; Bs, M.B.; Konnick, E.Q.; Cheng, H.H.; Klemfuss, N.; De Sarkar, N.; Yu, E.Y.; Montgomery, R.B.; Nelson, P.S.; et al. Clinical determinants for successful circulating tumor DNA analysis in prostate cancer. Prostate 2019, 79, 701–708. [Google Scholar] [CrossRef]
- Chi, K.N.; Barnicle, A.; Sibilla, C.; Lai, Z.; Corcoran, C.; Barrett, J.C.; Adelman, C.A.; Qiu, P.; Easter, A.; Dearden, S.; et al. Detection of BRCA1, BRCA2, and ATM Alterations in Matched Tumor Tissue and Circulating Tumor DNA in Patients with Prostate Cancer Screened in PROfound. Clin. Cancer Res. 2022, 29, 81–91. [Google Scholar] [CrossRef]

| N = 484 | ||
|---|---|---|
| Centre | N (%) | |
| JGH | 240 (49.6) | |
| MUHC | 244 (50.4) | |
| Age Years | Median (Range) | 67 (42–92) |
| Medical History | N (%) | |
| Personal history of cancer | Yes | 80 (16.5) |
| No | 396 (81.8) | |
| Missing data | 8 (1.7) | |
| Family history of cancer | Yes | 187 (38.6) |
| No | 173 (35.8) | |
| Missing data | 124 (25.6) | |
| Stage at diagnosis | N (%) | |
| Localized | 230 (47.5) | |
| Metastatic | 253 (52.3) | |
| Missing data | 1 (0.2) | |
| Pathology | N (%) | |
| Pathology | Adenocarcinoma | 453 (93.6) |
| Other | 3 (0.6) | |
| Missing data | 28 (5.8) | |
| Gleason | 7 | 112 (23.1) |
| 8 | 80 (16.6) | |
| 9 | 189 (39) | |
| 10 | 29 (6) | |
| Missing data | 74 (15.3) | |
| Treatment for localized disease | N (%) * | |
| Surgery | 98 (20.2) | |
| Radiation | 238 (49.2) | |
| ADT | 104 (21.5) | |
| Adjuvant ARPI (Abiraterone) | 5 (1) | |
| Adjuvant chemotherapy (Docetaxel) | 4 (0.8) | |
| Not applicable | 182 (37.6) | |
| Clinical trial | 5 (1) | |
| Missing data | 13 (2.7) | |
| Site of metastases at diagnosis of metastatic disease | N (%) ** | |
| Bone | 382 (79.5) | |
| Lymph nodes | 194 (40.4) | |
| Visceral | 56 (11.7) | |
| Other | 7 (1.5) | |
| Missing data | 5 (1) | |
| Disease characteristics | N (%) | |
| High volume as per CHAARTED trial | Yes | 236 (49.2) |
| No | 211 (43.9) | |
| Missing data | 33 (6.9) | |
| High risk as per LATITUDE trial | Yes | 186 (38.8) |
| No | 225 (46.9) | |
| Missing data | 69 (14.4) | |
| Castration resistance | N (%) | |
| Yes | 332 (68.6) | |
| No | 152 (31.4) | |
| Somatic Testing | Tissue Alone N = 192 | ctDNA or Both N = 76 | Not Tested N = 216 | p-Value * | |
|---|---|---|---|---|---|
| Age Years | Median (Range) | 67 (42–89) | 64.5 (45–82) | 68 (46–92) | |
| Stage at Diagnosis N (%) | |||||
| Localized Metastatic NA | 83 (43.3) 108 (56.2) 1 (0.5) | 33 (43.4) 43 (56.6) | 114 (52.8) 102 (47.2) | p = 0.124 | |
| Disease Characteristics N (%) | |||||
| High Volume as per CHAARTED trial | Yes | 88 (45.9) | 37 (48.7) | 111 (51.4) | p = 0.334 |
| No | 93 (48.4) | 28 (36.8) | 90 (41.6) | ||
| NA | 11 (5.7) | 11 (14.5) | 15 (7) | ||
| High Risk as per LATITUDE trial | Yes | 71 (37) | 31 (40.8) | 84 (38.9) | p = 0.380 |
| No | 100 (52) | 30 (39.5) | 95 (44) | ||
| NA | 21 (11) | 15 (19.7) | 37 (17.1) | ||
| Castration Resistance N (%) | |||||
| Yes | 146 (76) | 61 (80.2) | 125 (57.9) | p = 0.000 | |
| No | 46 (24) | 15 (19.8) | 91 (42.1) | ||
| Gleason N (%) | |||||
| 7 | 46 (24) | 13 (17.1) | 53 (24.5) | p = 0.305 | |
| 8 | 36 (18.7) | 10 (13.2) | 34 (15.7) | ||
| 9 | 70 (36.4) | 38 (50) | 81 (37.5) | ||
| 10 | 19 (9.9) | 3 (3.9) | 7 (3.3) | ||
| NA | 21 (11) | 12 (15.8) | 41 (19) | ||
| N = 484 | N (%) | |
|---|---|---|
| Germline testing done | Yes | 97 (20) |
| No | 386 (79.8) | |
| Missing data | 1 (0.2) | |
| Testing access N = 97 | Local | 56 (57.7) |
| Trial | 20 (20.6) | |
| Access program | 15 (15.5) | |
| Other | 4 (4.1) | |
| Missing data | 2 (2.1) | |
| Pathogenic HRR present N = 97 | Yes | 13 (13.4) |
| No | 83 (85.6) | |
| Missing data | 1 (1) | |
| HRR alterations N = 13 | BRCA2 | 9 (69.2) |
| CHEK2 | 2 (15.4) | |
| RAD51C | 1 (7.7) | |
| BRCA2 + PALB2 | 1 (7.7) |
| N = 484 | N (%) | |
|---|---|---|
| Somatic testing done | Yes | 268 (55.4) |
| No | 216 (44.6) | |
| Testing access * | Local | 193 (72) |
| Trial | 68 (25.4) | |
| Access program | 35 (13) | |
| Other | 5 (1.8) | |
| Testing type | Tissue | 192 (71.6) |
| ctDNA | 18 (6.7) | |
| Both | 58 (21.7) |
| Tissue N (%) | ctDNA N (%) | p-Value | ||
|---|---|---|---|---|
| Conclusive | Yes | 215 (86) | 68 (88.3) | 0.48 |
| No | 31 (12.4) | 7 (9.1) | ||
| Missing data | 4 (1.6) | 2 (2.6) | ||
| Time to testing results (months) | Median (range) | 1.36 (0.06–13.2) | 0.73 (0.33–4.43) | 0.0006 |
| Detection Rate | p-Value | Inconclusive Results | p-Value | |
|---|---|---|---|---|
| Tissue Alone | 27/192 14% | 0.55 | 23/192 12% | 0.64 |
| ctDNA Alone | 2/18 11.1% | 2/18 11.1% | ||
| Single modality: Tissue or ctDNA | 29/210 13.8% | 0.008 | 25/210 11.9% | 0.003 |
| Dual modality: Tissue and ctDNA | 19/58 32.7% | 0/58 0% |
| Reason | N (%) | Details | |
|---|---|---|---|
| Tissue | Poor DNA quality | 17 (73.9) | Median age of tissue at the time of analysis Years (range) 8 (2–20) |
| Tissue not available | 6 (26.1) | ||
| ctDNA | Undetectable ctDNA | 2 (100) |
| Patient | Stage at the Time of Analysis | Tissue Conclusive | ctDNA Conclusive | HRR | Tissue Results | ctDNA Results | Tissue Age at Time of Analysis (Years) | Median Age (Years) | p-Value |
|---|---|---|---|---|---|---|---|---|---|
| JGH026 | mCSPC | Yes | Yes * | CDK12 | + | - | 0.2 | 0.1236 | |
| JGH028 | mCSPC | Yes | Yes * | BRCA1 | + | - | 0.1 | 0.2 | |
| JGH031 | mCSPC | Yes | Yes | PALB2 | + | - | 4.0 | (0.1–4) | |
| JGH022 | mCRPC | No ** | Yes | CHEK2 | - | + | 10.0 | 5.6 (0.2–12.3) | |
| JGH029 | mCRPC | Yes | Yes | CDK12 | - | + | 2.5 | ||
| JGH030 | mCSPC | Yes | Yes | ATM | - | + | 7.0 | ||
| JGH032 | mCRPC | Yes | Yes | BRCA2 | - | + | 2.5 | ||
| JGH033 | mCRPC | Yes | Yes | BRCA2 PALB2 | - | + | 6.0 | ||
| JGH034 | mCRPC | Yes | Yes | CHEK2 | - | + | 12.3 | ||
| JGH035 | mCRPC | No ** | Yes | BRCA2 | - | + | 11.0 | ||
| JGH036 | mCRPC | Yes | Yes | ATM | - | + | 3.3 | ||
| JGH164 | mCRPC | Yes | Yes | ATM | - | + | 5.6 | ||
| JGH168 | mCRPC | Yes | Yes | CHEK2 CDK12 | - | + | 0.2 | ||
| RVH133 | mCSPC | Yes | Yes | ATM | - | + | 0.2 |
| N = 28 | N (%) | |
|---|---|---|
| HRR alteration | Germline BRCA2 | 2 |
| Somatic BRCA2 | 9 | |
| Somatic BRCA1 | 2 | |
| Somatic ATM | 2 | |
| Somatic CHEK2 | 2 | |
| Somatic CDK12 | 1 | |
| Somatic PALB2 | 1 | |
| Somatic BRCA2+PALB2 | 1 | |
| Somatic and germline BRCA2 | 2 | |
| Somatic and germline BRCA2+CDK12 | 1 | |
| Type of treatment | Blinded randomized trial | 7 (25) |
| Open-label trial | 5 (17.9) | |
| Standard of care | 16 (57.1) | |
| Stage | mCSPC | 2 (7.1) |
| mCRPC | 26 (92.9) | |
| Line of treatment for mCRPC | First | 9 (34.6) |
| Second | 5 (19.2) | |
| Third | 8 (30.8) | |
| ≥Fourth | 4 (15.4) | |
| PSA50 response in mCRPC | Yes | 9 (34.6) |
| No | 13 (50) | |
| Missing data | 4 (15.4) |
| Patient | HRR | Tissue Results | ctDNA Results | PARPi Treatment | Stage | Treatment Line | Duration of Treatment | PSA50 Response |
|---|---|---|---|---|---|---|---|---|
| JGH032 | BRCA2 | - | + | Olaparib | mCRPC | Fourth Line | 3 Months | No |
| JGH033 | BRCA2 PALB2 | - | + | Olaparib | mCRPC | Third Line | 1.8 years; on-going | Yes |
| JGH035 | BRCA2 | - | + | Olaparib | mCRPC | Second Line * | 3.9 years; on-going | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labidi, S.; Jiao, B.; Tam, S.; Fallah, P.; Salehi, A.; Rajan, R.; Alameldin, M.; Brimo, F.; Foulkes, W.D.; Papadakis, A.I.; et al. Evaluating the Role of Liquid Biopsy to Detect Pathogenic Homologous Recombination Repair (HRR) Gene Alterations in Metastatic Prostate Cancer. Cancers 2025, 17, 3427. https://doi.org/10.3390/cancers17213427
Labidi S, Jiao B, Tam S, Fallah P, Salehi A, Rajan R, Alameldin M, Brimo F, Foulkes WD, Papadakis AI, et al. Evaluating the Role of Liquid Biopsy to Detect Pathogenic Homologous Recombination Repair (HRR) Gene Alterations in Metastatic Prostate Cancer. Cancers. 2025; 17(21):3427. https://doi.org/10.3390/cancers17213427
Chicago/Turabian StyleLabidi, Soumaya, Belinda Jiao, Shirley Tam, Parvaneh Fallah, Aida Salehi, Raghu Rajan, Mona Alameldin, Fadi Brimo, William D. Foulkes, Andreas I. Papadakis, and et al. 2025. "Evaluating the Role of Liquid Biopsy to Detect Pathogenic Homologous Recombination Repair (HRR) Gene Alterations in Metastatic Prostate Cancer" Cancers 17, no. 21: 3427. https://doi.org/10.3390/cancers17213427
APA StyleLabidi, S., Jiao, B., Tam, S., Fallah, P., Salehi, A., Rajan, R., Alameldin, M., Brimo, F., Foulkes, W. D., Papadakis, A. I., Kaul, N., Spatz, A., Ferrario, C., Saleh, R. R., & Rose, A. A. N. (2025). Evaluating the Role of Liquid Biopsy to Detect Pathogenic Homologous Recombination Repair (HRR) Gene Alterations in Metastatic Prostate Cancer. Cancers, 17(21), 3427. https://doi.org/10.3390/cancers17213427

