Prognostic Impact of the Pretreatment Controlling Nutritional Status (CONUT) Score in Anaplastic Thyroid Cancer: A Retrospective Cohort Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population and Treatment Protocol
2.3. Data Collection and Definitions
2.4. Study Endpoints
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics and Survival Outcomes
3.2. Nutritional and Laboratory Parameters Associated with Survival
3.3. Cut-Off Point Estimation for Nutritional Markers
3.4. Kaplan–Meier Survival Analysis
3.5. Independent Prognostic Indicators Associated with One-Year Mortality
3.6. Predictive Performance of Nutritional Indices
3.7. Added Predictive Value Beyond the Baseline Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATC | Anaplastic thyroid cancer |
CONUT | Controlling Nutritional Status |
PNI | Prognostic Nutritional Index |
GNRI | Geriatric Nutritional Risk Index |
BMI | Body mass index |
TNM | Tumor-Node-Metastasis |
WBC | White blood cell |
RDW | Red cell distribution width |
CRP | C-reactive protein |
ESR | Erythrocyte sedimentation rate |
AST | Aspartate aminotransferase |
ALT | Alanine aminotransferase |
BUN | Blood urea nitrogen |
eGFR | Estimated glomerular filtration rate |
HbA1c | Glycated hemoglobin |
HDL | High-density lipoprotein |
LDL | Low-density lipoprotein |
C-index | Concordance index |
IDI | Integrated discrimination improvement |
NRI | Net reclassification improvement |
CI | Confidence interval |
ROC | Receiver operating characteristic |
References
- Yu, Y.; Ning, K.; Liu, X.; Luo, G.; Liang, Y.; Hong, L.; Jiao, Z.; Wu, T.; Yang, Z.; Jiang, M.; et al. Effectiveness of prognostic nutritional index in predicting overall survival and evaluating immunotherapy response in anaplastic thyroid carcinoma. Endocrine 2024, 86, 246–254. [Google Scholar] [CrossRef]
- Bible, K.C.; Kebebew, E.; Brierley, J.; Brito, J.P.; Cabanillas, M.E.; Clark, T.J., Jr.; Di Cristofano, A.; Foote, R.; Giordano, T.; Kasperbauer, J.; et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid 2021, 31, 337–386. [Google Scholar] [CrossRef]
- Lee, J.-S.; Lee, J.S.; Yun, H.J.; Chang, H.; Kim, S.M.; Lee, Y.S.; Chang, H.S.; Park, C.S. Prognosis of Anaplastic Thyroid Cancer with Distant Metastasis. Cancers 2022, 14, 5784. [Google Scholar] [CrossRef]
- Glaser, S.M.; Mandish, S.F.; Gill, B.S.; Balasubramani, G.K.; Clump, D.A.; Beriwal, S. Anaplastic thyroid cancer: Prognostic factors, patterns of care, and overall survival. Head Neck 2016, 38 (Suppl. S1), E2083–E2090. [Google Scholar] [CrossRef]
- Maniakas, A.; Dadu, R.; Busaidy, N.L.; Wang, J.R.; Ferrarotto, R.; Lu, C.; Williams, M.D.; Gunn, G.B.; Hofmann, M.C.; Cote, G.; et al. Evaluation of Overall Survival in Patients with Anaplastic Thyroid Carcinoma, 2000–2019. JAMA Oncol. 2020, 6, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Landa, I.; Pozdeyev, N.; Korch, C.; Marlow, L.A.; Smallridge, R.C.; Copland, J.A.; Henderson, Y.C.; Lai, S.Y.; Clayman, G.L.; Onoda, N.; et al. Comprehensive Genetic Characterization of Human Thyroid Cancer Cell Lines: A Validated Panel for Preclinical Studies. Clin. Cancer Res. 2019, 25, 3141–3151. [Google Scholar] [CrossRef] [PubMed]
- Smallridge, R.C.; Marlow, L.A.; Copland, J.A. Anaplastic thyroid cancer: Molecular pathogenesis and emerging therapies. Endocr. Relat. Cancer 2009, 16, 17–44. [Google Scholar] [CrossRef]
- Chen, J.; Song, P.; Peng, Z.; Liu, Z.; Yang, L.; Wang, L.; Zhou, J.; Dong, Q. The Controlling Nutritional Status (CONUT) Score and Prognosis in Malignant Tumors: A Systematic Review and Meta-Analysis. Nutr. Cancer 2022, 74, 3146–3163. [Google Scholar] [CrossRef] [PubMed]
- Dalmiglio, C.; Brilli, L.; Campanile, M.; Ciuoli, C.; Cartocci, A.; Castagna, M.G. CONUT Score: A New Tool for Predicting Prognosis in Patients with Advanced Thyroid Cancer Treated with TKI. Cancers 2022, 14, 724. [Google Scholar] [CrossRef]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Cho, J.S.; Shim, J.K.; Kim, K.S.; Lee, S.; Kwak, Y.L. Impact of preoperative nutritional scores on 1-year postoperative mortality in patients undergoing valvular heart surgery. J. Thorac. Cardiovasc. Surg. 2022, 164, 1140–1149.e1143. [Google Scholar] [CrossRef]
- Kuwabara, A.; Inage, K.; Yamashita, M.; Orita, S.; Eguchi, Y.; Shiga, Y.; Inoue, M.; Suzuki-Narita, M.; Hishiya, T.; Arai, T.; et al. Predictive Factors for Increased Bone Density Following Romosozumab Administration Based on Pre-Administration Blood Test Results. Yonsei Med. J. 2025, 66, 226–232. [Google Scholar] [CrossRef]
- Kim, D.; Im, M.; Ryang, S.; Kim, M.; Jeon, Y.K.; Kim, S.S.; Kim, B.H. Association of the Preoperative Controlling Nutritional Status (CONUT) Score with Clinicopathological Characteristics in Patients with Papillary Thyroid Carcinoma. Endocrinol. Metab. 2024, 39, 856–863. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, S.M.; Kim, J.W.; Lee, I.J.; Jeon, T.J.; Chang, H.; Kim, B.W.; Lee, Y.S.; Chang, H.S.; Park, C.S. Survival with Lenvatinib for the Treatment of Progressive Anaplastic Thyroid Cancer: A Single-Center, Retrospective Analysis. Front. Endocrinol. 2020, 11, 599. [Google Scholar] [CrossRef]
- Ishiguro, T.; Aoyama, T.; Ju, M.; Kazama, K.; Fukuda, M.; Kanai, H.; Sawazaki, S.; Tamagawa, H.; Tamagawa, A.; Cho, H.; et al. Prognostic Nutritional Index as a Predictor of Prognosis in Postoperative Patients with Gastric Cancer. In Vivo 2023, 37, 1290–1296. [Google Scholar] [CrossRef]
- Li, H.; Cen, K.; Sun, W.; Feng, B. Prognostic value of geriatric nutritional risk index in elderly patients with heart failure: A meta-analysis. Aging Clin. Exp. Res. 2021, 33, 1477–1486. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, F.F.; Zhu, Z.Q.; Shan, H.X. Controlling Nutritional Status (CONUT) score is a prognostic marker in III-IV NSCLC patients receiving first-line chemotherapy. BMC Cancer 2023, 23, 225. [Google Scholar] [CrossRef] [PubMed]
- Yoshihisa, A.; Kanno, Y.; Watanabe, S.; Yokokawa, T.; Abe, S.; Miyata, M.; Sato, T.; Suzuki, S.; Oikawa, M.; Kobayashi, A.; et al. Impact of nutritional indices on mortality in patients with heart failure. Open Heart 2018, 5, e000730. [Google Scholar] [CrossRef] [PubMed]
- Alvares-da-Silva, M.R.; Reverbel da Silveira, T. Comparison between handgrip strength, subjective global assessment, and prognostic nutritional index in assessing malnutrition and predicting clinical outcome in cirrhotic outpatients. Nutrition 2005, 21, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.W.; Lee, Y.J.; Park, M.Y.; Yang, S.Y.; Han, Y.D.; Cho, M.S.; Hur, H.; Lee, K.Y.; Cheon, J.H.; Carmichael, J.C.; et al. Clinical Significance of Prognostic Nutrition Index in Patients with Crohn’s Disease after Primary Bowel Resection. Yonsei Med. J. 2024, 65, 380–388. [Google Scholar] [CrossRef]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef]
- Contal, C.; O’Quigley, J. An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput. Stat. Data Anal. 1999, 30, 253–270. [Google Scholar] [CrossRef]
- Tunes-da-Silva, G.; Klein, J.P. Cutpoint selection for discretizing a continuous covariate for generalized estimating equations. Comput. Stat. Data Anal. 2011, 55, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Lentner, C. Geigy Scientific Tables. Volume 2: Introduction to Statistics, Statistical Tables, Mathematical Formulae, 8th ed.; Ciba-Geigy Limited: Basel, Switzerland, 1982. [Google Scholar]
- Kwon, W.A.; Kim, S.; Kim, S.H.; Joung, J.Y.; Seo, H.K.; Lee, K.H.; Chung, J. Pretreatment Prognostic Nutritional Index is an Independent Predictor of Survival in Patients with Metastatic Renal Cell Carcinoma Treated with Targeted Therapy. Clin. Genitourin. Cancer 2017, 15, 100–111. [Google Scholar] [CrossRef]
- Kim, S.I.; Kim, S.J.; Kim, S.J.; Cho, D.S. Prognostic nutritional index and prognosis in renal cell carcinoma: A systematic review and meta-analysis. Urol. Oncol. 2021, 39, 623–630. [Google Scholar] [CrossRef]
- Zhou, H.; Lv, D.; Cui, F.; Qian, G.; Li, J.; Wen, J.; Jia, M.; Kang, Y.; Rong, Y.; Zhang, W.; et al. Prognostic value of the geriatric nutritional risk index in patients with non-metastatic clear cell renal cell carcinoma: A propensity score matching analysis. Nutr. J. 2024, 23, 114. [Google Scholar] [CrossRef]
- Qiu, J.; Yu, Y.; Wang, Z.; Hong, L.; Shao, L.; Wu, J. Comprehensive analysis of the prognostic value of pre-treatment nutritional indicators in elderly rectal cancer patients. Sci. Rep. 2024, 14, 22078. [Google Scholar] [CrossRef]
- Yu, Q.; Tian, M.; Pi, G.; Jia, Y.; Jin, X. Geriatric nutritional risk index as a predictor of prognosis in hematologic malignancies: A systematic review and meta-analysis. Front. Nutr. 2023, 10, 1274592. [Google Scholar] [CrossRef]
- Bae, M.I.; Jung, H.; Park, E.J.; Kwak, Y.L.; Song, Y. Prognostic Value of the Controlling Nutritional Status (CONUT) Score in Patients Who Underwent Cytoreductive Surgery Combined with Hyperthermic Intraperitoneal Chemotherapy. Cancers 2024, 16, 2727. [Google Scholar] [CrossRef] [PubMed]
- Sherwin, R.W.; Wentworth, D.N.; Cutler, J.A.; Hulley, S.B.; Kuller, L.H.; Stamler, J. Serum cholesterol levels and cancer mortality in 361,662 men screened for the Multiple Risk Factor Intervention Trial. JAMA 1987, 257, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Nago, N.; Ishikawa, S.; Goto, T.; Kayaba, K. Low cholesterol is associated with mortality from stroke, heart disease, and cancer: The Jichi Medical School Cohort Study. J. Epidemiol. 2011, 21, 67–74. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, W.; Li, S.; Yang, H. The role of cholesterol metabolism in cancer. Am. J. Cancer Res. 2019, 9, 219–227. [Google Scholar]
- Halimi, H.; Farjadian, S. Cholesterol: An important actor on the cancer immune scene. Front. Immunol. 2022, 13, 1057546. [Google Scholar] [CrossRef]
- Mayengbam, S.S.; Singh, A.; Pillai, A.D.; Bhat, M.K. Influence of cholesterol on cancer progression and therapy. Transl. Oncol. 2021, 14, 101043. [Google Scholar] [CrossRef]
- Yan, C.; Zheng, L.; Jiang, S.; Yang, H.; Guo, J.; Jiang, L.Y.; Li, T.; Zhang, H.; Bai, Y.; Lou, Y.; et al. Exhaustion-associated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity. Cancer Cell 2023, 41, 1276–1293.e1211. [Google Scholar] [CrossRef]
- Toyokawa, T.; Kubo, N.; Tamura, T.; Sakurai, K.; Amano, R.; Tanaka, H.; Muguruma, K.; Yashiro, M.; Hirakawa, K.; Ohira, M. The pretreatment Controlling Nutritional Status (CONUT) score is an independent prognostic factor in patients with resectable thoracic esophageal squamous cell carcinoma: Results from a retrospective study. BMC Cancer 2016, 16, 722. [Google Scholar] [CrossRef]
- Bae, M.I.; Shim, J.K.; Lee, H.S.; Jeon, S.; Kwak, Y.L. Predictive value of postoperative prognostic nutritional index trajectory for mortality outcomes after off-pump coronary artery bypass surgery: A retrospective cohort study. Front. Nutr. 2025, 12, 1530651. [Google Scholar] [CrossRef] [PubMed]
- Lamartina, L.; Jannin, A.; Decaussin-Petrucci, M.; Bardet, S.; Escande, A.; Ciappuccini, R.; Borson Chazot, F.; Al Ghuzlan, A.; Do Cao, C.; Hadoux, J. ENDOCAN TUTHYREF network consensus recommendations: Anaplastic thyroid cancer. Ann. Endocrinol. 2025, 86, 101788. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall (n = 156) | 1-Year Survival Status | p Value | |
---|---|---|---|---|
Non-Deceased (n = 62) | Deceased (n = 94) | |||
Age (yr) | 64.2 (11.3) | 60.3 (11.8) | 66.8 (10.2) | <0.001 |
Male sex | 69 (44.2%) | 31 (50.0%) | 38 (40.4%) | 0.239 |
BMI (kg/m2) | 23.6 (3.2) | 24.1 (3.6) | 23.4 (2.9) | 0.188 |
Tumor size (cm) | 5.0 (2.3) | 4.6 (2.2) | 5.3 (2.4) | 0.049 |
T stage | 0.249 | |||
T2 | 11 (7.1%) | 6 (9.7%) | 5 (5.3%) | |
T3a | 5 (3.2%) | 3 (4.8%) | 2 (2.15) | |
T3b | 17 (10.9%) | 9 (14.5%) | 8 (8.5%) | |
T4 | 123 (78.9%) | 44 (71.0%) | 79 (84.0%) | |
N stage | ||||
N1 | 131 (84.0%) | 47 (75.8%) | 84 (89.4%) | 0.024 |
M stage | ||||
M1 | 104 (66.7%) | 29 (46.8%) | 75 (79.8%) | <0.001 |
TNM Staging | <0.001 | |||
TNM stage IVa | 11 (7.1%) | 9 (14.5%) | 2 (2.1%) | |
TNM stage IVb | 41 (26.3%) | 24 (38.7%) | 17 (18.1%) | |
TNM stage IVc | 104 (66.7%) | 29 (46.8%) | 75 (79.8%) | |
Metastasis | ||||
Lung | 93 (59.6%) | 25 (40.3%) | 68 (72.3%) | <0.001 |
Bone | 31 (19.9%) | 8 (12.9%) | 23 (24.5%) | 0.077 |
Brain | 17 (10.9%) | 5 (8.1%) | 12 (12.8%) | 0.356 |
Pancreas | 3 (1.9%) | 0 (0) | 3 (3.2%) | 0.277 |
Adrenal gland | 3 (1.9%) | 0 (0) | 3 (3.2%) | 0.277 |
Liver | 6 (3.9%) | 2 (3.2%) | 4 (4.3%) | >0.999 |
Mediastinum | 10 (6.4%) | 3 (4.8%) | 7 (7.5%) | 0.741 |
Surgery | 110 (70.5%) | 55 (88.7%) | 55 (58.5%) | <0.001 |
Type of Surgery | 0.111 | |||
Excisional biopsy | 22 (19.3%) | 7 (12.7%) | 15 (25.4%) | |
Debulking | 40 (35.1%) | 18 (32.7%) | 22 (37.3%) | |
Complete resection | 52 (45.6%) | 30 (54.6%) | 22 (37.3%) | |
Chemotherapy | 130 (83.3%) | 51 (82.3%) | 79 (84.0%) | 0.907 |
First chemotherapy regimen | ||||
Adriamycin | 15 (11.5%) | 5 (9.8%) | 10 (12.7%) | |
Cisplatin | 4 (3.1%) | 2 (3.9%) | 2 (2.5%) | |
Epirubicin | 1 (0.8%) | 0 (0) | 1 (1.3%) | |
Paclitaxel | 111 (85.4%) | 44 (86.3%) | 67 (84.8%) | |
Second chemotherapy regimen | ||||
Adriamycin | 3 (2.3%) | 1 (2.0%) | 2 (2.5%) | |
Carboplatin | 2 (1.5%) | 1 (2.0%) | 1 (1.3%) | |
Paclitaxel | 9 (6.9%) | 4 (7.8%) | 5 (6.3%) | |
Targeted therapy | 75 (48.1%) | 28 (45.2%) | 47 (50.0%) | 0.554 |
First-line targeted therapy regimen, Lenvima | 61 (81.3%) | 24 (85.7%) | 37 (78.7%) | |
First-line targeted therapy regimen, Nexavar | 14 (18.7%) | 4 (14.3%) | 10 (21.3%) | |
Second-line targeted therapy regimen, Lenvima | 3 (4.0%) | 1 (3.6%) | 2 (4.3%) | |
Radiation therapy | 129 (82.7%) | 54 (87.1%) | 75 (79.8%) | 0.238 |
Neck radiation dose (Gy) | 4287.8 (2955.5) | 5044.9 (3302.3) | 3785.8 (2600.3) | 0.014 |
Radiation therapy, bone | 4 (3.1%) | 1 (1.9%) | 3 (4.0%) | |
Radiation therapy, brain | 6 (4.7%) | 2 (3.7%) | 4 (5.3%) | |
Radiation therapy, lung | 4 (3.1%) | 2 (3.7%) | 2 (2.7%) | |
Radiation therapy, iliac | 1 (0.8%) | 1 (1.9%) | 0 (0) | |
Radiation therapy, spine | 6 (4.7%) | 1 (1.9%) | 5 (6.7%) | |
Other site radiation dose (Gy) | 4434.2 (1842.5) | 4292.9 (1772.6) | 4516.7 (1954.8) | 0.807 |
Characteristics | Overall (n = 156) | 1-Year Survival Status | p Value | |
---|---|---|---|---|
Non-Deceased (n = 62) | Deceased (n = 94) | |||
Controlling Nutritional Status (CONUT) score | 2.1 (2.0) | 1.5 (1.5) | 2.5 (2.3) | 0.001 |
CONUT < 3 | 108 (69.2) | 51 (82.3) | 57 (60.6) | 0.004 |
CONUT ≥ 3 | 48 (30.8) | 11 (17.7) | 37 (39.4) | |
Prognostic nutritional index (PNI) | 39.3 (5.4) | 41.4 (4.4) | 38.0 (5.6) | <0.001 |
PNI > 42 | 61 (39.4) | 36 (59.0) | 25 (26.6) | <0.001 |
PNI ≤ 42 | 94 (60.7) | 25 (41.0) | 69 (73.4) | |
Geriatric Nutritional Risk Index (GNRI) | 103.9 (10.8) | 107.1 (9.8) | 101.8 (11.0) | 0.003 |
GNRI > 102 | 91 (59.1) | 44 (72.1) | 47 (50.5) | 0.008 |
GNRI ≤ 102 | 63 (40.9) | 17 (27.9) | 46 (49.5) | |
Albumin (g/dL) | 3.9 (0.5) | 4.1 (0.4) | 3.8 (0.6) | <0.001 |
Total cholesterol (mg/dL) | 170.3 (42.6) | 175.4 (43.5) | 166.9 (41.9) | 0.221 |
Lymphocyte (103/μL) | 1.7 (0.6) | 1.8 (0.5) | 1.7 (0.7) | 0.454 |
Calcium (mg/dL) | 8.8 (0.8) | 8.8 (0.7) | 8.8 (0.8) | 0.985 |
Inorganic Phosphorus (mg/dL) | 3.7 (0.7) | 3.9 (0.7) | 3.6 (0.6) | 0.022 |
Glucose (mg/dL) | 124.2 (35.5) | 122.3 (30.8) | 125.5 (38.4) | 0.585 |
BUN (mg/dL) | 15.5 (5.8) | 14.2 (5.0) | 16.3 (6.2) | 0.028 |
Creatinine (mg/dL) | 0.7 (0.4) | 0.7 (0.2) | 0.8 (0.5) | 0.810 |
Uric acid (mg/dL) | 4.5 (1.5) | 4.6 (1.5) | 4.4 (1.5) | 0.346 |
Total protein (g/dL) | 6.9 (0.7) | 7.1 (0.6) | 6.8 (0.7) | 0.025 |
Total bilirubin (mg/dL) | 0.6 (0.2) | 0.6 (0.2) | 0.6 (0.2) | 0.266 |
Alkaline phosphatase (IU/L) | 92.8 (44.5) | 81.2 (22.9) | 100.4 (53.1) | 0.002 |
Aspartate aminotransferase (IU/L) | 22.0 (8.3) | 24.1 (9.3) | 20.6 (7.4) | 0.015 |
Alanine aminotransferase (IU/L) | 18.9 (12.3) | 22.3 (15.8) | 16.6 (8.6) | 0.011 |
Triglyceride (mg/dL) | 126.8 (76.9) | 119.7 (75.7) | 135.8 (78.5) | 0.329 |
HDL-cholesterol (mg/dL) | 45.1 (12.7) | 46.6 (10.6) | 42.8 (15.2) | 0.218 |
LDL-cholesterol (mg/dL) | 109.2 (31.1) | 108.8 (32.1) | 109.9 (30.0) | 0.880 |
HbA1c (%) | 6.6 (1.1) | 6.4 (1.0) | 6.7 (1.1) | 0.469 |
White blood cell (103/μL) | 10.3 (8.0) | 7.7 (2.6) | 12.0 (9.7) | <0.001 |
Hemoglobin (g/dL) | 12.7 (1.7) | 13.2 (1.5) | 12.4 (1.8) | 0.009 |
Hematocrit (%) | 38.3 (4.9) | 39.6 (4.2) | 37.4 (5.1) | 0.007 |
Red cell distribution width (%) | 13.0 (1.2) | 12.8 (1.1) | 13.2 (1.2) | 0.049 |
Platelet (103/μL) | 288.5 (117.7) | 277.9 (96.9) | 295.4 (129.6) | 0.338 |
Neutrophil (103/μL) | 7.5 (7.4) | 5.1 (2.4) | 9.1 (8.9) | <0.001 |
Erythrocyte Sedimentation Rate (mm/hr) | 44.6 (29.4) | 42.0 (28.5) | 46.3 (30.2) | 0.472 |
C-Reactive Protein (mg/L) | 30.1 (44.1) | 14.9 (28.1) | 39.8 (49.6) | <0.001 |
eGFR (mL/min/1.73 m2) | 101.9 (30.6) | 100.2 (25.1) | 103.0 (33.9) | 0.545 |
Variable | 1-Year Mortality | 2-Year Mortality | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
CONUT | ||||
<3 | ref | ref | ||
≥3 | 2.071 (1.345–3.187) | <0.001 | 2.040 (1.356–3.068) | 0.001 |
PNI | ||||
>42 | ref | ref | ||
≤42 | 1.788 (1.092–2.928) | 0.021 | 1.779 (1.135–2.788) | 0.0121 |
GNRI | ||||
>102 | ref | ref | ||
≤102 | 1.630 (1.075–2.472) | 0.022 | 1.528 (1.034–2.259) | 0.034 |
Albumin (per g/dL) | 0.436 (0.288–0.660) | <0.001 | 0.477 (0.323–0.702) | <0.001 |
Variable | Harrell’s C-Index (95% CI) | p Value | ||
---|---|---|---|---|
Classification by the optimal cut-off values | vs. CONUT ≥ 3 | vs. PNI ≤ 42 | vs. GNRI ≤ 102 | |
CONUT ≥ 3 | 0.602 (0.554–0.65) | Ref | 0.6714 | 0.8756 |
PNI ≤ 42 | 0.617 (0.568–0.666) | 0.6714 | Ref | 0.5563 |
GNRI ≤ 102 | 0.596 (0.544–0.647) | 0.8756 | 0.5563 | Ref |
Continuous variable | vs. CONUT | vs. PNI | vs. GNRI | |
CONUT | 0.617 (0.558–0.675) | Ref | 0.251 | 0.795 |
PNI | 0.666 (0.605–0.726) | 0.251 | Ref | 0.410 |
GNRI | 0.629 (0.565–0.693) | 0.795 | 0.410 | Ref |
Albumin (g/dL) | 0.665 (0.606–0.724) | 0.090 | 0.991 | 0.423 |
CONUT (Cut-off) | CONUT (Continuous) | |||||
---|---|---|---|---|---|---|
Null model | Null model + CONUT ≥ 3 | p value | Null model | Null model + CONUT (continuous) | p value | |
Predictive ability (95% CI) | Predictive ability (95% CI) | Predictive ability (95% CI) | Predictive ability (95% CI) | |||
Harrell’s c index | 0.671 (0.612–0.729) | 0.703 (0.648–0.757) | 0.100 | 0.671 (0.612–0.729) | 0.698 (0.645–0.752) | 0.146 |
NRI | - | 0.160 (−0.045–0.321) | 0.100 | - | 0.165 (−0.105–0.323) | 0.194 |
IDI | - | 0.035 (0.003–0.087) | 0.032 | - | 0.027 (−0.003–0.068) | 0.074 |
PNI (cut-off) | PNI (continuous) | |||||
Null model | Null model + PNI≤ 42 | p value | Null model | Null model + PNI (continuous) | p value | |
Predictive ability (95% CI) | Predictive ability (95% CI) | Predictive ability (95% CI) | Predictive ability (95% CI) | |||
Harrell’s c index | 0.671 (0.612–0.729) | 0.691 (0.634–0.748) | 0.633 | 0.671 (0.612–0.729) | 0.707 (0.651–0.762) | 0.402 |
NRI | - | 0.291 (−0.024–0.459) | 0.074 | - | 0.138 (−0.059–0.336) | 0.126 |
IDI | - | 0.025 (−0.002–0.083) | 0.090 | - | 0.036 (−0.002–0.101) | 0.076 |
GNRI (cut-off) | GNRI (continuous) | |||||
Null model | Null model + GNRI ≤ 102 | p value | Null model | Null model + GNRI (continuous) | p value | |
Predictive ability (95% CI) | Predictive ability (95% CI) | Predictive ability (95% CI) | Predictive ability (95% CI) | |||
Harrell’s c index | 0.671 (0.612–0.729) | 0.695 (0.64–0.75) | 0.547 | 0.671 (0.612–0.729) | 0.711 (0.656–0.766) | 0.312 |
NRI | - | 0.244 (−0.109–0.396) | 0.132 | - | 0.123 (−0.109–0.321) | 0.234 |
IDI | - | 0.020 (−0.004–0.071) | 0.136 | - | 0.034 (−0.003–0.096) | 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-K.; Kim, N.K.; Lee, J.S.; Yun, H.J.; Lee, Y.S.; Lee, H.S.; Kim, S.-M.; Song, Y. Prognostic Impact of the Pretreatment Controlling Nutritional Status (CONUT) Score in Anaplastic Thyroid Cancer: A Retrospective Cohort Study. Cancers 2025, 17, 3344. https://doi.org/10.3390/cancers17203344
Park S-K, Kim NK, Lee JS, Yun HJ, Lee YS, Lee HS, Kim S-M, Song Y. Prognostic Impact of the Pretreatment Controlling Nutritional Status (CONUT) Score in Anaplastic Thyroid Cancer: A Retrospective Cohort Study. Cancers. 2025; 17(20):3344. https://doi.org/10.3390/cancers17203344
Chicago/Turabian StylePark, Sun-Kyung, Nam Kyung Kim, Jun Sung Lee, Hyeok Jun Yun, Yong Sang Lee, Hye Sun Lee, Seok-Mo Kim, and Young Song. 2025. "Prognostic Impact of the Pretreatment Controlling Nutritional Status (CONUT) Score in Anaplastic Thyroid Cancer: A Retrospective Cohort Study" Cancers 17, no. 20: 3344. https://doi.org/10.3390/cancers17203344
APA StylePark, S.-K., Kim, N. K., Lee, J. S., Yun, H. J., Lee, Y. S., Lee, H. S., Kim, S.-M., & Song, Y. (2025). Prognostic Impact of the Pretreatment Controlling Nutritional Status (CONUT) Score in Anaplastic Thyroid Cancer: A Retrospective Cohort Study. Cancers, 17(20), 3344. https://doi.org/10.3390/cancers17203344