ATAD2 as a Cancer Target: Insights into Its Structure, Functions, Mechanisms, and Drug Development
Abstract
Simple Summary
Abstract
1. Introduction
2. ATAD2: A Member of the BRD Family of Proteins
3. Structural Insights and Functional Roles of ATAD2
3.1. N-Terminal and C-Terminal Domains
3.2. AAA+ ATPase Domain
3.3. Bromodomain (BRD)
4. ATAD2 and Its Major Biological Significance
4.1. Regulation of Transcriptional Machinery
4.2. Replication of DNA
5. ATAD2 in Cancer: Mechanistic Insights Across Signaling Pathways
5.1. Rb/E2F-cMyc Pathway: ATAD2 Stimulates the Proliferation of Cancer Cells
5.2. Involvement of ATAD2 in Steroid Hormone Signaling: Aiding the Survival and Multiplication of Cancerous Cells
5.2.1. Estrogen-Derived Cancer Is Induced by Dysregulated ATAD2
5.2.2. Androgen-Dependent Oncogenesis Is Integrated by Aberrant Expression of ATAD2
5.3. P53 and P38-MAPK Mediated Apoptotic Signaling: Attenuated by ATAD2 Expression
5.4. ATAD2 Promotes PI3K/AKT Signaling for Glycometabolism and Cancer Cell Survival
5.5. HH Signaling: Activated by Upregulated ATAD2, Which Promotes Carcinogenesis
5.6. Hypoxia Signaling Mediated by HIF1α Stimulates ATAD2 to Promote the Growth of Cancer
5.7. ATAD2 in Epithelial to Mesenchymal Transition (EMT) Pathway
6. Therapeutic Strategies for ATAD2 Suppression
7. Overview of the Important Amino Acid Residues Involved in the Interaction with Reported Ligands
8. Role of ATAD2 in Cancer Drug Resistance
9. Current Challenges and Future Directions
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ATAD2 | ATPase family AAA domain-containing protein 2 |
BRD | bromodomain |
ANCCA | AAA+ nuclear coregulator cancer-associated |
CTA | cancer-testis antigen |
ES | embryonic stem cells |
Rb | retinoblastoma |
ERα | estrogen receptor alpha |
ATP | adenosine Triphosphate |
ADP | adenosine diphosphate |
DNA | deoxyribonucleic acid |
MD | molecular dynamics |
AIB1 | amplified in breast cancer 1 |
RAC3 | receptor-associated coactivator 3 |
TRAM1 | translocation-associated membrane protein 1 |
E2 | estradiol |
ORF | open reading frame |
cAMP | cyclic adenosine monophosphate |
CBP | CREB-binding protein |
p300 | EP300 or E1A binding protein p300 |
E2F | early region 2 binding factor |
c-Myc | cellular myelocytomatosis |
AKT | protein kinase B |
HIF1α | hypoxia inducible factor 1 subunit alpha |
GBM | glioblastoma |
MAPK | mitogen-activated protein kinase |
Asn | asparagine |
kDa | kilodaltons |
E2F1 | early region 2 binding factor transcription factor 1 |
VCP | valosin-containing protein |
Hsp104 | heat shock protein 104 |
NSF | N-ethylmaleimide-sensitive factor |
Arg | arginine |
Abo1 | ATP-binding cassette subfamily F member 1 |
Pro | proline |
Val | valine |
MCM7 | minichromosome maintenance complex 7 |
SRC-3 | steroid receptor coactivator-3 |
RNA | ribonucleic acid |
CDK | cyclin-dependent kinases |
NCOA3 | nuclear receptor coactivator |
B-MYB | B-Myeloid myeloblastosis |
OS | osteosarcoma |
TNBC | triple-negative breast cancer cells |
Top2A | DNA topoisomerase II alpha |
DLGAP5 | discs large-associated protein 5 |
Bub1 | budding uninhibited by benzimidazole 1 |
MCM10 | minichromosome maintenance protein 10 |
Kif | kinesin family |
NOL1 | nucleolar protein 1 |
GPAT | glycerol-3-phosphate acyltransferase |
HSP60 | heat shock protein 60 |
CAD | carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase |
CDC25A | cell division cycle 25A |
AIM1 | absent in melanoma 1 |
CCNE1 | cyclin E1 |
ATR | ataxia telangiectasia and Rad3-related protein |
MLL1 | mixed lineage leukemia protein-1 |
IRS-2 | insulin receptor substrate 2 |
SNK | serum-inducible protein kinase |
AR | androgen receptor |
EZH2 | enhancer of zeste homolog 2 |
PARP | poly(ADP-ribose) polymerase |
PC | prostate cancer |
HCC | hepatocellular carcinoma |
Bcl-2 | B-cell leukemia/lymphoma 2 protein |
MKK3/6 | mitogen-activated protein kinase 3/6 |
PI3K | phosphatidylinositol 3-kinases |
mTOR | mammalian target of rapamycin |
pAKT | phosphorylated protein kinase B |
Miz1 | c-Myc-interacting zinc finger protein-1 |
ESCC | esophageal squamous cell carcinoma |
SHH | sonic hedgehog protein |
SMO | smoothened |
GLUT1 | glucose transporter type 1 |
HK2 | hexokinase 2 |
GLI | glioma-associated oncogene |
EMT | epithelial to mesenchymal transition |
MMPs | matrix metalloproteases |
PTCH1 | protein patched homolog 1 |
CRC | colorectal cancer |
OSCC | oral squamous cell carcinoma |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
NSD2 | nuclear receptor binding SET domain protein 2 |
KAc | acetyl-lysine |
IC50 | half-maximal inhibitory concentration |
Ile | isoleucine |
BET | bromodomain and extraterminal |
RCSB | research collaboratory for structural bioinformatics |
PDB | protein data bank |
Kd | equilibrium dissociation constant |
TR-FRET | time-resolved fluorescence resonance energy transfer |
NEAT1_2 | nuclear enriched abundant transcript 1, isoform 2 |
MM/GBSA | molecular mechanics with generalized Born and surface area solvation |
miRs | microRNAs |
UTR | untranslated region |
CENP | centromeric protein |
Tyr | tyrosine |
Phe | phenylalanine |
Glu | glutamic acid |
Asp | aspartic acid |
Ala | alanine |
Gly | glycine |
Br | bromine |
GC | gastric cancer |
TRIM25 | tripartite motif-containing protein 25 |
miR-126-5p | microRNA-126-5p |
OC | ovarian cancer |
pChk | phosphorylated checkpoint kinase |
PTC | papillary thyroid carcinoma |
CD8Tex | cluster of differentiation 8 T cell exhaustion |
Trp | tryptophan |
Met | methionine |
SAR | structure-activity relationship |
HATs | histone acetyltransferases |
HDACs | histone deacetylases |
CRNDE | colorectal neoplasia differentially expressed |
PDAC | pancreatic ductal adenocarcinoma |
References
- Hanson, P.I.; Whiteheart, S.W. AAA+ Proteins: Have Engine, Will Work. Nat. Rev. Mol. Cell Biol. 2005, 6, 519–529. [Google Scholar] [CrossRef]
- Snider, J.; Thibault, G.; Houry, W.A. The AAA+ Superfamily of Functionally Diverse Proteins. Genome Biol. 2008, 9, 216. [Google Scholar] [CrossRef]
- Mannar, D.; Ahmed, S.; Subramaniam, S. AAA ATPase Protein–Protein Interactions as Therapeutic Targets in Cancer. Curr. Opin. Cell Biol. 2024, 86, 102291. [Google Scholar] [CrossRef]
- Wang, Z.-Q.; Zhang, Z.-C.; Wu, Y.-Y.; Pi, Y.-N.; Lou, S.-H.; Liu, T.-B.; Lou, G.; Yang, C. Bromodomain and Extraterminal (BET) Proteins: Biological Functions, Diseases and Targeted Therapy. Signal Transduct. Target Ther. 2023, 8, 420. [Google Scholar] [CrossRef] [PubMed]
- Prattes, M.; Grishkovskaya, I.; Hodirnau, V.V.; Rössler, I.; Klein, I.; Hetzmannseder, C.; Zisser, G.; Gruber, C.C.; Gruber, K.; Haselbach, D.; et al. Structural Basis for Inhibition of the AAA-ATPase Drg1 by Diazaborine. Nat. Commun. 2021, 12, 3483. [Google Scholar] [CrossRef]
- Zou, J.X.; Duan, Z.; Wang, J.; Sokolov, A.; Xu, J.; Chen, C.Z.; Li, J.J.; Chen, H.W. Kinesin Family Deregulation Coordinated by Bromodomain Protein ANCCA and Histone Methyltransferase MLL for Breast Cancer Cell Growth, Survival, and Tamoxifen Resistance. Mol. Cancer Res. 2014, 12, 539–549. [Google Scholar] [CrossRef]
- Raeder, M.B.; Birkeland, E.; Trovik, J.; Krakstad, C.; Shehata, S.; Schumacher, S.; Zack, T.I.; Krohn, A.; Werner, H.M.J.; Moody, S.E.; et al. Integrated Genomic Analysis of the 8q24 Amplification in Endometrial Cancers Identifies ATAD2 as Essential to MYC-Dependent Cancers. PLoS ONE 2013, 8, e54873. [Google Scholar] [CrossRef]
- Hsia, E.Y.C.; Kalashnikova, E.V.; Revenko, A.S.; Zou, J.X.; Borowsky, A.D.; Chen, H.W. Deregulated E2F and the AAA+ Coregulator ANCCA Drive Proto-Oncogene ACTR/AIB1 Overexpression in Breast Cancer. Mol. Cancer Res. 2010, 8, 183–193. [Google Scholar] [CrossRef]
- Fouret, R.; Laffaire, J.; Hofman, P.; Beau-Faller, M.; Mazieres, J.; Validire, P.; Girard, P.; Camilleri-Bröet, S.; Vaylet, F.; Leroy-Ladurie, F.; et al. A Comparative and Integrative Approach Identifies ATPase Family, AAA Domain Containing 2 as a Likely Driver of Cell Proliferation in Lung Adenocarcinoma. Clin. Cancer Res. 2012, 18, 5606–5616. [Google Scholar] [CrossRef] [PubMed]
- Potluri, L.B.; Talluri, S.; Buon, L.; Samur, M.K.; Aktas-Samur, A.; Shi, J.; Chakraborty, C.; Kumar, S.; Prabhala, R.; Shammas, M.A.; et al. Atpase Family AAA Domain-Containing Protein 2 (ATAD2) As a Novel Target in Multiple Myeloma. Blood 2020, 136 (Suppl. S1), 50. [Google Scholar] [CrossRef]
- Nayak, A.; Dutta, M.; Roychowdhury, A. Emerging Oncogene ATAD2: Signaling Cascades and Therapeutic Initiatives. Life Sci. 2021, 276, 119322. [Google Scholar] [CrossRef] [PubMed]
- Louie, M.C.; Zou, J.X.; Rabinovich, A.; Chen, H.-W. ACTR/AIB1 Functions as an E2F1 Coactivator to Promote Breast Cancer Cell Proliferation and Antiestrogen Resistance. Mol. Cell Biol. 2004, 24, 5157–5171. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.X.; Revenko, A.S.; Li, L.B.; Gemo, A.T.; Chen, H.-W. ANCCA, an Estrogen-Regulated AAA+ ATPase Coactivator for ERα, Is Required for Coregulator Occupancy and Chromatin Modification. Proc. Natl. Acad. Sci. USA 2007, 104, 18067–18072. [Google Scholar] [CrossRef]
- Sun, T.; Du, B.; Diao, Y.; Li, X.; Chen, S.; Li, Y. ATAD2 Expression Increases [18F]Fluorodeoxyglucose Uptake Value in Lung Adenocarcinoma via AKT-GLUT1/HK2 Pathway. BMB Rep. 2019, 52, 457–462. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, J.; Chen, X.; Liu, Z.; Yang, X.; He, Z.; Hao, Y.; Liu, B.; Yao, D. ATPase Family AAA Domain-Containing Protein 2 (ATAD2): From an Epigenetic Modulator to Cancer Therapeutic Target. Theranostics 2023, 13, 787–809. [Google Scholar] [CrossRef]
- Barbieri, I.; Cannizzaro, E.; Dawson, M.A. Bromodomains as Therapeutic Targets in Cancer. Brief Funct. Genom. 2013, 12, 219–230. [Google Scholar] [CrossRef]
- Ember, S.W.J.; Zhu, J.Y.; Olesen, S.H.; Martin, M.P.; Becker, A.; Berndt, N.; Georg, G.I.; Schonbrunn, E. Acetyl-Lysine Binding Site of Bromodomain-Containing Protein 4 (BRD4) Interacts with Diverse Kinase Inhibitors. ACS Chem. Biol. 2014, 9, 1160–1171. [Google Scholar] [CrossRef] [PubMed]
- Dhalluin, C.; Carlson, J.E.; Zeng, L.; He, C.; Aggarwal, A.K.; Zhou, M.M. Structure and Ligand of a Histone Acetyltransferase Bromodomain. Nature 1999, 399, 491–496. [Google Scholar] [CrossRef] [PubMed]
- French, C.A.; Miyoshi, I.; Kubonishi, I.; Grier, H.E.; Perez-Atayde, A.R.; Fletcher, J.A. BRD4-NUT Fusion Oncogene: A Novel Mechanism in Aggressive Carcinoma. Cancer Res. 2003, 63, 304–307. [Google Scholar]
- Pérez-Salvia, M.; Esteller, M. Bromodomain Inhibitors and Cancer Therapy: From Structures to Applications. Epigenetics 2017, 12, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Boyson, S.P.; Gao, C.; Quinn, K.; Boyd, J.; Paculova, H.; Frietze, S.; Glass, K.C. Functional Roles of Bromodomain Proteins in Cancer. Cancers 2021, 13, 3606. [Google Scholar] [CrossRef]
- Muller, S.; Filippakopoulos, P.; Knapp, S. Bromodomains as Therapeutic Targets. Expert. Rev. Mol. Med. 2011, 13, e29. [Google Scholar] [CrossRef]
- Lloyd, J.T.; Glass, K.C. Biological Function and Histone Recognition of Family IV Bromodomain-containing Proteins. J. Cell Physiol. 2017, 233, 1877–1886. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.; Ganser, C.; Uchihashi, T.; Kato, K.; Song, J.-J. Structure of the Human ATAD2 AAA+ Histone Chaperone Reveals Mechanism of Regulation and Inter-Subunit Communication. Commun. Biol. 2023, 6, 993. [Google Scholar] [CrossRef]
- Liu, H.; Wen, Q.; Yan, S.; Zeng, W.; Zou, Y.; Liu, Q.; Zhang, G.; Zou, J.; Zou, X. Tumor-Promoting ATAD2 and Its Preclinical Challenges. Biomolecules 2022, 12, 1040. [Google Scholar] [CrossRef] [PubMed]
- Leachman, N.T.; Brellier, F.; Ferralli, J.; Chiquet-Ehrismann, R.; Tucker, R.P. ATAD2B Is a Phylogenetically Conserved Nuclear Protein Expressed during Neuronal Differentiation and Tumorigenesis. Dev. Growth Differ. 2010, 52, 747–755. [Google Scholar] [CrossRef]
- Cho, C.; Jang, J.; Kang, Y.; Watanabe, H.; Uchihashi, T.; Kim, S.J.; Kato, K.; Lee, J.Y.; Song, J.-J. Structural Basis of Nucleosome Assembly by the Abo1 AAA+ ATPase Histone Chaperone. Nat. Commun. 2019, 10, 5764. [Google Scholar] [CrossRef]
- Manickavinayaham, S.; Velez-Cruz, R.; Biswas, A.K.; Chen, J.; Guo, R.; Johnson, D.G. The E2F1 Transcription Factor and RB Tumor Suppressor Moonlight as DNA Repair Factors. Cell Cycle 2020, 19, 2260–2269. [Google Scholar] [CrossRef]
- Revenko, A.S.; Kalashnikova, E.V.; Gemo, A.T.; Zou, J.X.; Chen, H.-W. Chromatin Loading of E2F-MLL Complex by Cancer-Associated Coregulator ANCCA via Reading a Specific Histone Mark. Mol. Cell Biol. 2023, 30, 5260–5272. [Google Scholar] [CrossRef]
- Cattaneo, M.; Morozumi, Y.; Perazza, D.; Boussouar, F.; Jamshidikia, M.; Rousseaux, S.; Verdel, A.; Khochbin, S. Lessons from Yeast on Emerging Roles of the ATAD2 Protein Family in Gene Regulation and Genome Organization. Mol. Cell 2014, 37, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Erzberger, J.P.; Berger, J.M. Evolutionary Relationships and Structural Mechanisms of AAA+ Proteins. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 93–114. [Google Scholar] [CrossRef]
- Boussouar, F.; Jamshidikia, M.; Morozumi, Y.; Rousseaux, S.; Khochbin, S. Malignant Genome Reprogramming by ATAD2. Biochim. Et Biophys. Acta (BBA) Gene Regul. Mech. 2013, 1829, 1010–1014. [Google Scholar] [CrossRef]
- Gal, C.; Murton, H.E.; Subramanian, L.; Whale, A.J.; Moore, K.M.; Paszkiewicz, K.; Codlin, S.; Bähler, J.; Creamer, K.M.; Partridge, J.F.; et al. Abo1, a Conserved Bromodomain AAA-ATPase, Maintains Global Nucleosome Occupancy and Organisation. EMBO Rep. 2015, 17, 79–93. [Google Scholar] [CrossRef]
- Koo, S.J.; Fernández-Montalván, A.E.; Badock, V.; Ott, C.J.; Holton, S.J.; von Ahsen, O.; Toedling, J.; Vittori, S.; Bradner, J.E.; Gorjánácz, M. ATAD2 Is an Epigenetic Reader of Newly Synthesized Histone Marks during DNA Replication. Oncotarget 2016, 7, 70323–70335. [Google Scholar] [CrossRef]
- Zhou, Y.; Hussain, M.; Kuang, G.; Zhang, J.; Tu, Y. Mechanistic Insights into Peptide and Ligand Binding of the ATAD2-Bromodomain via Atomistic Simulations Disclosing a Role of Induced Fit and Conformational Selection. Phys. Chem. Chem. Phys. 2018, 20, 23222–23232. [Google Scholar] [CrossRef]
- Hussain, M.; Zhou, Y.; Song, Y.; Hameed, H.M.A.; Jiang, H.; Tu, Y.; Zhang, J. ATAD2 in Cancer: A Pharmacologically Challenging but Tractable Target. Expert Opin. Ther. Targets 2017, 22, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Langini, C.; Caflisch, A.; Vitalis, A. The ATAD2 Bromodomain Binds Different Acetylation Marks on the Histone H4 in Similar Fuzzy Complexes. J. Biol. Chem. 2017, 292, 16734–16745. [Google Scholar] [CrossRef]
- Poncet-Montange, G.; Zhan, Y.; Bardenhagen, J.P.; Petrocchi, A.; Leo, E.; Shi, X.; Lee, G.R.; Leonard, P.G.; Geck Do, M.K.; Cardozo, M.G.; et al. Observed Bromodomain Flexibility Reveals Histone Peptide- and Small Molecule Ligand-Compatible Forms of ATAD2. Biochem. J. 2015, 466, 337–346. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, K.; Wu, Y.-D.; Wiest, O. Protein Dynamics and Structural Waters in Bromodomains. PLoS ONE 2017, 12, e0186570. [Google Scholar] [CrossRef] [PubMed]
- Caron, C.; Lestrat, C.; Marsal, S.; Escoffier, E.; Curtet, S.; Virolle, V.; Barbry, P.; Debernardi, A.; Brambilla, C.; Brambilla, E.; et al. Functional Characterization of ATAD2 as a New Cancer/Testis Factor and a Predictor of Poor Prognosis in Breast and Lung Cancers. Oncogene 2010, 29, 5171–5181. [Google Scholar] [CrossRef]
- Payne, J.L.; Khalid, F.; Wagner, A. RNA-Mediated Gene Regulation Is Less Evolvable than Transcriptional Regulation. Proc. Natl. Acad. Sci. USA 2018, 115, E3481–E3490. [Google Scholar] [CrossRef]
- Fillingham, J.; Kainth, P.; Lambert, J.-P.; van Bakel, H.; Tsui, K.; Peña-Castillo, L.; Nislow, C.; Figeys, D.; Hughes, T.R.; Greenblatt, J.; et al. Two-Color Cell Array Screen Reveals Interdependent Roles for Histone Chaperones and a Chromatin Boundary Regulator in Histone Gene Repression. Mol. Cell 2009, 35, 340–351. [Google Scholar] [CrossRef]
- Shahnejat-Bushehri, S.; Ehrenhofer-Murray, A.E. The ATAD2/ANCCA Homolog Yta7 Cooperates with Scm3 HJURP to Deposit Cse4 CENP-A at the Centromere in Yeast. Proc. Natl. Acad. Sci. USA 2020, 117, 5386–5393. [Google Scholar] [CrossRef]
- Morozumi, Y.; Boussouar, F.; Tan, M.; Chaikuad, A.; Jamshidikia, M.; Colak, G.; He, H.; Nie, L.; Petosa, C.; De Dieuleveult, M.; et al. ATAD2 Is a Generalist Facilitator of Chromatin Dynamics in Embryonic Stem Cells. J. Mol. Cell. Biol. 2016, 8, 349–362. [Google Scholar] [CrossRef]
- Jambunathan, N.; Martinez, A.W.; Robert, E.C.; Agochukwu, N.B.; Ibos, M.E.; Dugas, S.L.; Donze, D. Multiple Bromodomain Genes Are Involved in Restricting the Spread of Heterochromatic Silencing at the Saccharomyces Cerevisiae HMR-TRNA Boundary. Genetics 2005, 171, 913–922. [Google Scholar] [CrossRef]
- Zou, J.X.; Guo, L.; Revenko, A.S.; Tepper, C.G.; Gemo, A.T.; Kung, H.-J.; Chen, H.-W. Androgen-Induced Coactivator ANCCA Mediates Specific Androgen Receptor Signaling in Prostate Cancer. Cancer Res. 2009, 69, 3339–3346. [Google Scholar] [CrossRef]
- Mei, Q.; Huang, J.; Chen, W.; Tang, J.; Xu, C.; Yu, Q.; Cheng, Y.; Ma, L.; Yu, X.; Li, S. Regulation of DNA Replication-Coupled Histone Gene Expression. Oncotarget 2017, 8, 95005–95022. [Google Scholar] [CrossRef] [PubMed]
- Altintas, D.M.; Shukla, M.S.; Goutte-Gattat, D.; Angelov, D.; Rouault, J.P.; Dimitrov, S.; Samarut, J. Direct Cooperation between Androgen Receptor and E2F1 Reveals a Common Regulation Mechanism for Androgen-Responsive Genes in Prostate Cells. Mol. Endocrinol. 2012, 26, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Dewar, J.M.; Walter, J.C. Mechanisms of DNA Replication Termination. Nat. Rev. Mol. Cell Biol. 2017, 18, 507–516. [Google Scholar] [CrossRef]
- Owen, D.J.; Ornaghi, P.; Yang, J.-C.; Lowe, N.; Evans, P.R.; Ballario, P.; Neuhaus, D.; Filetici, P.; Travers, A.A. The Structural Basis for the Recognition of Acetylated Histone H4 by the Bromodomain of Histone Acetyltransferase Gcn5p. EMBO J. 2000, 19, 6141–6149. [Google Scholar] [CrossRef]
- Ranson, N.A.; White, H.E.; Saibil, H.R. Chaperonins. Biochem. J. 1998, 333, 233–242. [Google Scholar] [CrossRef]
- Hirokawa, N.; Noda, Y.; Okada, Y. Kinesin and Dynein Superfamily Proteins in Organelle Transport and Cell Division. Curr. Opin. Cell Biol. 1998, 10, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Nishi, T.; Forgac, M. The Vacuolar (H+)-ATPases—Nature’s Most Versatile Proton Pumps. Nat. Rev. Mol. Cell Biol. 2002, 3, 94–103. [Google Scholar] [CrossRef]
- Zheng, L.; Li, T.; Zhang, Y.; Guo, Y.; Yao, J.; Dou, L.; Guo, K. Oncogene ATAD2 Promotes Cell Proliferation, Invasion and Migration in Cervical Cancer. Oncol. Rep. 2015, 33, 2337–2344. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Li, J.; Peng, M.; Qian, Q.; Shi, W.; Chen, Z.; Liu, B. ATAD2 Drives Colorectal Cancer Progression by Regulating TRIM25 Expression via a Positive Feedback Loop with E2F Transcriptional Factors. Biochem. Biophys. Res. Commun. 2022, 594, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Ciró, M.; Prosperini, E.; Quarto, M.; Grazini, U.; Walfridsson, J.; McBlane, F.; Nucifero, P.; Pacchiana, G.; Capra, M.; Christensen, J.; et al. ATAD2 Is a Novel Cofactor for MYC, Overexpressed and Amplified in Aggressive Tumors. Cancer Res. 2009, 69, 8491–8498. [Google Scholar] [CrossRef]
- Guan, X.; Zong, Z.-H.; Chen, S.; Sang, X.-B.; Wu, D.; Wang, L.; Liu, Y.; Zhao, Y. The Role of MiR-372 in Ovarian Carcinoma Cell Proliferation. Gene 2017, 624, 14–20. [Google Scholar] [CrossRef]
- Dutta, M.; Mohapatra, D.; Mohapatra, A.P.; Senapati, S.; Roychowdhury, A. ATAD2 Suppression Enhances the Combinatorial Effect of Gemcitabine and Radiation in Pancreatic Cancer Cells. Biochem. Biophys. Res. Commun. 2022, 635, 179–186. [Google Scholar] [CrossRef]
- Wu, G.; Lu, X.; Wang, Y.; He, H.; Meng, X.; Xia, S.; Zhen, K.; Liu, Y. Epigenetic High Regulation of ATAD2 Regulates the Hh Pathway in Human Hepatocellular Carcinoma. Int. J. Oncol. 2014, 45, 351–361. [Google Scholar] [CrossRef]
- Li, N.; Yu, Y.; Wang, B. Downregulation of AAA-Domain-Containing Protein 2 Restrains Cancer Stem Cell Properties in Esophageal Squamous Cell Carcinoma via Blockade of the Hedgehog Signaling Pathway. Am. J. Physiol. Cell Physiol. 2020, 319, C93–C104. [Google Scholar] [CrossRef]
- Ji, S.; Su, X.; Zhang, H.; Han, Z.; Zhao, Y.; Liu, Q. MicroRNA-372 Functions as a Tumor Suppressor in Cell Invasion, Migration and Epithelial-Mesenchymal Transition by Targeting ATAD2 in Renal Cell Carcinoma. Oncol. Lett. 2019, 17, 2400–2408. [Google Scholar] [CrossRef]
- Duronio, R.J.; Xiong, Y. Signaling Pathways That Control Cell Proliferation. Cold Spring Harb. Perspect. Biol. 2013, 5, a008904. [Google Scholar] [CrossRef]
- Zhou, X.; Ji, H.; Ye, D.; Li, H.; Liu, F.; Li, H.; Xu, J.; Li, Y.; Xiang, F. Knockdown of ATAD2 Inhibits Proliferation and Tumorigenicity through the Rb-E2F1 Pathway and Serves as a Novel Prognostic Indicator in Gastric Cancer. Cancer Manag. Res. 2020, 12, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Krakstad, C.; Tangen, I.L.; Hoivik, E.A.; Halle, M.K.; Berg, A.; Werner, H.M.; Ræder, M.B.; Kusonmano, K.; Zou, J.X.; Øyan, A.M.; et al. ATAD2 Overexpression Links to Enrichment of B-MYB-Translational Signatures and Development of Aggressive Endometrial Carcinoma. Oncotarget 2015, 6, 28440–28452. [Google Scholar] [CrossRef] [PubMed]
- Kalashnikova, E.V.; Revenko, A.S.; Gemo, A.T.; Andrews, N.P.; Tepper, C.G.; Zou, J.X.; Cardiff, R.D.; Borowsky, A.D.; Chen, H.W. ANCCA/ATAD2 Overexpression Identifies Breast Cancer Patients with Poor Prognosis, Acting to Drive Proliferation and Survival of Triple-Negative Cells through Control of B-Myb and EZH2. Cancer Res. 2010, 70, 9402–9412. [Google Scholar] [CrossRef]
- Wang, J.-H.; Yu, T.-T.; Li, Y.; Hao, Y.-P.; Han, L.; Xu, K.-Y.; Xu, P. Silence of ATAD2 Inhibits Proliferation of Colorectal Carcinoma via the Rb-E2F1 Signaling. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 6055–6063. [Google Scholar] [CrossRef]
- Dong, P.; Maddali, M.V.; Srimani, J.K.; Thélot, F.; Nevins, J.R.; Mathey-Prevot, B.; You, L. Division of Labour between Myc and G1 Cyclins in Cell Cycle Commitment and Pace Control. Nat. Commun. 2014, 5, 4750. [Google Scholar] [CrossRef]
- Zheng, Y.; Murphy, L.C. Regulation of Steroid Hormone Receptors and Coregulators during the Cell Cycle Highlights Potential Novel Function in Addition to Roles as Transcription Factors. Nucl. Recept. Signal 2016, 14, e001. [Google Scholar] [CrossRef]
- Du, Z.; Tong, X.; Ye, X. Cyclin D1 Promotes Cell Cycle Progression through Enhancing NDR1/2 Kinase Activity Independent of Cyclin-Dependent Kinase 4. J. Biol. Chem. 2013, 288, 26678–26687. [Google Scholar] [CrossRef]
- Shan, B.; Lee, W.-H. Deregulated Expression of E2F-1 Induces S-Phase Entry and Leads to Apoptosis. Mol. Cell Biol. 1994, 14, 8166–8173. [Google Scholar] [CrossRef]
- Smith, K.; Dalton, S. MYC Transcription Factors: Key Regulators Behind Establishment and Maintenance of Pluripotency. Regen. Med. 2010, 5, 947–959. [Google Scholar] [CrossRef]
- Wolter, P.; Hanselmann, S.; Pattschull, G.; Schruf, E.; Gaubatz, S. Central Spindle Proteins and Mitotic Kinesins Are Direct Transcriptional Targets of MuvB, B-MYB and FOXM1 in Breast Cancer Cell Lines and Are Potential Targets for Therapy. Oncotarget 2017, 8, 11160–11172. [Google Scholar] [CrossRef]
- Duan, Z.; Zou, J.X.; Yang, P.; Wang, Y.; Borowsky, A.D.; Gao, A.C.; Chen, H. Developmental and Androgenic Regulation of Chromatin Regulators EZH2 and ANCCA/ATAD2 in the Prostate Via MLL Histone Methylase Complex. Prostate 2013, 73, 455–466. [Google Scholar] [CrossRef]
- Fernald, K.; Kurokawa, M. Evading Apoptosis in Cancer. Trends Cell Biol. 2013, 23, 620–633. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Funasaka, K.; Obayashi, T.; Miyahara, R.; Hirooka, Y.; Goto, H.; Senga, T. ATAD2 Is Associated with Malignant Characteristics of Pancreatic Cancer Cells. Oncol. Lett. 2019, 17, 3489–3494. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.-J.; Chua, M.-S.; So, S.K. Suppression of ATAD2 Inhibits Hepatocellular Carcinoma Progression through Activation of P53- and P38-Mediated Apoptotic Signaling. Oncotarget 2015, 6, 41722–41735. [Google Scholar] [CrossRef]
- Yan, F.; Gao, M.; Gong, Y.; Zhang, L.; Ai, N.; Zhang, J.; Chai, Y.; Wu, S.; Liu, Q.; Jiang, X.; et al. Proteomic Analysis of Underlying Apoptosis Mechanisms of Human Retinal Pigment Epithelial ARPE-19 Cells in Response to Mechanical Stretch. J. Cell Physiol. 2020, 235, 7604–7619. [Google Scholar] [CrossRef]
- Fruman, D.A.; Rommel, C. PI3K and Cancer: Lessons, Challenges and Opportunities. Nat. Rev. Drug Discov. 2014, 13, 140–156. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Zhang, J.; Wang, J.; Pan, D.; He, Z. Discovery of Novel ATAD2 Bromodomain Inhibitors That Trigger Apoptosis and Autophagy in Breast Cells by Structure-Based Virtual Screening. J. Enzyme Inhib. Med. Chem. 2020, 35, 713–725. [Google Scholar] [CrossRef]
- Schwartz, L.; Supuran, C.; Alfarouk, K. The Warburg Effect and the Hallmarks of Cancer. Anticancer Agents Med. Chem. 2017, 17, 164–170. [Google Scholar] [CrossRef]
- Alvarez, J.V.; Belka, G.K.; Pan, T.-C.; Chen, C.-C.; Blankemeyer, E.; Alavi, A.; Karp, J.S.; Chodosh, L.A. Oncogene Pathway Activation in Mammary Tumors Dictates FDG-PET Uptake. Cancer Res. 2014, 74, 7583–7598. [Google Scholar] [CrossRef] [PubMed]
- Niyaz, M.; Khan, M.S.; Mudassar, S. Hedgehog Signaling: An Achilles’ Heel in Cancer. Transl. Oncol. 2019, 12, 1334–1344. [Google Scholar] [CrossRef]
- Wu, S.; Han, M.; Zhang, C. Overexpression of MicroRNA-186 Inhibits Angiogenesis in Retinoblastoma via the Hedgehog Signaling Pathway by Targeting ATAD2. J. Cell Physiol. 2019, 234, 19059–19072. [Google Scholar] [CrossRef]
- Lee, P.; Chandel, N.S.; Simon, M.C. Cellular Adaptation to Hypoxia through Hypoxia Inducible Factors and Beyond. Nat. Rev. Mol. Cell Biol. 2020, 21, 268–283. [Google Scholar] [CrossRef]
- Nayak, A.; Roy, A.D.; Rout, N.; Singh, S.P.; Bhattacharyya, A.; Roychowdhury, A. HIF1α-Dependent Upregulation of ATAD2 Promotes Proliferation and Migration of Stomach Cancer Cells in Response to Hypoxia. Biochem. Biophys. Res. Commun. 2020, 523, 916–923. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, X.; Zhu, D.; Liu, T.; Liang, X.; Liu, F.; Zhang, Y.; Dong, X.; Sun, B. HIF-1α Promoted Vasculogenic Mimicry Formation in Hepatocellular Carcinoma through LOXL2 up-Regulation in Hypoxic Tumor Microenvironment. J. Exp. Clin. Cancer Res. 2017, 36, 60. [Google Scholar] [CrossRef]
- Clark, A.G.; Vignjevic, D.M. Modes of Cancer Cell Invasion and the Role of the Microenvironment. Curr. Opin. Cell Biol. 2015, 36, 13–22. [Google Scholar] [CrossRef]
- Thiery, J.P. Epithelial–Mesenchymal Transitions in Tumour Progression. Nat. Rev. Cancer 2002, 2, 442–454. [Google Scholar] [CrossRef]
- Hong, S.; Bi, M.; Yan, Z.; Sun, D.; Ling, L.; Zhao, C. Silencing of ATPase Family AAA Domain-Containing Protein 2 Inhibits Migration and Invasion of Colorectal Cancer Cells. Neoplasma 2016, 63, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Guo, L.; Duan, Z.J.; Tepper, C.G.; Xue, L.; Chen, X.; Kung, H.-J.; Gao, A.C.; Zou, J.X.; Chen, H.-W. Histone Methyltransferase NSD2/MMSET Mediates Constitutive NF-ΚB Signaling for Cancer Cell Proliferation, Survival, and Tumor Growth via a Feed-Forward Loop. Mol. Cell Biol. 2012, 32, 3121–3131. [Google Scholar] [CrossRef]
- Firestone, A.J.; Weinger, J.S.; Maldonado, M.; Barlan, K.; Langston, L.D.; O’Donnell, M.; Gelfand, V.I.; Kapoor, T.M.; Chen, J.K. Small-Molecule Inhibitors of the AAA+ ATPase Motor Cytoplasmic Dynein. Nature 2012, 484, 125–129. [Google Scholar] [CrossRef] [PubMed]
- See, S.K.; Hoogendoorn, S.; Chung, A.H.; Ye, F.; Steinman, J.B.; Sakata-Kato, T.; Miller, R.M.; Cupido, T.; Zalyte, R.; Carter, A.P.; et al. Cytoplasmic Dynein Antagonists with Improved Potency and Isoform Selectivity. ACS Chem. Biol. 2016, 11, 53–60. [Google Scholar] [CrossRef]
- Bhabha, G.; Johnson, G.T.; Schroeder, C.M.; Vale, R.D. How Dynein Moves Along Microtubules. Trends Biochem. Sci. 2016, 41, 94–105. [Google Scholar] [CrossRef]
- Vidler, L.R.; Brown, N.; Knapp, S.; Hoelder, S. Druggability Analysis and Structural Classification of Bromodomain Acetyl-Lysine Binding Sites. J. Med. Chem. 2012, 55, 7346–7359. [Google Scholar] [CrossRef]
- Chaikuad, A.; Petros, A.M.; Fedorov, O.; Xu, J.; Knapp, S. Structure-Based Approaches towards Identification of Fragments for the Low-Druggability ATAD2 Bromodomain. Medchemcomm 2014, 5, 1843–1848. [Google Scholar] [CrossRef]
- Steiner, S.; Magno, A.; Huang, D.; Caflisch, A. Does Bromodomain Flexibility Influence Histone Recognition? FEBS Lett. 2013, 587, 2158–2163. [Google Scholar] [CrossRef]
- Dolbois, A.; Batiste, L.; Wiedmer, L.; Dong, J.; Brütsch, M.; Huang, D.; Deerain, N.M.; Spiliotopoulos, D.; Cheng-Sánchez, I.; Laul, E.; et al. Hitting a Moving Target: Simulation and Crystallography Study of ATAD2 Bromodomain Blockers. ACS Med. Chem. Lett. 2020, 11, 1573–1580. [Google Scholar] [CrossRef]
- Bamborough, P.; Chung, C.; Furze, R.C.; Grandi, P.; Michon, A.-M.; Sheppard, R.J.; Barnett, H.; Diallo, H.; Dixon, D.P.; Douault, C.; et al. Structure-Based Optimization of Naphthyridones into Potent ATAD2 Bromodomain Inhibitors. J. Med. Chem. 2015, 58, 6151–6178. [Google Scholar] [CrossRef] [PubMed]
- Bamborough, P.; Chung, C.; Demont, E.H.; Furze, R.C.; Bannister, A.J.; Che, K.H.; Diallo, H.; Douault, C.; Grandi, P.; Kouzarides, T.; et al. A Chemical Probe for the ATAD2 Bromodomain. Angew. Chem. 2016, 55, 11382–11386. [Google Scholar] [CrossRef]
- Miller, D.C.; Martin, M.P.; Adhikari, S.; Brennan, A.; Endicott, J.A.; Golding, B.T.; Hardcastle, I.R.; Heptinstall, A.; Hobson, S.; Jennings, C.; et al. Identification of a Novel Ligand for the ATAD2 Bromodomain with Selectivity over BRD4 through a Fragment Growing Approach. Org. Biomol. Chem. 2018, 16, 1843–1850. [Google Scholar] [CrossRef]
- Bamborough, P.; Chung, C.; Furze, R.C.; Grandi, P.; Michon, A.-M.; Watson, R.J.; Mitchell, D.J.; Barnett, H.; Prinjha, R.K.; Rau, C.; et al. Aiming to Miss a Moving Target: Bromo and Extra Terminal Domain (BET) Selectivity in Constrained ATAD2 Inhibitors. J. Med. Chem. 2018, 61, 8321–8336. [Google Scholar] [CrossRef]
- Harner, M.J.; Chauder, B.A.; Phan, J.; Fesik, S.W. Fragment-Based Screening of the Bromodomain of ATAD2. J. Med. Chem. 2014, 57, 9687–9692. [Google Scholar] [CrossRef]
- Demont, E.H.; Chung, C.; Furze, R.C.; Grandi, P.; Michon, A.-M.; Wellaway, C.; Barrett, N.; Bridges, A.M.; Craggs, P.D.; Diallo, H.; et al. Fragment-Based Discovery of Low-Micromolar ATAD2 Bromodomain Inhibitors. J. Med. Chem. 2015, 58, 5649–5673. [Google Scholar] [CrossRef]
- Fernández-Montalván, A.E.; Berger, M.; Kuropka, B.; Koo, S.J.; Badock, V.; Weiske, J.; Puetter, V.; Holton, S.J.; Stöckigt, D.; ter Laak, A.; et al. Isoform-Selective ATAD2 Chemical Probe with Novel Chemical Structure and Unusual Mode of Action. ACS Chem. Biol. 2017, 12, 2730–2736. [Google Scholar] [CrossRef]
- Guruvaiah, P.; Chava, S.; Sun, C.W.; Singh, N.; Penn, C.A.; Gupta, R. ATAD2 Is a Driver and a Therapeutic Target in Ovarian Cancer That Functions by Upregulating CENPE. Cell Death Dis. 2023, 14, 456. [Google Scholar] [CrossRef]
- Winter-Holt, J.J.; Bardelle, C.; Chiarparin, E.; Dale, I.L.; Davey, P.R.J.; Davies, N.L.; Denz, C.; Fillery, S.M.; Guérot, C.M.; Han, F.; et al. Discovery of a Potent and Selective ATAD2 Bromodomain Inhibitor with Antiproliferative Activity in Breast Cancer Models. J. Med. Chem. 2022, 65, 3306–3331. [Google Scholar] [CrossRef]
- Lucas, S.C.C.; Atkinson, S.J.; Bamborough, P.; Barnett, H.; Chung, C.; Gordon, L.; Mitchell, D.J.; Phillipou, A.; Prinjha, R.K.; Sheppard, R.J.; et al. Optimization of Potent ATAD2 and CECR2 Bromodomain Inhibitors with an Atypical Binding Mode. J. Med. Chem. 2020, 63, 5212–5241. [Google Scholar] [CrossRef]
- Yao, D.; You, J.; Yang, X.; Zhang, J.; Yao, X. Fragment-Based Design, Synthesis and Biological Evaluation of Theophylline Derivatives as ATAD2 Inhibitors in BT-549 Cells. J. Enzyme Inhib. Med. Chem. 2023, 38, 2242601. [Google Scholar] [CrossRef]
- Petrovic, N.; Ergun, S. MiRNAs as Potential Treatment Targets and Treatment Options in Cancer. Mol. Diagn. Ther. 2018, 22, 157–168. [Google Scholar] [CrossRef]
- Hong, S.; Bi, M.; Chen, S.; Zhao, P.; Li, B.; Sun, D.; Tai, J. MicroRNA-520f Suppresses Growth of Gastric Carcinoma Cells by Target ATPase Family AAA Domain-Containing Protein 2 (ATAD2). Neoplasma 2016, 63, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yang, J.; Lei, Y.; Gao, H.; Wei, T.; Luo, L.; Zhang, F.; Chen, H.; Zeng, Q.; Guo, L. An ANCCA/PRO2000-MiR-520a-E2F2 Regulatory Loop as a Driving Force for the Development of Hepatocellular Carcinoma. Oncogenesis 2016, 5, e229. [Google Scholar] [CrossRef]
- Wu, G.; Liu, H.; He, H.; Wang, Y.; Lu, X.; Yu, Y.; Xia, S.; Meng, X.; Liu, Y. MiR-372 down-Regulates the Oncogene ATAD2 to Influence Hepatocellular Carcinoma Proliferation and Metastasis. BMC Cancer 2014, 14, 107. [Google Scholar] [CrossRef]
- Sun, W.; Lan, X.; Zhang, H.; Wang, Z.; Dong, W.; He, L.; Zhang, T.; Zhang, P.; Liu, J.; Qin, Y. NEAT1_2 Functions as a Competing Endogenous RNA to Regulate ATAD2 Expression by Sponging MicroRNA-106b-5p in Papillary Thyroid Cancer. Cell Death Dis. 2018, 9, 380. [Google Scholar] [CrossRef]
- Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J.-P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Müller, S.; Pawson, T.; et al. Histone Recognition and Large-Scale Structural Analysis of the Human Bromodomain Family. Cell 2012, 149, 214–231. [Google Scholar] [CrossRef] [PubMed]
- Klyshko, E.; Kim, J.S.-H.; McGough, L.; Valeeva, V.; Lee, E.; Ranganathan, R.; Rauscher, S. Functional Protein Dynamics in a Crystal. Nat. Commun. 2024, 15, 3244. [Google Scholar] [CrossRef]
- Bamborough, P.; Chung, C.; Demont, E.H.; Bridges, A.M.; Craggs, P.D.; Dixon, D.P.; Francis, P.; Furze, R.C.; Grandi, P.; Jones, E.J.; et al. A Qualified Success: Discovery of a New Series of ATAD2 Bromodomain Inhibitors with a Novel Binding Mode Using High-Throughput Screening and Hit Qualification. J. Med. Chem. 2019, 62, 7506–7525. [Google Scholar] [CrossRef]
- Jin, M.L.; Jeong, K.W. Histone Modifications in Drug-Resistant Cancers: From a Cancer Stem Cell and Immune Evasion Perspective. Exp. Mol. Med. 2023, 55, 1333–1347. [Google Scholar] [CrossRef] [PubMed]
- Noerenberg, D.; Damm, F. Beyond the Code: The Role of Histone Methylation in Cancer Resistance and Therapy. Signal Transduct. Target Ther. 2024, 9, 161. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, M.; Wang, Y. The Roles of Histone Modifications in Tumorigenesis and Associated Inhibitors in Cancer Therapy. J. Natl. Cancer Cent. 2022, 2, 277–290. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Ma, Y.; Wu, C.; Cui, W.; Wang, L. Histone Methyltransferase and Drug Resistance in Cancers. J. Exp. Clin. Cancer Res. 2020, 39, 173. [Google Scholar] [CrossRef]
- Sadida, H.Q.; Abdulla, A.; Marzooqi, S.A.; Hashem, S.; Macha, M.A.; Al-Shabeeb Akil, A.S.; Bhat, A.A. Epigenetic Modifications: Key Players in Cancer Heterogeneity and Drug Resistance. Transl. Oncol. 2024, 39, 101821. [Google Scholar] [CrossRef]
- Lee, P.W.T.; Koseki, L.R.; Haitani, T.; Harada, H.; Kobayashi, M. Hypoxia-Inducible Factor-Dependent and Independent Mechanisms Underlying Chemoresistance of Hypoxic Cancer Cells. Cancers 2024, 16, 1729. [Google Scholar] [CrossRef]
- Haitani, T.; Kobayashi, M.; Koyasu, S.; Akamatsu, S.; Suwa, T.; Onodera, Y.; Nam, J.-M.; Nguyen, P.T.L.; Menju, T.; Date, H.; et al. Proteolysis of a Histone Acetyl Reader, ATAD2, Induces Chemoresistance of Cancer Cells under Severe Hypoxia by Inhibiting Cell Cycle Progression in S Phase. Cancer Lett. 2022, 528, 76–84. [Google Scholar] [CrossRef]
- Murakami, H.; Ito, S.; Tanaka, H.; Kondo, E.; Kodera, Y.; Nakanishi, H. Establishment of New Intraperitoneal Paclitaxel-Resistant Gastric Cancer Cell Lines and Comprehensive Gene Expression Analysis. Anticancer Res. 2013, 33, 4299–4307. [Google Scholar]
- Liu, C.; Hou, J.; Shan, F.; Wang, L.; Lu, H.; Ren, T. Long Non-Coding RNA CRNDE Promotes Colorectal Carcinoma Cell Progression and Paclitaxel Resistance by Regulating MiR-126-5p/ATAD2 Axis. OncoTargets Ther. 2020, 13, 4931–4942. [Google Scholar] [CrossRef]
- Wang, A.-Q.; Lv, M.; Xu, Y.-H.; Xie, P.-M.; Dong, Y.-Y. MiR-200b-5p Inhibits Proliferation of Ovarian Cancer Cells by Targeting ATAD2 and Regulating PI3K/AKT Signaling Pathway. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9860–9868. [Google Scholar] [CrossRef] [PubMed]
- Ge, T.; Liu, T.; Guo, L.; Chen, Z.; Lou, G. MicroRNA-302 Represses Epithelial-Mesenchymal Transition and Cisplatin Resistance by Regulating ATAD2 in Ovarian Carcinoma. Exp. Cell Res. 2020, 396, 112241. [Google Scholar] [CrossRef]
- Wang, J.; Zuo, J.; Wang, M.; Ma, X.; Gao, K.; Bai, X.; Wang, N.; Xie, W.; Liu, H. Polo-like Kinase 4 Promotes Tumorigenesis and Induces Resistance to Radiotherapy in Glioblastoma. Oncol. Rep. 2019, 41, 2159–2167. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Y.; Huang, P.; Wu, Z.; Ouyang, D.; Nyarko, A.O.; Ai, L.; Zhang, Z.; Chang, S. Pan-Cancer Analysis of the Immunological and Oncogenic Roles of ATAD2 with Verification in Papillary Thyroid Carcinoma. Sci. Rep. 2024, 14, 22263. [Google Scholar] [CrossRef]
- Vukovic, S.; Brennan, P.E.; Huggins, D.J. Exploring the Role of Water in Molecular Recognition: Predicting Protein Ligandability Using a Combinatorial Search of Surface Hydration Sites. J. Phys. Condens. Matter 2016, 28, 344007. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An Environment for Comparative Protein Modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Huang, J.; MacKerell, A.D. CHARMM36 All-Atom Additive Protein Force Field: Validation Based on Comparison to NMR Data. J. Comput. Chem. 2013, 34, 2135–2145. [Google Scholar] [CrossRef] [PubMed]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM General Force Field: A Force Field for Drug-like Molecules Compatible with the CHARMM All-atom Additive Biological Force Fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. Gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef]
PDB ID: 7Q6T | |||
---|---|---|---|
Residues | ΔΔH (vdW) | ΔΔH (ele.) | ΔΔH (Total) |
ZA loop; ARG1007:ALA | 0.83 ± 0.17 | −1.86 ± 0.11 | 0.67 ± 0.14 |
ZA loop; VAL1008:ALA | 0.76 ± 0.00 | 0.04 ± 0.02 | 0.68 ± 0.02 |
ZA loop; PHE1009:ALA | 0.90 ± 0.03 | 0.20 ± 0.02 | 0.91 ± 0.03 |
ZA loop; THR1010:ALA | −0.02 ± 0.01 | 1.25 ± 0.07 | 0.22 ± 0.01 |
ZA loop; LYS1011:ALA | 1.10 ± 0.06 | −0.99 ± 0.12 | 1.08 ± 0.07 |
ZA loop; VAL1013:ALA | 0.68 ± 0.01 | −0.33 ± 0.03 | 0.85 ± 0.01 |
ZA loop; ASP1014:ALA | 0.49 ± 0.03 | −0.03 ± 0.11 | −0.03 ± 0.02 |
ZA loop; GLU1017:ALA | 0.71 ± 0.02 | 0.95 ± 0.13 | −0.12 ± 0.01 |
ZA loop; VAL1018:ALA | 1.32 ± 0.01 | −0.36 ± 0.05 | 1.17 ± 0.01 |
ZA loop; ASP1020:ALA | 0.13 ± 0.10 | −1.24 ± 0.42 | −0.23 ± 0.11 |
ZA loop; TYR1021:ALA | 1.50 ± 0.04 | 0.73 ± 0.03 | 1.39 ± 0.03 |
ALA1060:GLY | 0.15 ± 0.01 | 0.99 ± 0.05 | 0.33 ± 0.02 |
BC loop; TYR1063:ALA | 2.55 ± 0.32 | −0.14 ± 0.02 | 2.07 ± 0.32 |
BC loop; ASN1064:ALA | 1.32 ± 0.03 | 3.62 ± 0.15 | 2.24 ± 0.06 |
ASP1071:ALA | 0.47 ± 0.04 | 0.33 ± 0.24 | −0.39 ± 0.02 |
ILE1074:ALA | 3.17 ± 0.03 | 0.36 ± 0.02 | 3.08 ± 0.03 |
PDB ID: 5LJ0 | |||
---|---|---|---|
Residues | ΔΔH (vdW) | ΔΔH (ele.) | ΔΔH (Total) |
ZA loop; VAL1008:ALA | 0.92 ± 0.09 | −0.41 ± 0.04 | 0.82 ± 0.58 |
ZA loop; PHE1009:ALA | 0.94 ± 0.01 | −0.09 ± 0.01 | 0.69 ± 0.27 |
ZA loop; LYS1011:ALA | 0.27 ± 0.04 | 2.11 ± 1.44 | 0.66 ± 0.79 |
ZA loop; VAL1013:ALA | 0.43 ± 0.16 | −0.60 ± 0.12 | 0.23 ± 0.37 |
ZA loop; ASP1014:ALA | 0.19 ± 0.14 | −0.51 ± 0.32 | 0.01 ± 0.20 |
ZA loop; GLU1017:ALA | 0.60 ± 0.24 | −0.11 ± 1.18 | 0.16 ± 0.37 |
ZA loop; VAL1018:ALA | 0.60 ± 0.33 | −0.22 ± 0.03 | 0.42 ± 0.43 |
ZA loop; TYR1021:ALA | 0.95 ± 0.14 | 0.48 ± 0.11 | 0.78 ± 0.42 |
ALA1060:ALA | 0.14 ± 0.00 | 1.84 ± 0.03 | 0.48 ± 0.18 |
BC loop; TYR1063:ALA | 3.02 ± 0.06 | −0.09 ± 0.23 | 2.83 ± 0.58 |
BC loop; ASN1064:ALA | −0.50 ± 0.09 | 9.30 ± 0.05 | 4.42 ± 0.94 |
BC loop; ASP1066:ALA | 0.19 ± 0.01 | 2.45 ± 0.08 | −0.37 ± 0.27 |
ASP1071:ALA | 0.13 ± 0.01 | 3.21 ± 0.53 | −0.24 ± 0.29 |
LEU1073:ALA | 0.51 ± 0.06 | 0.11 ± 0.01 | 0.52 ± 0.34 |
ILE1074:ALA | 2.47 ± 0.05 | −0.13 ± 0.06 | 2.52 ± 0.58 |
ARG1077:ALA | 0.81 ± 0.07 | 1.59 ± 0.22 | 0.86 ± 0.60 |
PDB ID: 6YB4 | |||
---|---|---|---|
Residues | ΔΔH (vdW) | ΔΔH (ele.) | ΔΔH (Total) |
ZA loop; ARG1007:ALA | 0.05 ± 0.01 | 0.34 ± 0.01 | 0.02 ± 0.01 |
ZA loop; VAL1008:ALA | 0.54 ± 0.07 | −0.53 ± 0.39 | 0.37 ± 0.15 |
ZA loop; PHE1009:ALA | 2.14 ± 0.15 | 0.08 ± 0.02 | 1.96 ± 0.17 |
ZA loop; THR1010:ALA | 0.01 ± 0.01 | −0.06 ± 0.16 | 0.13 ± 0.01 |
ZA loop; LYS1011:ALA | 1.13 ± 0.06 | 0.17 ± 0.62 | 0.99 ± 0.24 |
ZA loop; VAL1013:ALA | 0.60 ± 0.24 | −0.66 ± 0.12 | 0.67 ± 0.22 |
ZA loop; ASP1014:ALA | −0.06 ± 0.29 | 4.94 ± 3.99 | 0.96 ± 0.64 |
ZA loop; GLU1017:ALA | −0.21 ± 0.23 | 6.02 ± 5.65 | 1.04 ± 1.03 |
ZA loop; VAL1018:ALA | 0.23 ± 0.21 | −0.09 ± 0.04 | 0.20 ± 0.19 |
ZA loop; TYR1021:ALA | 4.45 ± 1.03 | 0.21 ± 0.39 | 4.36 ± 1.14 |
ILE1056:ALA | 0.26 ± 0.02 | −0.66 ± 0.05 | 0.15 ± 0.03 |
ALA1060:GLY | 0.22 ± 0.04 | 3.25 ± 0.16 | 1.17 ± 0.05 |
BC loop; TYR1063:ALA | 2.02 ± 0.21 | −0.41 ± 0.04 | 1.65 ± 0.21 |
BC loop; ASN1064:ALA | 1.30 ± 0.06 | 1.15 ± 0.05 | 1.64 ± 0.17 |
ILE1074:ALA | 1.11 ± 0.04 | −0.67 ± 0.27 | 0.81 ± 0.14 |
ALA1078:GLY | 0.05 ± 0.00 | 1.38 ± 0.14 | 0.24 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garain, T.; Rai, P.; Li, W.; Banerjee, S. ATAD2 as a Cancer Target: Insights into Its Structure, Functions, Mechanisms, and Drug Development. Cancers 2025, 17, 3337. https://doi.org/10.3390/cancers17203337
Garain T, Rai P, Li W, Banerjee S. ATAD2 as a Cancer Target: Insights into Its Structure, Functions, Mechanisms, and Drug Development. Cancers. 2025; 17(20):3337. https://doi.org/10.3390/cancers17203337
Chicago/Turabian StyleGarain, Tanya, Prateek Rai, Wei Li, and Souvik Banerjee. 2025. "ATAD2 as a Cancer Target: Insights into Its Structure, Functions, Mechanisms, and Drug Development" Cancers 17, no. 20: 3337. https://doi.org/10.3390/cancers17203337
APA StyleGarain, T., Rai, P., Li, W., & Banerjee, S. (2025). ATAD2 as a Cancer Target: Insights into Its Structure, Functions, Mechanisms, and Drug Development. Cancers, 17(20), 3337. https://doi.org/10.3390/cancers17203337