Urinary Biomarkers in Bladder Cancer: FDA-Approved Tests and Emerging Tools for Diagnosis and Surveillance
Simple Summary
Abstract
1. Introduction
2. Methodology
3. 1945: Urine Cytology
4. Urinary Biomarkers Developed in the 1990s: The Era of FDA-Approved Assays
5. 2000s: Molecular Biomarkers
6. 2010s: Multiparametric Molecular Panels (RNA, DNA, and Methylation Assays)
| Assay | Year Introduced | Principle | FDA/CE Status | Key Notes |
|---|---|---|---|---|
| Cxbladder | 2013 | Measures expression of 5 mRNA genes (MDK, HOXA13, CDC2, IGFBP5, CXCR2) | LDT (NZ, US) | High sensitivity; used for both diagnosis and surveillance [44,45] |
| Bladder EpiCheck | 2016 | DNA methylation panel of 15 genomic loci | CE-marked (EU) | Robust negative predictive value for recurrence [54] |
| Xpert Bladder Cancer Monitor | 2017 | qRT-PCR detecting 5 bladder cancer mRNAs | CE-marked (EU) | Cartridge-based, automated, rapid workflow [56] |
| AssureMDx | 2017 | Detects FGFR3, HRAS, TERT mutations plus methylation markers | LDT | High NPV in hematuria patients; used to triage cystoscopy [47] |
| UroMark | 2010s (UK research) | High-throughput methylation panel (>150 loci) | Research only | Developed as a large-scale epigenetic screening assay [51] |
| ADx Bladder Test | 2010s (France) | Detects specific mRNA biomarkers in urine | CE-marked | Used in Europe for surveillance and follow-up [56] |
7. 2020s: Advancements in Bladder Cancer Biomarkers (NGS, Exosome-Based, and AI Integration)
8. Discussion
8.1. Current Status of Bladder Cancer Biomarkers
8.2. FDA-Approved Versus Non-FDA-Approved Biomarkers in Clinical Adoption
8.3. Traditional Versus Emerging Biomarkers in Bladder Cancer Diagnosis
8.4. Continuity of Biomarker Development
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2024. CA Cancer J. Clin. 2024, 74, 7–33. [Google Scholar] [CrossRef]
- Garg, T.; McMullen, C.K.; Leo, M.C.; O’Keeffe-Rosetti, M.C.; Weinmann, S.; Nielsen, M.E. Predicting Risk of Multiple Levels of Recurrence and Progression after Initial Diagnosis of Nonmuscle-Invasive Bladder Cancer in a Multisite, Community-Based Cohort. Cancers 2021, 13, 510–516. [Google Scholar] [CrossRef]
- Chang, S.S.; Boorjian, S.A.; Chou, R.; Clark, P.E.; Daneshmand, S.; Konety, B.R.; Pruthi, R.; Quale, D.Z.; Ritch, C.R.; Seigne, J.D.; et al. Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer: AUA/SUO Guideline. J. Urol. 2016, 196, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Svatek, R.S.; Hollenbeck, B.K.; Holmäng, S.; Lee, R.; Kim, S.P.; Stenzl, A.; Lotan, Y. The Economics of Bladder Cancer: Costs and Considerations of Caring for This Disease. Eur. Urol. 2014, 66, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Papanicolaou, G.N.; Marshall, V.F. Urine Sediment Smears as a Diagnostic Procedure in Cancers of the Urinary Tract. Science 1945, 101, 519–520. [Google Scholar] [CrossRef]
- van Rhijn, B.W.G.; van der Poel, H.G.; van der Kwast, T.H. Urine Markers for Bladder Cancer Surveillance: A Systematic Review. Eur. Urol. 2005, 47, 736–748. [Google Scholar] [CrossRef] [PubMed]
- Grossman, H.B.; Messing, E.; Soloway, M.; Tomera, K.; Katz, G.; Berger, Y.; Shen, Y. Detection of Bladder Cancer Using a Point-of-Care Proteomic Assay. JAMA 2005, 293, 810–816. [Google Scholar] [CrossRef]
- Grossman, H.B.; Soloway, M.; Messing, E.; Katz, G.; Stein, B.; Kassabian, V.; Shen, Y. Surveillance for Recurrent Bladder Cancer Using a Point-of-Care Proteomic Assay. JAMA 2006, 295, 299–305. [Google Scholar] [CrossRef]
- Fradet, Y.; Lockhard, C. Performance Characteristics of a New Monoclonal Antibody Test for Bladder Cancer: ImmunoCyt trade mark. Can. J. Urol. 1997, 4, 400–405. [Google Scholar]
- Sokolova, I.A.; Halling, K.C.; Jenkins, R.B.; Burkhardt, H.M.; Meyer, R.G.; Seelig, S.A.; Kipp, B.R. The Development of a Multitarget, Multicolor Fluorescence in Situ Hybridization Assay for the Detection of Urothelial Carcinoma in Urine. J. Mol. Diagn. 2000, 2, 116–123. [Google Scholar] [CrossRef]
- Youssef, Y.M.; Drouin, G.; Köbel, M.; Tanguay, S.; Black, P.C.; Kassouf, W. Molecular Biomarkers in Bladder Cancer: A Critical Analysis. Urol. Oncol. 2009, 27, 261–271. [Google Scholar] [CrossRef]
- Steiner, G.; Schoenberg, M.P.; Linn, J.F.; Mao, L.; Sidransky, D. Detection of Bladder Cancer Recurrence by Microsatellite Analysis of Urine. Nat. Med. 1997, 3, 621–624. [Google Scholar] [CrossRef]
- Kandimalla, R.; van Tilborg, A.A.; Zwarthoff, E.C. DNA Methylation-Based Biomarkers in Bladder Cancer. Nat. Rev. Urol. 2013, 10, 327–335. [Google Scholar] [CrossRef]
- O’Sullivan, P.; Sharples, K.; Dalphin, M.; Davidson, P.; Gilling, P.; Cambridge, L.; Harvey, J.; Toro, T.; Giles, N.; Luxmanan, C.; et al. A Multigene Urine Test for the Detection and Stratification of Bladder Cancer in Patients Presenting with Hematuria. J. Urol. 2012, 188, 741–747. [Google Scholar] [CrossRef] [PubMed]
- van Kessel, K.E.; Beukers, W.; Lurkin, I.; Ziel-van der Made, A.; van der Keur, K.A.; Boormans, J.L.; Dyrskjøt, L.; Márquez, M.; Ørntoft, T.F.; Real, F.X.; et al. Validation of a DNA Methylation-Mutation Urine Assay to Select Patients with Hematuria for Cystoscopy. J. Urol. 2017, 197, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Springer, S.U.; Chen, C.H.; Rodriguez Pena, M.D.C.; Li, L.; Douville, C.; Wang, Y.; Cohen, J.D.; Taheri, D.; Silliman, N.; Schaefer, J.; et al. Non-Invasive Detection of Urothelial Cancer through the Analysis of Driver Gene Mutations and Aneuploidy. eLife 2018, 7, e32143. [Google Scholar] [CrossRef]
- Dudley, J.C.; Schroers-Martin, J.; Lazzareschi, D.V.; Shi, W.Y.; Chen, S.B.; Esfahani, M.S.; Trivedi, T.; Chabon, J.J.; Chaudhuri, A.A.; Stehr, H.; et al. Detection and Surveillance of Bladder Cancer Using Urine Tumor DNA. Cancer Discov. 2019, 9, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Fujita, K. A new era in the detection of urothelial carcinoma by sequencing cell-free DNA. Transl. Androl. Urol. 2019, 8, S497–S501. [Google Scholar] [CrossRef]
- Spooner, A.; Moridani, M.K.; Toplis, B.; Chen, S.; Wang, L.; Zhang, Y.; Li, J.; Smith, R.; Jones, T.; Brown, K.; et al. Benchmarking Ensemble Machine Learning Algorithms for Multi-Class, Multi-Omics Data Integration in Clinical Outcome Prediction. Brief. Bioinform. 2025, 26, bbaf116. [Google Scholar] [CrossRef]
- Murphy, W.M.; Soloway, M.S.; Jukkola, A.F.; Crabtree, W.N.; Ford, K.S. Urinary cytology and bladder cancer: The cellular features of transitional cell neoplasms. Cancer 1984, 53, 1555–1565. [Google Scholar] [CrossRef]
- Sullivan, P.S.; Chan, J.B.; Levin, M.R.; Rao, J. Urine Cytology and Adjunct Markers for Detection and Surveillance of Bladder Cancer. Am. J. Transl. Res. 2010, 2, 412–440. [Google Scholar] [PubMed] [PubMed Central]
- Bastacky, S.; Ibrahim, S.; Wilczynski, S.P.; Murphy, W.M. The accuracy of urinary cytology in daily practice. Cancers 1999, 87, 118–128. [Google Scholar] [CrossRef]
- Brimo, F.; Vollmer, R.T.; Case, B.; Aprikian, A.; Kassouf, W.; Auger, M. Accuracy of Urine Cytology and the Significance of an Atypical Category. Am. J. Clin. Pathol. 2009, 132, 785–793. [Google Scholar] [CrossRef]
- Yafi, F.A.; Brimo, F.; Steinberg, J.; Aprikian, A.G.; Tanguay, S.; Kassouf, W. Prospective Analysis of Sensitivity and Specificity of Urinary Cytology and Other Urinary Biomarkers for Bladder Cancer. Urol. Oncol. 2015, 33, 66.e25–66.e31. [Google Scholar] [CrossRef]
- McCroskey, Z.; Pambuccian, S.E.; Kleitherms, S.; Antic, T.; Cohen, M.B.; Barkan, G.A.; Wojcik, E.M. Accuracy and Interobserver Variability of the Cytologic Diagnosis of Low-Grade Urothelial Carcinoma in Instrumented Urinary Tract Cytology Specimens. Am. J. Clin. Pathol. 2015, 144, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Lotan, Y.; Roehrborn, C.G. Sensitivity and Specificity of Commonly Available Bladder Tumor Markers versus Cytology: Results of a Comprehensive Literature Review and Meta-Analyses. Urology 2003, 61, 109–118. [Google Scholar] [CrossRef]
- Ramakumar, S.; Bhuiyan, J.; Besse, J.A.; Roberts, S.G.; Wollan, P.C.; Blute, M.L.; O’Kane, D.J. Comparison of Screening Methods in the Detection of Bladder Cancer. J. Urol. 1999, 161, 388–394. [Google Scholar] [CrossRef]
- Soloway, M.S.; Briggman, J.V.; Carpinito, G.A.; Chodak, G.W.; Church, P.A.; Lamm, D.L.; Lange, P.; Messing, E.; Pasciak, R.M.; Reservitz, G.B.; et al. Use of a New Tumor Marker, Urinary NMP22, in the Detection of Occult or Rapidly Recurring Transitional Cell Carcinoma of the Urinary Tract Following Surgical Treatment. J. Urol. 1996, 156, 363–367. [Google Scholar] [CrossRef]
- Lokeshwar, V.B.; Habuchi, T.; Grossman, H.B.; Murphy, W.M.; Hautmann, S.H.; Hemstreet, G.P.; Bono, A.V.; Getzenberg, R.H.; Goebel, P.J.; Flanigan, R.C.; et al. Bladder Tumor Markers beyond Cytology: International Consensus Panel on Bladder Tumor Markers. Urology 2005, 66, 35–63. [Google Scholar] [CrossRef]
- Mian, C.; Pycha, A.; Wiener, H.; Haitel, A.; Lodde, M.; Marberger, M. Immunocyt: A new tool for detecting transitional cell cancer uzof the urinary tract. J. Urol. 1999, 161, 1486–1489. [Google Scholar] [CrossRef] [PubMed]
- Halling, K.C.; King, W.; Sokolova, I.A.; Meyer, R.G.; Burkhardt, H.M.; Halling, A.C.; Cheville, J.C.; Sebo, T.J.; Ramakumar, S.; Stewart, C.S.; et al. A Comparison of Cytology and Fluorescence In Situ Hybridization for the Detection of Urothelial Carcinoma. J. Urol. 2000, 164, 1768–1775. [Google Scholar] [CrossRef]
- Buchumensky, V.; Klein, A.; Zemer, R.; Kessler, O.J.; Zimlichman, S.; Nissenkorn, I. Cytokeratin 20: A new marker for early detection of bladder cell carcinoma. J. Urol. 1998, 160, 1971–1974. [Google Scholar] [CrossRef]
- Fedriga, R.; Gunelli, R.; Nanni, O.; Bacci, F.; Amadori, D.; Calistri, D. Telomerase activity detected by quantitative assay in bladder carcinoma and exfoliated cells in urine. Neoplasia 2001, 3, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.J.; Liu, L.T.; Huang, C.H.; Chang, S.F.; Chang, L.L. Telomerase activity in human bladder tumors and bladder washing specimens. Kaohsiung J. Med. Sci. 2001, 17, 602–609. [Google Scholar] [PubMed]
- Mao, L.; Lee, D.J.; Tockman, M.S.; Erozan, Y.S.; Askin, F.; Sidransky, D. Microsatellite alterations as clonal markers for the detection of human cancer. Proc. Natl. Acad. Sci. USA 1994, 91, 9871–9875. [Google Scholar] [CrossRef] [PubMed]
- Cairns, P.; Shaw, M.E.; Knowles, M.A. Initiation of Bladder Cancer May Involve Deletion of a Tumour Suppressor Gene on Chromosome 9. Oncogene 1993, 8, 1083–1085. [Google Scholar]
- Pietrusiński, M.; Kȩpczyński, Ƚ.; Jȩdrzejczyk, A.; Borkowska, E.; Traczyk-Borszyńska, M.; Constantinou, M.; Kaƚużewski, B.; Borowiec, M. Detection of bladder cancer in urine sediments by a hypermethylation panel of selected tumor suppressor genes. Cancer Biomark. 2017, 18, 47–59. [Google Scholar] [CrossRef]
- Dulaimi, E.; Uzzo, R.G.; Greenberg, R.E.; Al-Saleem, T.; Cairns, P. Detection of Bladder Cancer in Urine by a Tumor Suppressor Gene Hypermethylation Panel. Clin. Cancer Res. 2004, 10, 1887–1893. [Google Scholar] [CrossRef]
- Chung, W.; Bondaruk, J.; Jelinek, J.; Lotan, Y.; Liang, S.; Czerniak, B.; Issa, J.-P.J. Detection of bladder cancer using novel DNA methylation biomarkers in urine sediments. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1483–1491. [Google Scholar] [CrossRef]
- Hoque, M.O.; Begum, S.; Topaloglu, O.; Chatterjee, A.; Rosenbaum, E.; Van Criekinge, W.; Westra, W.H.; Schoenberg, M.; Zahurak, M.; Goodman, S.N.; et al. Quantitative Detection of Promoter Hypermethylation of Multiple Genes in the Urine of Patients with Bladder Cancer. Cancer Res. 2006, 66, 10271–10276. [Google Scholar] [CrossRef]
- Maruyama, R.; Toyooka, S.; Toyooka, K.O.; Virmani, A.K.; Zöchbauer-Müller, S.; Farinas, A.J.; Vakar-Lopez, F.; Minna, J.D.; Gazdar, A.F. Aberrant Promoter Methylation Profile of Bladder Cancer and Its Relationship to Clinicopathological Features. Cancer Res. 2001, 61, 8659–8663. [Google Scholar]
- Ahangar, M.; Kumar, R.; Shariat, S.F.; Siefker-Radtke, A.O.; Dinney, C.P.; Black, P.C.; Sharma, P.; Lotan, Y.; Rouprêt, M.; Kamat, A.M.; et al. Bladder Cancer Biomarkers: Current Approaches and Future Directions. Front. Oncol. 2024, 14, 1453278. [Google Scholar] [CrossRef]
- Harvey, J.C.; Cambridge, L.M.; Ellen, C.W.; Colonval, M.; Hazlett, J.A.; Newell, J.; Zhou, X.; Guilford, P.J. Analytical validation of Cxbladder® detect, triage, and monitor: Assays for detection and management of urothelial carcinoma. Diagnostics 2024, 14, 2061. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.C.; Fletcher, D.; Ellen, C.W.; Colonval, M.; Hazlett, J.A.; Zhou, X.; Newell, J.M. Analytical validation of the Cxbladder® triage plus assay for risk stratification of hematuria patients for urothelial carcinoma. Diagnostics 2025, 15, 1739. [Google Scholar] [CrossRef]
- Li, K.D.; Chu, C.E.; Patel, M.; Meng, M.V.; Morgan, T.M.; Porten, S.P. Cxbladder monitor testing to reduce cystoscopy frequency in patients with bladder cancer. Urol. Oncol. 2023, 41, 326.e1–326.e8. [Google Scholar] [CrossRef]
- Chou, R.; Buckley, D.I.; Fu, R.; Gore, J.L.; Gustafson, K.; Griffin, J.; Grusing, S.; Selph, S. Urinary Biomarkers for Diagnosis of Bladder Cancer: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2015, 163, 922–931. [Google Scholar] [CrossRef]
- Beukers, W.; van der Keur, K.A.; Kandimalla, R.; Vergouwe, Y.; Steyerberg, E.W.; Boormans, J.L.; Jensen, J.B.; Lorente, J.A.; Real, F.X.; Segersten, U.; et al. FGFR3, TERT and OTX1 as a urinary biomarker combination for surveillance of patients with bladder cancer in a large prospective multicenter study. J. Urol. 2017, 197, 1410–1418. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, M.; Gutierrez, C.; Guillaudeux, T.; Verhoest, G.; Pedeux, R. Noninvasive urine-based tests to diagnose or detect recurrence of bladder cancer. Cancers 2021, 13, 1650. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Li, L.; Douville, C.; Springer, S.U.; Kinde, I.; Wang, Y.; Cohen, J.D.; Taheri, D.; Silliman, N.; et al. Urine-Based Mutation and Methylation Panel for Bladder Cancer Detection. J. Mol. Diagn. 2020, 22, 786–798. [Google Scholar] [CrossRef]
- Fantony, J.J.; Longo, T.A.; Gopalakrishna, A.; Owusu, R.; Lance, R.S.; Foo, W.C.; Inman, B.A.; Abern, M.R. Urinary NID2 and TWIST1 methylation to augment conventional urine cytology for the detection of bladder cancer. Cancer Biomark. 2017, 18, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Feber, A.; Dhami, P.; Dong, L.; de Winter, P.; Tan, W.S.; Martínez-Fernández, M.; Paul, D.S.; Hynes-Allen, A.; Rezaee, S.; Gurung, P.; et al. UroMark-a urinary biomarker assay for the detection of bladder cancer. Clin. Epigenet. 2017, 9, 8. [Google Scholar] [CrossRef]
- Renard, I.; Joniau, S.; van Cleynenbreugel, B.; Collette, C.; Naômé, C.; Vlassenbroeck, I.; Nicolas, H.; de Leval, J.; Straub, J.; Van Criekinge, W.; et al. Identification and validation of the methylated TWIST1 and NID2 genes through real-time methylation-specific polymerase chain reaction assays for the noninvasive detection of primary bladder cancer in urine samples. Eur. Urol. 2010, 58, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Fantony, J.J.; Abern, M.R.; Gopalakrishna, A.; Owusu, R.; Tay, K.J.; Lance, R.S.; Inman, B.A. Multi-institutional external validation of urinary TWIST1 and NID2 methylation as a diagnostic test for bladder cancer. Urol. Oncol. 2015, 33, 387.e1–387.e6. [Google Scholar] [CrossRef] [PubMed]
- Witjes, J.A.; Morote, J.; Cornel, E.B.; Gakis, G.; van Valenberg, F.J.P.; Lozano, F.; Sternberg, I.A.; Willemsen, E.; Hegemann, M.L.; Paitan, Y.; et al. Performance of the Bladder EpiCheck™ methylation test for patients under surveillance for non-muscle-invasive bladder cancer: Results of a multicenter, prospective, blinded clinical trial. Eur. Urol. Oncol. 2018, 1, 307–313. [Google Scholar] [CrossRef]
- Silva-Ferreira, M.; Carvalho, J.A.; Salta, S.; Henriques, T.S.; Rodrigues, P.P.; Monteiro-Reis, S.; Henrique, R.; Jerónimo, C. Diagnostic test accuracy of urinary DNA methylation-based biomarkers for the detection of primary and recurrent bladder cancer: A systematic review and meta-analysis. Eur. Urol. Focus 2024, 10, 922–934. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, C.; Pycha, A.; Folchini, D.M.; Mian, C.; Hanspeter, E.; Schwienbacher, C.; Vjaters, E.; Pycha, A.; Trenti, E. Diagnostic predictive value of Xpert Bladder Cancer Monitor in the follow-up of patients affected by non-muscle invasive bladder cancer. J. Clin. Pathol. 2019, 72, 140–144. [Google Scholar] [CrossRef]
- Jain, M.; Kamalov, D.; Tivtikyan, A.; Balatsky, A.; Samokhodskaya, L.; Okhobotov, D.; Kozlova, P.; Pisarev, E.; Zvereva, M.; Kamalov, A. Urine TERT promoter mutations-based tumor DNA detection in patients with bladder cancer: A pilot study. Mol. Clin. Oncol. 2021, 15, 253. [Google Scholar] [CrossRef]
- Tomiyama, E.; Matsushita, Y.; Hashimoto, Y.; Miyamoto, H.; Yonezawa, H.; Fujimoto, K.; Narita, M.; Yano, T.; Nakagawa, T.; Kato, M.; et al. Urinary Markers for Bladder Cancer Diagnosis: A Review of Current Status and Future Challenges. Int. J. Urol. 2024, 31, 208–219. [Google Scholar] [CrossRef]
- Lee, N.; Canagasingham, A.; Bajaj, M.; Shanmugasundaram, R.; Hutton, A.; Bucci, J.; Graham, P.; Thompson, J.; Ni, J. Urine exosomes as biomarkers in bladder cancer diagnosis and prognosis: From functional roles to clinical significance. Front. Oncol. 2022, 12, 1019391. [Google Scholar] [CrossRef]
- Du, L.; Jiang, X.; Duan, W.; Wang, R.; Wang, L.; Zheng, G.; Yan, K.; Wang, L.; Li, J.; Zhang, X.; et al. Cell-free microRNA expression signatures in urine serve as novel noninvasive biomarkers for diagnosis and recurrence prediction of bladder cancer. Oncotarget 2017, 8, 40832–40842. [Google Scholar] [CrossRef]
- Yang, F.K.; Tian, C.; Zhou, L.X.; Guan, T.Y.; Chen, G.L.; Zheng, Y.Y.; Cao, Z.G. The value of urinary exosomal microRNA-21 in the early diagnosis and prognosis of bladder cancer. Kaohsiung J. Med. Sci. 2024, 40, 660–670. [Google Scholar] [CrossRef]
- Demir, R.; Koc, S.; Ozturk, D.G.; Bilir, S.; Ozata, H.I.; Williams, R.; Christy, J.; Akkoc, Y.; Tinay, I.; Gunduz-Demir, C.; et al. Artificial intelligence assisted patient blood and urine droplet pattern analysis for non-invasive and accurate diagnosis of bladder cancer. Sci. Rep. 2024, 14, 2488. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Xie, M.; Wang, Y.; Fu, T.; Xu, X.; Wang, J. Bladder cancer diagnosis with deep learning: A multi-task framework and online platform. arXiv 2025, arXiv:2508.15379. [Google Scholar] [CrossRef]
- Tsuneki, M.; Abe, M.; Kanavati, F. Deep learning-based screening of urothelial carcinoma in whole slide images of liquid-based cytology urine specimens. Cancers 2023, 15, 226. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Soomro, N.; Shafik, R.; Heer, R.; Adhikari, K. AI-Based Clinical Rule Discovery for NMIBC Recurrence through Tsetlin Machines. arXiv 2025, arXiv:2507.19803. [Google Scholar] [CrossRef]
- Liosis, K.C.; Marouf, A.A.; Rokne, J.G.; Ghosh, S.; Bismar, T.A.; Alhajj, R. Genomic Biomarker Discovery in Disease Progression and Therapy Response in Bladder Cancer Utilizing Machine Learning. Cancers 2023, 15, 4801. [Google Scholar] [CrossRef]
- Dimitrov, G.; Mangaldzhiev, N.; Slavov, C.; Popov, E. Contemporary Molecular Markers for Predicting Systemic Treatment Response in Urothelial Bladder Cancer: A Narrative Review. Cancers 2024, 16, 3056. [Google Scholar] [CrossRef]
- Ferro, M.; Falagario, U.G.; Barone, B.; Maggi, M.; Crocetto, F.; Busetto, G.M.; Giudice, F.D.; Terracciano, D.; Lucarelli, G.; Lasorsa, F.; et al. Artificial intelligence in the advanced diagnosis of bladder cancer—Comprehensive literature review and future advancement. Diagnostics 2023, 13, 2308. [Google Scholar] [CrossRef]
- Bang, B.R.; Zhong, J.; Oh, T.J.; Lee, J.Y.; Seo, Y.; Woo, M.A.; Lim, J.S.; Gil Na, Y.; Song, K.H.; Shin, J.H.; et al. EarlyTect BCD, a streamlined PENK methylation test in urine DNA, effectively detects bladder cancer in patients with hematuria. J. Mol. Diagn. 2024, 26, 613–623. [Google Scholar] [CrossRef]
| Assay | Year Introduced/Approved | Principle | FDA Status | Key Notes |
|---|---|---|---|---|
| BTA Stat | Early 1990s | Detects complement factor H-related proteins in urine | FDA-approved (point-of-care—POC) | Rapid immunoassay; higher sensitivity than cytology, but false positives with hematuria/inflammation [27] |
| BTA TRAK | Early 1990s | ELISA detecting complement factor H-related proteins | FDA-approved (lab-based) | Quantitative version of BTA Stat; improved sensitivity but limited specificity [27] |
| NMP22 (ELISA) | 1996 | Detects nuclear mitotic apparatus protein released during cell death | FDA-approved (lab-based) | Useful for recurrence monitoring; false positives with benign urological conditions [29] |
| NMP22 BladderChek | Late 1990s | Point-of-care immunoassay detecting NMP22 | FDA-approved (POC) | Quick test; widely studied in follow-up surveillance [8] |
| ImmunoCyt/uCyt+ | Late 1990s | Fluorescent monoclonal antibodies against bladder tumor-associated antigens (CEA, mucin-like glycoproteins) | FDA-approved (adjunct to cytology) | Improved sensitivity for low-grade tumors; require fluorescence microscopy [30] |
| UroVysion FISH | 2000 | Multicolor FISH detecting aneuploidy of chromosomes 3, 7, 17, and 9p21 deletion [10] | FDA-approved | Gold standard molecular cytogenetics assay; strong for high-grade and equivocal cytology [31] |
| Assay | Year Introduced | Principle | FDA Status | Key Notes |
|---|---|---|---|---|
| UroVysion FISH | 2001 | Multicolor FISH detecting aneuploidy of chromosomes 3, 7, 17, and 9p21 deletion | FDA-approved | Gold standard molecular cytogenetics assay; strong for high-grade and equivocal cytology [32] |
| Microsatellite Analysis | Early 2000s (research) | Detects loss of heterozygosity (LOH) in urine DNA | Research only | Pioneered DNA-based urinary diagnostics; labor intensive [35] |
| hTERT Promoter Mutations | Early 2000s (research) | PCR-based detection of telomerase reverse transcriptase mutations | Research only | One of the most frequent alterations in bladder cancer [11] |
| FGFR3 Mutation Assays | 2000s (research) | Detects FGFR3 hotspot mutations in urine | Research only | Associated with low-grade, non-muscle-invasive bladder cancers [42] |
| Survivin Assay | 2000s (research) | Detects survivin protein/mRNA in urine | Research only | Marker of apoptosis inhibition; promising but variable performance [30] |
| CYFRA 21-1 | 2000s | Detects soluble cytokeratin 19 fragments in urine | Research only | Evaluated in several studies; modest diagnostic accuracy [30] |
| Assay | Year Introduced | Principle | FDA/CE Status | Key Notes |
|---|---|---|---|---|
| UroSEEK | 2020s | NGS detecting mutations (TERT, FGFR3, TP53, others) and aneuploidy | Clinical trials | High sensitivity; integrates multiple molecular alterations [56] |
| ExoDx (ExosomeDx) Bladder Test | 2020s | Exosomal RNA and protein profiling | Research/LDT | Leverages extracellular vesicles as tumor carriers [59] |
| OncoUrine | 2020s | Targeted NGS + urine cfDNA analysis | CE-marked (China/EU) | Provides recurrence monitoring, expanding global use [42] |
| AI-enhanced Digital Cytology | 2020s | Deep learning applied to cytology slides + molecular inputs | Research/early adoption | Improves accuracy of urine cytology; integrated workflows emerging [64] |
| EarlyTect BCD | 2024 | PENK gene methylation assay in urine DNA | CE-marked (Korea) | Single-gene streamlined test; validated in hematuria patients [69] |
| miRNA Panels (e.g., miR-126, miR-146a, miR-200 family) | 2020s (research) | Urinary exosomal or free miRNA profiling | Research only | Promising biomarkers, under clinical validation [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Song, F.; Zhong, J. Urinary Biomarkers in Bladder Cancer: FDA-Approved Tests and Emerging Tools for Diagnosis and Surveillance. Cancers 2025, 17, 3425. https://doi.org/10.3390/cancers17213425
Yang Z, Song F, Zhong J. Urinary Biomarkers in Bladder Cancer: FDA-Approved Tests and Emerging Tools for Diagnosis and Surveillance. Cancers. 2025; 17(21):3425. https://doi.org/10.3390/cancers17213425
Chicago/Turabian StyleYang, Zhenyun, Fengyu Song, and Jin Zhong. 2025. "Urinary Biomarkers in Bladder Cancer: FDA-Approved Tests and Emerging Tools for Diagnosis and Surveillance" Cancers 17, no. 21: 3425. https://doi.org/10.3390/cancers17213425
APA StyleYang, Z., Song, F., & Zhong, J. (2025). Urinary Biomarkers in Bladder Cancer: FDA-Approved Tests and Emerging Tools for Diagnosis and Surveillance. Cancers, 17(21), 3425. https://doi.org/10.3390/cancers17213425
