Tumor Characteristics and Clinical Features of the Patient as Prognostic Factors in PDAC
Simple Summary
Abstract
1. Introduction
2. PDAC Prognostic Factors Connected with the Tumor
2.1. Staging
2.2. Size of the Tumor
2.3. Presence of Metastases in the Lymph Nodes
2.4. Distant Metastases
2.5. Grading
2.6. Other Histopatological Features
2.6.1. Desmoplasia
2.6.2. Tumor Budding
2.6.3. CTCs—Circulating Tumor Cells
3. Factors Connected to the Patient
3.1. General Condition of the Patient
3.2. Age, Race and Sex
3.2.1. Age
3.2.2. Race
3.2.3. Sex
3.2.4. Nutritional State
3.2.5. Smoking Cigarettes
3.2.6. Alcohol Intake
3.2.7. Sedentarism and Physical Activity
3.2.8. Obstructive Sleep Apnea (OSA)
3.2.9. Psychological Factors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukund, A.; Afridi, M.A.; Karolak, A.; Park, M.A.; Permuth, J.B.; Rasool, G. Pancreatic Ductal Adenocarcinoma (PDAC): A Review of Recent Advancements Enabled by Artificial Intelligence. Cancers 2024, 16, 2240. [Google Scholar] [CrossRef]
- Shi, H.; Li, X.; Chen, Z.; Jiang, W.; Dong, S.; He, R.; Zhou, W. Nomograms for Predicting the Risk and Prognosis of Liver Metastases in Pancreatic Cancer: A Population-Based Analysis. J. Pers. Med. 2023, 13, 409. [Google Scholar] [CrossRef]
- Yang, H.; Li, W.; Ren, L.; Yang, Y.; Zhang, Y.; Ge, B.; Li, S.; Zheng, X.; Liu, J.; Zhang, S.; et al. Progress on diagnostic and prognostic markers of pancreatic cancer. Oncol. Res. 2023, 31, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, A.; Negri, M.; Paratore, M.; Vitale, F.; Ainora, M.E.; Nista, E.C.; Gasbarrini, A.; Zocco, M.A.; Zileri Dal Verme, L. Diagnostic and Prognostic Role of Extracellular Vesicles in Pancreatic Cancer: Current Evidence and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 885. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Li, D.; Yu, H.; Dong, Y.; Tian, G. Clinical features and prognostic factors of elderly patients with metastatic pancreatic cancer: A population-based study. Aging 2021, 13, 7133–7146. [Google Scholar] [CrossRef] [PubMed]
- König, A.K.; Gros, H.; Hinz, U.; Hank, T.; Kaiser, J.; Hackert, T.; Bergmann, F.; Büchler, M.W.; Strobel, O. Refined prognostic staging for resected pancreatic cancer by modified stage grouping and addition of tumour grade. Eur. J. Surg. Oncol. 2022, 48, 113–120. [Google Scholar] [CrossRef]
- Rochefort, M.M.; Ankeny, J.S.; Kadera, B.E.; Donald, G.W.; Isacoff, W.; Wainberg, Z.A.; Hines, O.J.; Donahue, T.R.; Reber, H.A.; Tomlinson, J.S. Impact of tumor grade on pancreatic cancer prognosis: Validation of a novel TNMG staging system. Ann. Surg. Oncol. 2013, 20, 4322–4329. [Google Scholar] [CrossRef]
- Hlavsa, J.; Cecka, F.; Zaruba, P.; Zajak, J.; Gurlich, R.; Strnad, R.; Pavlik, T.; Kala, Z.; Lovecek, M. Tumor grade as significant prognostic factor in pancreatic cancer: Validation of a novel TNMG staging system. Neoplasma 2018, 65, 637–643. [Google Scholar] [CrossRef]
- Lawlor, R.T.; Veronese, N.; Nottegar, A.; Malleo, G.; Smith, L.; Demurtas, J.; Cheng, L.; Wood, L.D.; Silvestris, N.; Salvia, R.; et al. Prognostic Role of High-Grade Tumor Budding in Pancreatic Ductal Adenocarcinoma: A Systematic Review and Meta-Analysis with a Focus on Epithelial to Mesenchymal Transition. Cancers 2019, 11, 113. [Google Scholar] [CrossRef]
- Liang, Y.; Cui, J.; Ding, F.; Zou, Y.; Guo, H.; Man, Q.; Chang, S.; Gao, S.; Hao, J. A new staging system for postoperative prognostication in pancreatic ductal adenocarcinoma. iScience 2023, 26, 107589. [Google Scholar] [CrossRef]
- Valsangkar, N.P.; Bush, D.M.; Michaelson, J.S.; Ferrone, C.R.; Wargo, J.A.; Lillemoe, K.D.; Fernández-del Castillo, C.; Warshaw, A.L.; Thayer, S.P. N0/N1, PNL, or LNR? The effect of lymph node number on accurate survival prediction in pancreatic ductal adenocarcinoma. J. Gastrointest. Surg. 2013, 17, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Bilici, A. Prognostic factors related with survival in patients with pancreatic adenocarcinoma. World J. Gastroenterol. 2014, 20, 10802–10812. [Google Scholar] [CrossRef] [PubMed]
- Fard, A.H.; Sadeghi, R.; Saffari, S.E.; Hashemi, F.; Seyed, M.; Aliakbarian, M. A meta-analysis of prognostic factors in patients with left-sided pancreatic cancer. Indian J. Cancer 2022, 59, 310–316. [Google Scholar] [CrossRef]
- Hayasaki, A.; Isaji, S.; Kishiwada, M.; Fujii, T.; Iizawa, Y.; Kato, H.; Tanemura, A.; Murata, Y.; Azumi, Y.; Kuriyama, N.; et al. Survival Analysis in Patients with Pancreatic Ductal Adenocarcinoma Undergoing Chemoradiotherapy Followed by Surgery According to the International Consensus on the 2017 Definition of Borderline Resectable Cancer. Cancers 2018, 10, 65. [Google Scholar] [CrossRef]
- Yamada, S.; Fujii, T.; Takami, H.; Hayashi, M.; Iwata, N.; Kanda, M.; Tanaka, C.; Sugimoto, H.; Nakayama, G.; Koike, M.; et al. Evaluation and proposal of novel resectability criteria for pancreatic cancer established by the Japan Pancreas Society. Surgery 2017, 162, 784–791. [Google Scholar] [CrossRef]
- Dell’Aquila, E.; Fulgenzi, C.A.M.; Minelli, A.; Citarella, F.; Stellato, M.; Pantano, F.; Russano, M.; Cursano, M.C.; Napolitano, A.; Zeppola, T.; et al. Prognostic and predictive factors in pancreatic cancer. Oncotarget 2020, 11, 924–941. [Google Scholar] [CrossRef]
- Pawlik, T.M.; Gleisner, A.L.; Cameron, J.L.; Winter, J.M.; Assumpcao, L.; Lillemoe, K.D.; Wolfgang, C.; Hruban, R.H.; Schulick, R.D.; Yeo, C.J.; et al. Prognostic relevance of lymph node ratio following pancreaticoduodenectomy for pancreatic cancer. Surgery 2007, 141, 610–618. [Google Scholar] [CrossRef]
- Hann, A.; Sainz, B.; Hermann, P.C. The metastatic niche in the liver: Tilling the soil for pancreatic cancer progression. Transl. Cancer Res. 2017, 6, S217–S220. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, R.; Yang, X.; Ying, D. A population-based study of synchronous distant metastases and prognosis in patients with PDAC at initial diagnosis. Front. Oncol. 2023, 13, 1087700. [Google Scholar] [CrossRef]
- Liu, Z.; Gou, A.; Wu, X. Liver metastasis of pancreatic cancer: The new choice at the crossroads. Hepatobiliary Surg. Nutr. 2023, 12, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.; Barucca, V.; Coletta, D. Metastases or primary recurrence to the lung is related to improved survival of pancreatic cancer as compared to other sites of dissemination. Results of a systematic review with meta-analysis. Eur. J. Surg. Oncol. 2020, 46, 1789–1794. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, L.; Zhong, X.; Zhu, S.; Zhang, Y.; Ge, M.; Kang, Y.; Bi, Q. Two Novel Nomograms Predicting the Risk and Prognosis of Pancreatic Cancer Patients With Lung Metastases: A Population-Based Study. Front. Public Health 2022, 10, 884349. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ji, L.; Wang, X.; Zhu, S.; Luo, J.; Zhang, Y.; Tong, Y.; Feng, F.; Kang, Y.; Bi, Q. Nomogram Predicts Risk and Prognostic Factors for Bone Metastasis of Pancreatic Cancer: A Population-Based Analysis. Front Endocrinol. 2022, 12, 752176. [Google Scholar] [CrossRef] [PubMed]
- Wasif, N.; Ko, C.Y.; Farrell, J.; Wainberg, Z.; Hines, O.J.; Reber, H.; Tomlinson, J.S. Impact of tumor grade on prognosis in pancreatic cancer: Should we include grade in AJCC staging? Ann. Surg. Oncol. 2010, 17, 2312–2320. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A.; Crinò, S.F.; Ramai, D.; Madhu, D.; Fugazza, A.; Carrara, S.; Spadaccini, M.; Mangiavillano, B.; Gkolfakis, P.; Mohan, B.P.; et al. Comparative diagnostic performance of different techniques for EUS-guided fine-needle biopsy sampling of solid pancreatic masses: A network meta-analysis. Gastrointest. Endosc. 2023, 97, 839–848.e5. [Google Scholar] [CrossRef]
- Crinò, S.F.; Conti Bellocchi, M.C.; Di Mitri, R.; Inzani, F.; Rimbaș, M.; Lisotti, A.; Manfredi, G.; Teoh, A.Y.B.; Mangiavillano, B.; Sendino, O.; et al. Wet-suction versus slow-pull technique for endoscopic ultrasound-guided fine-needle biopsy: A multicenter, randomized, crossover trial. Endoscopy 2023, 55, 225–234. [Google Scholar] [CrossRef]
- Sato, H.; Hara, T.; Meng, S.; Tsuji, Y.; Arao, Y.; Saito, Y.; Sasaki, K.; Kobayashi, S.; Doki, Y.; Eguchi, H.; et al. Multifaced roles of desmoplastic reaction and fibrosis in pancreatic cancer progression: Current understanding and future directions. Cancer Sci. 2023, 114, 3487–3495. [Google Scholar] [CrossRef]
- Nielsen, M.F.; Mortensen, M.B.; Detlefsen, S. Key players in pancreatic cancer-stroma interaction: Cancer-associated fibroblasts, endothelial and inflammatory cells. World J. Gastroenterol. 2016, 22, 2678–2700. [Google Scholar] [CrossRef]
- Erkan, M.; Michalski, C.W.; Rieder, S.; Reiser-Erkan, C.; Abiatari, I.; Kolb, A.; Giese, N.A.; Esposito, I.; Friess, H.; Kleeff, J. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin. Gastroenterol. Hepatol. 2008, 6, 1155–1161. [Google Scholar] [CrossRef]
- Chouat, E.; Zehani, A.; Chelly, I.; Njima, M.; Maghrebi, H.; Bani, M.A.; Njim, L.; Zakhama, A.; Haouet, S.; Kchir, N. Tumor budding is a prognostic factor linked to epithelial mesenchymal transition in pancreatic ductal adenocarcinoma. Study report and literature review. Pancreatology 2018, 18, 79–84. [Google Scholar] [CrossRef]
- Iglesias-Garcia, J.; de la Iglesia-Garcia, D.; Lariño-Noia, J.; Dominguez-Muñoz, J.E. Endoscopic Ultrasound (EUS) Guided Elastography. Diagnostics 2023, 13, 1686. [Google Scholar] [CrossRef] [PubMed]
- Conti, C.B.; Mulinacci, G.; Salerno, R.; Dinelli, M.E.; Grassia, R. Applications of endoscopic ultrasound elastography in pancreatic diseases: From literature to real life. World J. Gastroenterol. 2022, 28, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Garcia, J.; Larino-Noia, J.; Abdulkader, I.; Forteza, J.; Dominguez-Munoz, J.E. Quantitative endoscopic ultrasound elastography: An accurate method for the differentiation of solid pancreatic masses. Gastroenterology 2010, 139, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Liang, C.; Xu, J.; Meng, Q.; Hua, J.; Yang, X.; Ni, Q.; Yu, X. The Strain Ratio as Obtained by Endoscopic Ultrasonography Elastography Correlates With the Stroma Proportion and the Prognosis of Local Pancreatic Cancer. Ann. Surg. 2020, 271, 559–565. [Google Scholar] [CrossRef]
- Lohneis, P.; Sinn, M.; Klein, F.; Bischoff, S.; Striefler, J.K.; Wislocka, L.; Sinn, B.V.; Pelzer, U.; Oettle, H.; Riess, H.; et al. Tumour buds determine prognosis in resected pancreatic ductal adenocarcinoma. Br. J. Cancer 2018, 118, 1485–1491. [Google Scholar] [CrossRef]
- Kazama, S.; Watanabe, T.; Ajioka, Y.; Kanazawa, T.; Nagawa, H. Tumour budding at the deepest invasive margin correlates with lymph node metastasis in submucosal colorectal cancer detected by anticytokeratin antibody CAM5.2. Br. J. Cancer 2006, 94, 293–298. [Google Scholar] [CrossRef]
- Tanaka, K.; Shimura, T.; Kitajima, T.; Kondo, S.; Ide, S.; Okugawa, Y.; Saigusa, S.; Toiyama, Y.; Inoue, Y.; Araki, T.; et al. Tropomyosin-related receptor kinase B at the invasive front and tumour cell dedifferentiation in gastric cancer. Br. J. Cancer. 2014, 110, 2923–2934. [Google Scholar] [CrossRef]
- Brown, M.; Sillah, K.; Griffiths, E.A.; Swindell, R.; West, C.M.; Page, R.D.; Welch, I.M.; Pritchard, S.A. Tumour budding and a low host inflammatory response are associated with a poor prognosis in oesophageal and gastro-oesophageal junction cancers. Histopathology 2010, 56, 893–899. [Google Scholar] [CrossRef]
- Koike, M.; Kodera, Y.; Itoh, Y.; Nakayama, G.; Fujiwara, M.; Hamajima, N.; Nakao, A. Multivariate analysis of the pathologic features of esophageal squamous cell cancer: Tumour budding is a significant independent prognostic factor. Ann. Surg. Oncol. 2008, 15, 1977–1982. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Pan, Q.; Zhao, B. Liquid biopsy techniques and pancreatic cancer: Diagnosis, monitoring, and evaluation. Mol. Cancer 2023, 22, 167. [Google Scholar] [CrossRef]
- Massagué, J.; Obenauf, A.C. Metastatic colonization by circulating tumour cells. Nature 2016, 529, 298–306. [Google Scholar] [CrossRef]
- Hugenschmidt, H.; Labori, K.J.; Borgen, E.; Brunborg, C.; Schirmer, C.B.; Seeberg, L.T.; Naume, B.; Wiedswang, G. Preoperative CTC-Detection by CellSearch® Is Associated with Early Distant Metastasis and Impaired Survival in Resected Pancreatic Cancer. Cancers 2021, 13, 485. [Google Scholar] [CrossRef] [PubMed]
- Court, C.M.; Ankeny, J.S.; Sho, S.; Winograd, P.; Hou, S.; Song, M.; Wainberg, Z.A.; Girgis, M.D.; Graeber, T.G.; Agopian, V.G.; et al. Circulating Tumor Cells Predict Occult Metastatic Disease and Prognosis in Pancreatic Cancer. Ann. Surg. Oncol. 2018, 25, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Higgins, M.I.; Master, V.A. Who really knows the performance status: The physician or the patient? Cancer 2021, 127, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, F.; Erdogan, A.P.; Yildirim, S.; Ozveren, A. Options in First Line Managment of Metastatic Pancreatic Cancer and the Determinative Role of ECOG Performance Status. EJMI 2021, 5, 500–507. [Google Scholar] [CrossRef]
- Sohal, D.P.; Mangu, P.B.; Khorana, A.A.; Shah, M.A.; Philip, P.A.; O’Reilly, E.M.; Uronis, H.E.; Ramanathan, R.K.; Crane, C.H.; Engebretson, A.; et al. Metastatic Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2016, 34, 2784–2796. [Google Scholar] [CrossRef]
- Azam, F.; Latif, M.F.; Farooq, A.; Tirmazy, S.H.; AlShahrani, S.; Bashir, S.; Bukhari, N. Performance Status Assessment by Using ECOG (Eastern Cooperative Oncology Group) Score for Cancer Patients by Oncology Healthcare Professionals. Case Rep. Oncol. 2019, 12, 728–736. [Google Scholar] [CrossRef]
- Dotan, E.; Catalano, P.; Lenchik, L.; Boutin, R.; Yao, X.; Marques, H.S.; Ioffe, D.; Zhen, D.B.; Li, D.; Wagner, L.I.; et al. The GIANT trial (ECOG-ACRIN EA2186) methods paper: A randomized phase II study of gemcitabine and nab-paclitaxel compared with 5-fluorouracil, leucovorin, and liposomal irinotecan in older patients with treatment-naïve metastatic pancreatic cancer—Defining a new treatment option for older vulnerable patients. J. Geriatr. Oncol. 2023, 14, 101474. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Xia, G.; Lei, S.; Huang, X.; Huang, X. Survival of pancreatic cancer patients is negatively correlated with age at diagnosis: A population-based retrospective study. Sci. Rep. 2020, 10, 7048. [Google Scholar] [CrossRef]
- Amin, S.; Lucas, A.L.; Frucht, H. Evidence for treatment and survival disparities by age in pancreatic adenocarcinoma: A population-based analysis. Pancreas 2013, 42, 249–253. [Google Scholar] [CrossRef]
- Hackner, D.; Hobbs, M.; Merkel, S.; Siepmann, T.; Krautz, C.; Weber, G.F.; Grützmann, R.; Brunner, M. Impact of Patient Age on Postoperative Short-Term and Long-Term Outcome after Pancreatic Resection of Pancreatic Ductal Adenocarcinoma. Cancers 2022, 14, 3929. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Estimates 2021: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2021; WHO: Geneva, Switzerland, 2024; Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates (accessed on 17 July 2025).
- Poénou, G.; Tolédano, E.; Helfer, H.; Plaisance, L.; Happe, F.; Versini, E.; Diab, N.; Djennaoui, S.; Mahé, I. Assessment of bleeding risk in cancer patients treated with anticoagulants for venous thromboembolic events. Front. Cardiovasc. Med. 2023, 10, 1132156. [Google Scholar] [CrossRef]
- Escobar, A.; Salem, A.M.; Dickson, K.; Johnson, T.N.; Burk, K.J.; Bashoura, L.; Faiz, S.A. Anticoagulation and bleeding in the cancer patient. Support. Care Cancer 2022, 30, 8547–8557. [Google Scholar] [CrossRef] [PubMed]
- Boccatonda, A.; Simion, C.; Brighenti, A.; Serra, C.; Simioni, P.; Campello, E. Efficacy and safety of anticoagulant treatment in elderly patients with venous thromboembolism beyond the first 3 to 6 months of therapy: A narrative review. Thromb. Res. 2025, 253, 109403. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Mitsakos, A.; Irish, W.; Tuttle-Newhall, J.E.; Parikh, A.A.; Snyder, R.A. Differences in receipt of multimodality therapy by race, insurance status, and socioeconomic disadvantage in patients with resected pancreatic cancer. J. Surg. Oncol. 2022, 126, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Heller, D.R.; Nicolson, N.G.; Ahuja, N.; Khan, S.; Kunstman, J.W. Association of Treatment Inequity and Ancestry With Pancreatic Ductal Adenocarcinoma Survival. JAMA Surg. 2020, 155, e195047. [Google Scholar] [CrossRef]
- Biel, T.G.; Petrovskaya, S.; Mascia, F.; Ju, T.; Fashoyin-Aje, L.; Herremans, K.M.; Riner, A.N.; Underwood, P.W.; Gerber, M.H.; Donoghue, M.; et al. Transcriptomic analysis of pancreatic adenocarcinoma specimens obtained from Black and White patients. PLoS ONE 2023, 18, e0281182. [Google Scholar] [CrossRef]
- Gehrels, A.M.; Wagner, A.D.; Besselink, M.G.; Verhoeven, R.H.A.; van Eijck, C.H.J.; van Laarhoven, H.W.M.; Wilmink, J.W.; van der Geest, L.G.; Dutch Pancreatic Cancer Group. Gender differences in tumor characteristics, treatment allocation and survival in stage I-III pancreatic cancer: A nationwide study. Eur. J. Cancer 2024, 206, 114117. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Zou, X.; Liu, Y.; Lin, X.; Wang, R.; Dai, Z.; Chen, Y.; Ma, M.; Tasiheng, Y.; Yan, Y.; Wang, X.; et al. Characterization of Estrogen Receptors in Pancreatic Adenocarcinoma with Tertiary Lymphoid Structures. Cancers 2023, 15, 828. [Google Scholar] [CrossRef]
- Seeliger, H.; Pozios, I.; Assmann, G.; Zhao, Y.; Müller, M.H.; Knösel, T.; Kreis, M.E.; Bruns, C.J. Expression of estrogen receptor beta correlates with adverse prognosis in resected pancreatic adenocarcinoma. BMC Cancer 2018, 18, 1049. [Google Scholar] [CrossRef]
- Lykoudis, P.M.; Contis, J. Estrogen Receptor Expression in Pancreatic Adenocarcinoma: Time to Reconsider Evidence. Pancreas 2021, 50, 1250–1253. [Google Scholar] [CrossRef]
- Andersson, G.; Borgquist, S.; Jirström, K. Hormonal factors and pancreatic cancer risk in women: The Malmö Diet and Cancer Study. Int. J. Cancer 2018, 143, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Dai, G.; Li, Y.; Xu, L.; Liu, G. Intricate roles of estrogen and estrogen receptors in digestive system cancers: A systematic review. Cancer Biol. Med. 2024, 21, 898–915. [Google Scholar] [CrossRef] [PubMed]
- Rovesti, G.; Valoriani, F.; Rimini, M.; Bardasi, C.; Ballarin, R.; Di Benedetto, F.; Menozzi, R.; Dominici, M.; Spallanzani, A. Clinical Implications of Malnutrition in the Management of Patients with Pancreatic Cancer: Introducing the Concept of the Nutritional Oncology Board. Nutrients 2021, 13, 3522. [Google Scholar] [CrossRef] [PubMed]
- Pierobon, E.S.; Moletta, L.; Zampieri, S.; Sartori, R.; Brazzale, A.R.; Zanchettin, G.; Serafini, S.; Capovilla, G.; Valmasoni, M.; Merigliano, S.; et al. The Prognostic Value of Low Muscle Mass in Pancreatic Cancer Patients: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 3033. [Google Scholar] [CrossRef]
- Chan, M.Y.; Chok, K.S.H. Sarcopenia in pancreatic cancer—Effects on surgical outcomes and chemotherapy. World J. Gastrointest. Oncol. 2019, 11, 527–537. [Google Scholar] [CrossRef]
- Mękal, D.; Sobocki, J.; Badowska-Kozakiewicz, A.; Sygit, K.; Cipora, E.; Bandurska, E.; Czerw, A.; Deptała, A. Evaluation of Nutritional Status and the Impact of Nutritional Treatment in Patients with Pancreatic Cancer. Cancers 2023, 15, 3816. [Google Scholar] [CrossRef]
- Bundred, J.; Kamarajah, S.K.; Roberts, K.J. Body composition assessment and sarcopenia in patients with pancreatic cancer: A systematic review and meta-analysis. HPB 2019, 21, 1603–1612. [Google Scholar] [CrossRef]
- Lu, J.N.; Zhou, L.S.; Zhang, S.; Li, J.X.; Xu, C.J. Performance of nutritional and inflammatory markers in patients with pancreatic cancer. World J. Clin. Oncol. 2024, 15, 1021–1032. [Google Scholar] [CrossRef]
- Ryan, A.M.; Power, D.G.; Daly, L.; Cushen, S.J.; Ní Bhuachalla, Ē.; Prado, C.M. Cancer-associated malnutrition, cachexia and sarcopenia: The skeleton in the hospital closet 40 years later. Proc. Nutr. Soc. 2016, 75, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Menozzi, R.; Valoriani, F.; Ballarin, R.; Alemanno, L.; Vinciguerra, M.; Barbieri, R.; Cuoghi Costantini, R.; D’Amico, R.; Torricelli, P.; Pecchi, A. Impact of Nutritional Status on Postoperative Outcomes in Cancer Patients following Elective Pancreatic Surgery. Nutrients 2023, 15, 1958. [Google Scholar] [CrossRef]
- Bush, N.; Singh, V.K. Pancreatic exocrine insufficiency guidelines: More questions than answers! Hepatobiliary Surg. Nutr. 2023, 12, 428–430. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Robin, G.; Kasnik, J.; Wong, G.; Abdel-Rahman, O. Challenges in Diagnosis and Treatment of Pancreatic Exocrine Insufficiency among Patients with Pancreatic Ductal Adenocarcinoma. Cancers 2023, 15, 1331. [Google Scholar] [CrossRef]
- Iglesia, D.; Avci, B.; Kiriukova, M.; Panic, N.; Bozhychko, M.; Sandru, V.; de-Madaria, E.; Capurso, G. Pancreatic exocrine insufficiency and pancreatic enzyme replacement therapy in patients with advanced pancreatic cancer: A systematic review and meta-analysis. United Eur. Gastroenterol. J. 2020, 8, 1115–1125. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, C.; Huang, H.; Jiang, Q.; Zhao, D.; Tian, Y.; Ma, J.; Yuan, W.; Sun, Y.; Che, X.; et al. Effects of alcohol drinking and smoking on pancreatic ductal adenocarcinoma mortality: A retrospective cohort study consisting of 1783 patients. Sci. Rep. 2017, 7, 9572. [Google Scholar] [CrossRef]
- Yuan, C.; Morales-Oyarvide, V.; Babic, A.; Clish, C.B.; Kraft, P.; Bao, Y.; Qian, Z.R.; Rubinson, D.A.; Ng, K.; Giovannucci, E.L.; et al. Cigarette Smoking and Pancreatic Cancer Survival. J. Clin. Oncol. 2017, 35, 1822–1828. [Google Scholar] [CrossRef]
- Naudin, S.; Wang, M.; Dimou, N.; Ebrahimi, E.; Genkinger, J.; Adami, H.O.; Albanes, D.; Babic, A.; Barnett, M.; Bogumil, D.; et al. Alcohol intake and pancreatic cancer risk: An analysis from 30 prospective studies across Asia, Australia, Europe, and North America. PLoS Med. 2025, 22, e1004590. [Google Scholar] [CrossRef]
- Hsueh, H.Y.; Pita-Grisanti, V.; Gumpper-Fedus, K.; Lahooti, A.; Chavez-Tomar, M.; Schadler, K.; Cruz-Monserrate, Z. A review of physical activity in pancreatic ductal adenocarcinoma: Epidemiology, intervention, animal models, and clinical trials. Pancreatology 2022, 22, 98–111. [Google Scholar] [CrossRef]
- Pita-Grisanti, V.; Velez-Bonet, E.; Chasser, K.; Hurst, Z.; Liette, A.; Vulic, G.; Dubay, K.; Lahooti, A.; Badi, N.; Ueltschi, O.; et al. Physical Activity Decreases Inflammation and Delays the Development of Obesity-Associated Pancreatic Ductal Adenocarcinoma. Cancer Res. 2024, 84, 3058–3071. [Google Scholar] [CrossRef]
- Shoucair, S.; Pu, N.; Habib, J.R.; Thompson, E.; Shubert, C.; Burkhart, R.A.; Burns, W.R.; He, J.; Lafaro, K.J.; Yu, J. Obstructive sleep apnea predicts pathologic response to neoadjuvant therapy in resected pancreatic ductal adenocarcinoma. MedComm 2022, 3, e184. [Google Scholar] [CrossRef]
- Song, L. Impaired sleep efficiency predicts adverse prognosis in elderly pancreatic cancer patients: A retrospective case—Control study based on wearable smart devices. Am. J. Transl. Res. 2025, 17, 5302–5319. [Google Scholar] [CrossRef]
- Clark, K.L.; Loscalzo, M.; Trask, P.C.; Zabora, J.; Philip, E.J. Psychological distress in patients with pancreatic cancer—An understudied group. Psychooncology 2010, 19, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Mazzella Ebstein, A.M.; Joseph, S.J.; Hernandez, M. Psychological stress and pancreatic cancer patients: A qualitative systematic review protocol. JBI Evid. Synth. 2020, 18, 576–582. [Google Scholar] [CrossRef]
Disease Stage (TNM) | Median Overall Survival (mOS) [Months] |
---|---|
IA | 29.0–125.9 |
IB | 22.0–36.0 |
IIA | 20.0–38.1 |
IIB | 16.0–24.4 |
III | 16.0–16.6 |
IV | 9.0–10.6 |
Involved Vessel | No Contact/Invasion [Months] | Invasion < 180° [Months] | Invasion ≥ 180° [Months] |
---|---|---|---|
SMV/PV | 29.6–34.2 | 21.7–29.7 | 17.3–20.0 |
SMA | 27.6–34.2 | 14.3–19.3 | 15.8–17.4 |
CA | 26.4–34.2 | 14.3–18.1 | 15.8–17.1 |
CHA | 25.5–34.2 | 14.3–22.8 | 15.8–16.5 |
Category | Subgroup | Median OS [Months] |
---|---|---|
Lymph Node Ratio (LNR) | 0 (no positive nodes) | 25 |
>0–0.2 | 22 | |
>0.2–0.4 | 15 | |
>0.4 | 12 |
ECOG | Characteristics of the Patient | OS [Months] | Recommended Treatment |
---|---|---|---|
0 | Fully active, able to carry on all predisease performance without restriction | ~20 (17.1–22.9) | FOLFIRINOX or Gemcitabine with NAB-paclitaxel |
1 | Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature (e.g., light housework, office work) | ~10.7 (9.5–11.9) | FOLFIRINOX or Gemcitabine with NAB-paclitaxel |
2 | Ambulatory and capable of all self-care but unable to carry out any work activities; up and about more than 50% of waking hours | ~6.2 (4.8–7.6) | Gemcitabine as monotherapy |
3 | Capable of only limited self-care; confined to bed or chair more than 50% of waking hours | ~3.8 (1–6.6) | Cancer therapy only on a case-by-case basis. Optimization of supportive care measures. |
4 | Completely disabled; cannot carry out any self-care; totally confined to bed or chair | ~3.8 (1–6.6) | Cancer therapy only on a case-by-case basis. Optimization of supportive care measures. |
Age | Median Survival Time [Months] |
---|---|
20–40 | 36 |
40–60 | 10.0–10.4 |
60–70 | 8.0–23.8 |
70–80 | 8.0–17.3 |
>80 | 4.0–6.4 |
Author (Year) | Population Size | Age Range | Results | Conclusion |
---|---|---|---|---|
Amin et al. (2013) [50] | 45,509 patients | <50 to >70 y.o. | OS was negatively correlated with age (<50 y.o. = 10.4 months; 50–70 y.o. = 9.1 months; >70 y.o. = 6.4 months). | Younger patients had a better prognosis, reflected by higher OS. |
Wang et al. (2020) [49] | 126,066 patients | 20 to >80 y.o. | The 5-year survival for patients with PDAC aged 20–40 years was approximately three times higher compared to patients over 40 years of age. | Older age is associated with shorter survival. |
Tao et al. (2021) [5] | 10,784 patients | <65 to 80 y.o. | CSS: | The older the patients, the higher overall mortality, but the lower the cancer-specific mortality. |
<65 y.o. = 82.8%; | ||||
65–80 y.o. = 80.8%; | ||||
≥80 y.o. = 76.8% | ||||
OS: | ||||
<65 y.o. = 91.7%; | ||||
65–80 y.o. = 95.2%; | ||||
≥80 y.o. = 97.1%; | ||||
Hackner et al. (2022) [51] | 213 patients | <70 vs. ≥70 y.o. | mOS was significantly shorter in patients ≥70 years compared to those <70 years (17.1 vs. 29.2 months). | Age is an important prognostic factor in patients with PDAC who underwent primary radical resection. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udrycka, K.; Rutkowski, K.; Osnytskyy, A.; Małecka-Wojciesko, E. Tumor Characteristics and Clinical Features of the Patient as Prognostic Factors in PDAC. Cancers 2025, 17, 3350. https://doi.org/10.3390/cancers17203350
Udrycka K, Rutkowski K, Osnytskyy A, Małecka-Wojciesko E. Tumor Characteristics and Clinical Features of the Patient as Prognostic Factors in PDAC. Cancers. 2025; 17(20):3350. https://doi.org/10.3390/cancers17203350
Chicago/Turabian StyleUdrycka, Karina, Kamil Rutkowski, Anton Osnytskyy, and Ewa Małecka-Wojciesko. 2025. "Tumor Characteristics and Clinical Features of the Patient as Prognostic Factors in PDAC" Cancers 17, no. 20: 3350. https://doi.org/10.3390/cancers17203350
APA StyleUdrycka, K., Rutkowski, K., Osnytskyy, A., & Małecka-Wojciesko, E. (2025). Tumor Characteristics and Clinical Features of the Patient as Prognostic Factors in PDAC. Cancers, 17(20), 3350. https://doi.org/10.3390/cancers17203350