Metronomic Chemotherapy in Dogs and Cats: Mechanisms, Indications, and Clinical Perspectives
Simple Summary
Abstract
1. Introduction
2. Mechanisms of Action
2.1. Inhibition of Neovascularization
2.2. Modulation of the Immune Response
2.3. Effects on Tumor Cells and Cancer Stem Cells (CSCs)
2.4. Promotion of Tumor Dormancy
3. Pharmacokinetics and Pharmacodynamics of Commonly Used Metronomic Chemotherapy Agents
3.1. Cyclophosphamide
3.2. Chlorambucil
3.3. Thalidomide
3.4. Piroxicam
3.5. Doxycycline
4. Clinical Indications of Metronomic Chemotherapy
Critical Analysis of the Studies and Levels of Evidence
5. Epithelial Neoplasms
5.1. Mammary Carcinomas
5.2. Adenocarcinoma of the Apocrine Gland of the Anal Sac
5.3. Urothelial Carcinoma (UC)
5.4. Liver Carcinomas
5.5. Primary Lung Carcinomas
5.6. Metastatic Lung Carcinomas
6. Mesenchymal Neoplasms
6.1. Soft Tissue Sarcomas (STS)
6.2. Splenic Hemangiosarcoma
6.3. Osteosarcoma (OSA)
7. Round Cell Tumors
7.1. Mast Cell Tumors
7.2. Canine Transmissible Venereal Tumor (CTVT)
7.3. Plasma Cell Tumors
8. Malignant Neoplasms of the Oral Cavity
9. Gliomas
10. Metronomic Chemotherapy in Cats
11. Biomarkers in Metronomic Chemotherapy
12. Future Perspectives
13. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COX-2 | Cyclooxygenase-2 |
TNF-α | Tumor necrosis factor alpha |
IL-6 | Interleukin-6 |
References
- Petrucci, G.N.; Magalhães, T.R.; Dias, M.; Queiroga, F.L. Metronomic Chemotherapy: Bridging Theory to Clinical Indication in Canine and Feline Oncology. Front. Vet. Sci. 2024, 11, 01–17. [Google Scholar] [CrossRef] [PubMed]
- Milevoj, N.; Nemec, A.; Tozon, N. Metronomic Chemotherapy for Palliative Treatment of Malignant Oral Tumors in Dogs. Front. Vet. Sci. 2022, 9, 856399. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, T.B.; Henriques, J.; Marconato, L.; Queiroga, F.L. The Use of Low-Dose Metronomic Chemotherapy in Dogs—Insight into a Modern Cancer Field. Vet. Comp. Oncol. 2018, 16, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Correal Suárez, M.L.; Bortolotti Vièra, R.; Camplesi, A.C. Terapia Metronómica En El Manejo Del Paciente Veterinario Con Cáncer. CES Med. Vet. Zootec. 2017, 12, 195–210. [Google Scholar] [CrossRef]
- Smith, A.N.; Klahn, S.; Phillips, B.; Parshley, L.; Bennett, P.; Flory, A.; Calderon, R. ACVIM Small Animal Consensus Statement on Safe Use of Cytotoxic Chemotherapeutics in Veterinary Practice. J. Vet. Intern. Med. 2018, 32, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Argyle, D.J. Molecular/Targeted Therapy of Cancer. In Withrow and MacEwen’s Small Animal Clinical Oncology; Withrow, S.J., Vail, D.M., Eds.; Elsevier–Saunders: St. Louis, MO, USA, 2020; pp. 265–268. [Google Scholar]
- Bocci, G.; Kerbel, R.S. Pharmacokinetics of Metronomic Chemotherapy: A Neglected but Crucial Aspect. Nat. Rev. Clin. Oncol. 2016, 13, 659–673. [Google Scholar] [CrossRef] [PubMed]
- Mutsaers, A.J. Metronomic Chemotherapy. Top. Companion Anim. Med. 2009, 24, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, V.; Giorgi, M. Clinical Studies of Metronomic Chemotherapy in Dogs. In Metronomic Chemotherapy: Pharmacology and Clinical Indications; Springer: Berlin Heidelberg, Germany, 2014; pp. 283–295. ISBN 9783662436042. [Google Scholar]
- Biller, B. Metronomic Chemotherapy in Veterinary Patients with Cancer: Rethinking the Targets and Strategies of Chemotherapy. Vet. Clin. N. Am. Small Anim. Pract. 2014, 44, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Fox, L.E. Antineoplastic Drugs. In Handbook of Veterinary Pharmacology; Hsu, W.H., Ed.; Wiley-Blackwell: Ames, IA, USA, 2008; Volume 1, pp. 417–431. [Google Scholar]
- Matsuyama, F.; Fujita, Y.; Fukazawa, E.; Kobayashi, T. Safety and Pharmacokinetics of Thalidomide in Tumor-Bearing Dogs. J. Vet. Med. Sci. 2023, 85, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Mileva, R.; Milanova, A. Doxycycline Pharmacokinetics in Mammalian Species of Veterinary Interest—An Overview. Bulg. J. Vet. Med. 2022, 25, 1–20. [Google Scholar] [CrossRef]
- Colleoni, M.; Rocca, A.; Sandri, M.T.; Zorzino, L.; Masci, G.; Nolè, F.; Peruzzotti, G.; Robertson, C.; Orlando, L.; Cinieri, S.; et al. Low-Dose Oral Methotrexate and Cyclophosphamide in Metastatic Breast Cancer: Antitumor Activity and Correlation with Vascular Endothelial Growth Factor Levels. Ann. Oncol. 2002, 13, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Loven, D.; Hasnis, E.; Bertolini, F.; Shaked, Y. Low-Dose Metronomic Chemotherapy: From Past Experience to New Paradigms in the Treatment of Cancer. Drug Discov. Today 2013, 18, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Lana, S.; U’ren, L.; Plaza, S.; Elmslie, R.; Gustafson, D.; Morley, P.; Dow, S. Continuous Low-Dose Oral Chemotherapy for Adjuvant Therapy of Splenic Hemangiosarcoma in Dogs. J. Vet. Intern. Med. 2007, 21, 764–769. [Google Scholar] [PubMed]
- Bracha, S.; Walshaw, R.; Danton, T.; Holland, S.; Ruaux, C.; Obradovich, J. Evaluation of Toxicities from Combined Metronomic and Maximal-Tolerated Dose Chemotherapy in Dogs with Osteosarcoma. J. Small Anim. Pract. 2014, 55, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, A.; Woods, J.P.; Mutsaers, A.J. Evaluation of Toxicity of a Chronic Alternate Day Metronomic Cyclophosphamide Chemotherapy Protocol in Dogs with Naturally Occurring Cancer. Can. Vet. J. 2017, 58, 51–55. [Google Scholar] [PubMed]
- De Campos, C.B.; Lavalle, G.E.; Monteiro, L.N.; Arantes Pêgas, G.R.; Fialho, S.L.; Balabram, D.; Cassali, G.D. Adjuvant Thalidomide and Metronomic Chemotherapy for the Treatment of Canine Malignant Mammary Gland Neoplasms. In Vivo 2018, 32, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Alexander, C.K.; Cronin, K.L.; Silver, M.; Gardner, H.L.; London, C. The Addition of Metronomic Chemotherapy Does Not Improve Outcome for Canine Splenic Haemangiosarcoma. J. Small Anim. Pract. 2019, 60, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.C.; Yamamoto, P.A.; Pippa, L.F.; de Moraes, N.V.; Neves, F.M.F.; Portela, R.D.; Barrouin-Melo, S.M.; Hielm-Björkman, A.; Godoy, A.L.P.C.; Estrela-Lima, A. Pharmacokinetics of Carboplatin in Combination with Low-Dose Cyclophosphamide in Female Dogs with Mammary Carcinoma. Animals 2022, 12, 3109. [Google Scholar] [CrossRef] [PubMed]
- Elmslie, R.E.; Glawe, P.; Dow, S.W. Metronomic Therapy with Cyclophosphamide and Piroxicam Effectively Delays Tumor Recurrence in Dogs with Incompletely Resected Soft Tissue Sarcomas. J. Vet. Intern. Med. 2008, 22, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, A.; Schott, C.R.; Wood, G.A.; Richardson, D.; Woods, J.P.; Mutsaers, A.J. Evaluation of Metronomic Cyclophosphamide Chemotherapy as Maintenance Treatment for Dogs with Appendicular Osteosarcoma Following Limb Amputation and Carboplatin Chemotherapy. Small Anim. Exot. 2018, 252, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Bentley, R.T.; Thomovsky, S.A.; Miller, M.A.; Knapp, D.W.; Cohen-Gadol, A.A. Canine (Pet Dog) Tumor Microsurgery and Intratumoral Concentration and Safety of Metronomic Chlorambucil for Spontaneous Glioma: A Phase I Clinical Trial. World Neurosurg. 2018, 116, e534–e542. [Google Scholar] [CrossRef] [PubMed]
- Marconato, L.; Chalfon, C.; Finotello, R.; Polton, G.; Vasconi, M.E.; Annoni, M.; Stefanello, D.; Mesto, P.; Capitani, O.; Agnoli, C.; et al. Adjuvant Anthracycline-Based vs Metronomic Chemotherapy vs No Medical Treatment for Dogs with Metastatic Splenic Hemangiosarcoma: A Multi-Institutional Retrospective Study of the Italian Society of Veterinary Oncology. Vet. Comp. Oncol. 2019, 17, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Treggiari, E.; Borrego, J.F.; Gramer, I.; Valenti, P.; Harper, A.; Finotello, R.; Toni, C.; Laomedonte, P.; Romanelli, G. Retrospective Comparison of First-Line Adjuvant Anthracycline vs Metronomic-Based Chemotherapy Protocols in the Treatment of Stage I and II Canine Splenic Haemangiosarcoma. Vet. Comp. Oncol. 2020, 18, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Petrucci, G.; Henriques, J.; Gregório, H.; Vicente, G.; Prada, J.; Pires, I.; Lobo, L.; Medeiros, R.; Queiroga, F. Metastatic Feline Mammary Cancer: Prognostic Factors, Outcome and Comparison of Different Treatment Modalities—A Retrospective Multicentre Study. J. Feline Med. Surg. 2021, 23, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.S.; Nowosh, V.; López, R.V.M.; Massoco, C.d.O. Association of Systemic Inflammatory and Immune Indices With Survival in Canine Patients With Oral Melanoma, Treated With Experimental Immunotherapy Alone or Experimental Immunotherapy Plus Metronomic Chemotherapy. Front. Vet. Sci. 2022, 9, 888411. [Google Scholar] [CrossRef] [PubMed]
- Tripp, C.D.; Fidel, J.; Anderson, C.L.; Patrick, M.; Pratt, C.; Sellon, R.; Bryan, J.N. Tolerability of Metronomic Administration of Lomustine in Dogs with Cancer. J. Vet. Intern. Med. 2011, 25, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Schrempp, D.R.; Childress, M.O.; Stewart, J.C.; Leach, T.N.; Tan, K.M.; Abbo, A.H.; De Gortari, A.E.; Bonney, P.L.; Knapp, D.W. Metronomic Administration of chlorambucil for Treatment of Dogs with Urinary Bladder Cell Carcinoma. J. Am. Vet. Med. Assoc. 2013, 242, 1534–1538. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, V.; Giorgi, M.; Fioravanti, A.; Finotello, R.; Citi, S.; Canu, B.; Orlandi, P.; Di Desidero, T.; Danesi, R.; Bocci, G. First-Line Metronomic Chemotherapy in a Metastatic Model of Spontaneous Canine Tumours: A Pilot Study. Investig. New Drugs 2012, 30, 1725–1730. [Google Scholar] [CrossRef] [PubMed]
- Polton, G.; Finotello, R.; Sabattini, S.; Rossi, F.; Laganga, P.; Vasconi, M.E.; Barbanera, A.; Stiborova, K.; Rohrer Bley, C.; Marconato, L. Survival Analysis of Dogs with Advanced Primary Lung Carcinoma Treated by Metronomic Cyclophosphamide, Piroxicam and Thalidomide. Vet. Comp. Oncol. 2018, 16, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.E.; Anderson, C.L.; Choy, K.; Fidel, J.L. Metronomic Administration of Lomustine Following Palliative Radiation Therapy for Appendicular Osteosarcoma in Dogs. Can. Vet. J. 2018, 59, 136–142. [Google Scholar] [PubMed]
- Marconato, L.; Sabattini, S.; Marisi, G.; Rossi, F.; Leone, V.F.; Casadei-Gardini, A. Sorafenib for the Treatment of Unresectable Hepatocellular Carcinoma: Preliminary Toxicity and Activity Data in Dogs. Cancers 2020, 12, 1272. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Miguel, D.; Valdivia, G.; García-San José, P.; Alonso-Diez, Á.; Clares, I.; Portero, M.; Peña, L.; Pérez-Alenza, M.D. Clinical Outcome of Dogs Diagnosed with Canine Inflammatory Mammary Cancer Treated with Metronomic Cyclophosphamide, a Cyclooxygenase-2 Inhibitor and Toceranib Phosphate. Vet. Comp. Oncol. 2022, 20, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Vail, D.M.; Michels, G.M.; Khanna, C.; Selting, K.A.; London, C.A. VCOG Response Evaluation Criteria for Peripheral Nodal Lymphoma in Dogs (v1.0)—A Veterinary Cooperative Oncology Group (VCOG) Consensus Document. Vet. Comp. Oncol. 2010, 8, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Volkmer, B.G.; Seidl-Schlick, E.M.; Bach, D.; Romics, I.; Kleinschmidt, K. Cyclophosphamide Is Contraindicated in Patients with a History of Transitional Cell Carcinoma. Clin. Rheumatol. 2005, 24, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Ghisoni, G.; Foglia, A.; Sabattini, S.; Agnoli, C.; Dondi, F.; Perfetti, S.; Marconato, L. A Retrospective Clinico-Pathologic Study of 35 Dogs with Urethral Transitional Cell Carcinoma Undergoing Treatment. Animals 2023, 13, 2395. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.H.; McGregor, B.; Schmidt, A.; Carvalho, F.L.F.; Hirsch, M.S.; Chang, S.L.; Kibel, A.; Mossanen, M. Cyclophosphamide-Associated Bladder Cancers and Considerations for Survivorship Care: A Systematic Review. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Cancedda, S.; Marconato, L.; Meier, V.; Laganga, P.; Roos, M.; Leone, V.F.; Rossi, F.; Bley, C.R. Hypofractionated Radiotherapy for Macroscopic Canine Soft Tissue Sarcoma: A Retrospective Study of 50 Cases Treated with a 5 × 6 Gy Protocol with or without Metronomic Chemotherapy. Vet. Radiol. Ultrasound 2016, 57, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Wendelburg, K.M.; Price, L.L.; Burgess, K.E.; Lyons, J.A.; Lew, F.H.; Berg, J. Survival Time of Dogs with Splenic Treated by splenectomy with or without Adjuvant Chemotherapy: 208 Cases (2001–2012). J. Am. Vet. Med. Assoc. 2015, 247, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, A.; Poirier, V.J.; Mantovani, F.; Foster, R.A.; Mutsaers, A.J. Adjuvant Doxorubicin with or without Metronomic Cyclophosphamide for Canine Splenic Hemangiosarcoma. J. Am. Anim. Hosp. Assoc. 2017, 53, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Miranda, B.D.C. Quimioterapia Metronômica Como Tratamento Adjuvante Para o Mastocitoma Cutâneo Em; Universidade de São Paulo: São Paulo, Brazil, 2017. [Google Scholar]
- Braz, P.H.; Marinho, C.P. Comparison between Hematological and Biochemical Changes Caused by Conventional and Metronomic Chemotherapies in the Treatment of Canine Transmissible Venereal Tumor. Pesqui. Vet. Bras. 2021, 41, e06575. [Google Scholar] [CrossRef]
- Leo, C.; Stell, A.; Borrego, J.; Martinez de Merlo, E.; Ruess-Melzer, K.; Lara-Garcia, A. Evaluation of Low-Dose Metronomic (LDM) Cyclophosphamide Toxicity in Cats with Malignant Neoplasia. J. Feline Med. Surg. 2014, 16, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Howick, J.; Chalmers, I.; Lind, J.; Glasziou, P.; Greenhalgh, T.; Heneghan, C.; Liberati, A.; Moschetti, I.; Phillips, B.; Thornton, H.; et al. Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence. Available online: http://www.cebm.net/index.aspx?o=5653 (accessed on 28 June 2025).
- Cassali, G.D.; Nakagaki, K.Y.R.; Jark, P.C.; Horta, R.D.S.; Arias, A.C.; Tellado, M.N.; Estrela-Lima, A.; Sueiro, F.A.R.; Dos Reys, M.P.; Wronski, J.G.; et al. Consensus on the Diagnosis, Prognosis, and Treatment of Canine and Feline Mammary Tumors: Solid Arrangement-2023. Braz. J. Vet. Pathol. 2024, 17, 152–163. [Google Scholar] [CrossRef]
- Leach, T.N.; Childress, M.O.; Greene, S.N.; Mohamed, A.S.; Moore, G.E.; Schrempp, D.R.; Lahrman, S.R.; Knapp, D.W. Prospective Trial of Metronomic Chlorambucil Chemotherapy in Dogs with Naturally Occurring Cancer. Vet. Comp. Oncol. 2012, 10, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, L.; Thamm, D.H.; Biller, B.J. Clinical and Immunomodulatory Effects of Toceranib Combined with Low-Dose Cyclophosphamide in Dogs with Cancer. J. Vet. Intern. Med. 2012, 26, 355–362. [Google Scholar] [CrossRef] [PubMed]
- de Paiva, F.N.; Ferrari, B.S.; Silva, M.L.; Torquato, L.d.F.B.; de Andrade, M.F.; Fernandes, M.E.d.S.L.; Costa, T.S.; Fernandes, J.I. Primary Urethral Carcinoma in a Bitch-Multimodal Treatment. Acta Sci. Vet. 2022. [Google Scholar] [CrossRef]
- Morgan, E.; O’Connell, K.; Thomson, M.; Boyd, S.; Sandy, J. Primary Hepatic Neuroendocrine Carcinoma Treated with Doxorubicin and Cyclophosphamide in a Dog. J. Am. Anim. Hosp. Assoc. 2019, 55, e553-05. [Google Scholar] [CrossRef] [PubMed]
- Marcinowska, A.; Horta, R.D.S.; Queiroga, F.; Giuliano, A. Canine Lung Carcinoma—A Descriptive Review. Front. Vet. Sci. 2024, 11, 1464659. [Google Scholar] [CrossRef] [PubMed]
- Castro-López, J.; Bermúdez, N.; Martínez, J.; Ramos-Varas, J.; Planellas, M.; Pastor, J.; Castro López, J. Caudoventral Abdominal Lymphangiosarcoma in a Cat Treated with Metronomic Chemotherapy. Vet. Rec. Case Rep. 2013, 1, e000020. [Google Scholar] [CrossRef]
- Liptak, J.M.; Christenses, N.I. Soft Tissue Sarcomas. In Withrow and MacEwen’s Small Animal Clinical Oncology; Withrow, S.J., Vail, D.M., Eds.; Elsevier: St. Louis, MO, USA, 2020; Volume 17, pp. 404–425. [Google Scholar]
- Milovancev, M.; Tuohy, J.L.; Townsend, K.L.; Irvin, V.L. Influence of Surgical Margin Completeness on Risk of Local Tumour Recurrence in Canine Cutaneous and Subcutaneous Soft Tissue Sarcoma: A Systematic Review and Meta-Analysis. Vet. Comp. Oncol. 2019, 17, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Torrigiani, F.; Pierini, A.; Lowe, R.; Simčič, P.; Lubas, G. Soft Tissue Sarcoma in Dogs: A Treatment Review and a Novel Approach Using Electrochemotherapy in a Case Series. Vet. Comp. Oncol. 2019, 17, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Hohenhaus, A.E.; Kelsey, J.L.; Haddad, J.; Barber, L.; Palmisano, M.; Farrelly, J.; Soucy, A. Canine Cutaneous and Subcutaneous Soft Tissue Sarcoma: An Evidence-Based Review of Case Management. J. Am. Anim. Hosp. Assoc. 2016, 52, 77–89. [Google Scholar] [CrossRef] [PubMed]
- De Nardi, A.B.; de Oliveira Massoco Salles Gomes, C.; Fonseca-Alves, C.E.; de Paiva, F.N.; Linhares, L.C.M.; Carra, G.J.U.; dos Santos Horta, R.; Ruiz Sueiro, F.A.; Jark, P.C.; Nishiya, A.T.; et al. Diagnosis, Prognosis, and Treatment of Canine Hemangiosarcoma: A Review Based on a Consensus Organized by the Brazilian Association of Veterinary Oncology, ABROVET. Cancers 2023, 15, 2025. [Google Scholar] [CrossRef] [PubMed]
- Ehrhart, N.P.; Christenses, N.I.; Fan, T.M. Tumors of the Skeletal System. In Withrow and MacEwen’s Small Animal Clinical Oncology; Withrow, S.J., Vail, D.M., Eds.; Elsevier–Saunder: St. Louis, MO, USA, 2020; Volume 17, pp. 524–555. [Google Scholar]
- Abedin, S.N. Canine Transmissible Venereal Tumor: A Review. J. Entomol. Zool. Stud. 2020, 8, 596–599. [Google Scholar]
- Borgatti, A. Plasma Cell Tumors. In Schalm’s Veterinary Hematology; Brooks, M.B., Harr, K.E., Seelig, D.M., Wardrop, K.J., Weiss, D.J., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2022; pp. 588–598. [Google Scholar]
- Mulka, K.R.; Gillette, D.; Durham, A.C.; Mauldin, E.A. Canine Laryngotracheal Plasma Cell Tumors: Ten Cases and Literature Review. Vet. Pathol. 2025, 03009858251331115. [Google Scholar] [CrossRef] [PubMed]
- Evenhuis, J.V.; Oates, A.; Hoyer, N.; Vilander, A.C.; Thamm, D.H.; Worley, D.R. A Retrospective Study of Canine Oral Extramedullary Plasmacytoma over a 15-Year Period (July 2004–July 2019): Treatment, Histologic Parameters and Clinical Outcomes. Vet. Comp. Oncol. 2023, 21, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Wellman, M.L.; Kisseberth, W.C. Plasma Cell Tumors. In Veterinary Cytology; Sharkey, L.C., Radin, M.J., Seelig, D., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2020; pp. 151–157. [Google Scholar]
- Resk, S.; Brandão, C.; Rahal, S.; Rocha, N.; Sessa, M. Tongue Plasmacytoma in a Dog Treated with Adjuvant Metronomic Melphalan. Ank. Üniversitesi Vet. Fakültesi Derg. 2025, 1, 113–116. [Google Scholar] [CrossRef]
- Polton, G.; Borrego, J.F.; Clemente-Vicario, F.; Clifford, C.A.; Jagielski, D.; Kessler, M.; Kobayashi, T.; Lanore, D.; Queiroga, F.L.; Rowe, A.T.; et al. Melanoma of the Dog and Cat: Consensus and Guidelines. Front. Vet. Sci. 2024, 11, 1359426. [Google Scholar] [CrossRef] [PubMed]
- Boston, S.E.; Lu, X.; Culp, W.T.N.; Montinaro, V.; Romanelli, G.; Dudley, R.M.; Liptak, J.M.; Mestrinho, L.A.; Buracco, P. Efficacy of Systemic Adjuvant Therapies Administered to Dogs after Excision of Oral Malignant Melanomas: 151 Cases (2001–2012). J. Am. Vet. Med. Assoc. 2014, 245, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Reese, M.J.; Knapp, D.W.; Anderson, K.M.; Mund, J.A.; Case, J.; Jones, D.R.; Packer, R.A. In Vitro Effect of Chlorambucil on Human Glioma Cell Lines (SF767 and U87-MG), and Human Microvascular Endothelial Cell (HMVEC) and Endothelial Progenitor Cells (ECFCs), in the Context of Plasma Chlorambucil Concentrations in Tumor-Bearing Dogs. PLoS ONE 2018, 13, e0203517. [Google Scholar] [CrossRef] [PubMed]
- José-López, R. Chemotherapy for the Treatment of Intracranial Glioma in Dogs. Front. Vet. Sci. 2023, 10, 1273122. [Google Scholar] [CrossRef] [PubMed]
- Spugnini, E.P.; Buglioni, S.; Carocci, F.; Francesco, M.; Vincenzi, B.; Fanciulli, M.; Fais, S. High Dose Lansoprazole Combined with Metronomic Chemotherapy: A Phase I/II Study in Companion Animals with Spontaneously Occurring Tumors. J. Transl. Med. 2014, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- Sá, I.d.S. Avaliação Dos Efeitos Secundários Induzidos Pela Administração Oral De Ciclofosfamida Em Regime De Quimioterapia Metronómica Em Cães E Gatos—Estudo Retrospetivo De 36 Casos. Master’s Thesis, Universidade de Lisboa, Lisbon, Portugal, 2016. [Google Scholar]
- Petrucci, G.N.; Henriques, J.; Lobo, L.; Vilhena, H.; Figueira, A.C.; Canadas-Sousa, A.; Dias-Pereira, P.; Prada, J.; Pires, I.; Queiroga, F.L. Adjuvant Doxorubicin vs Metronomic Cyclophosphamide and Meloxicam vs Surgery Alone for Cats with Mammary Carcinomas: A Retrospective Study of 137 Cases. Vet. Comp. Oncol. 2021, 19, 714–723. [Google Scholar] [CrossRef] [PubMed]
- McNally, A.; Rossanese, M.; Suárez-Bonnet, A.; Hardas, A.; Yale, A.D. Urinary Bladder Hemangiosarcoma in a Cat Treated with Partial Cystectomy and Adjuvant Metronomic Cyclophosphamide and Thalidomide. J. Vet. Intern. Med. 2023, 37, 1488–1492. [Google Scholar] [CrossRef] [PubMed]
- Torres, L.E.C.; Lopez, A.E.G.; Prado, R.G.S.; Arévalo, G.M.A.; Pires, C.R.d.S. Squamous Cell Carcinoma in a Cat—Treatment with Metronomic Chemotherapy. Acta Sci. Vet. 2023, 51, 1–5. [Google Scholar] [CrossRef]
- Zanella Grapegia, F.; Lima, B.R. Metronomic Chemotherapy for Treatment of Tumor of Transition Carcinomatosis Cells in the Region of Vesical Trigon in Cat: Case Report. PUBVET 2017, 11, 793–801. [Google Scholar]
- De Decker, C.; Hennequin, J.B. Management and Evolution of an Intraocular Lymphoma Presumed to Be Solitary by Chemotherapy in a Cat. Rev. Vet. Clin. 2022, 57, 31–38. [Google Scholar] [CrossRef]
- Dobson, J. Reducing the Side effects of Cyclophosphamide in Dogs. Vet. Rec. 2014, 174, 248–249. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.M.; Frimberger, A.E.; Moore, A.S. Incidence of Sterile Hemorrhagic Cystitis in Tumor-Bearing Dogs Concurrently Treated with Oral Metronomic Cyclophosphamide Chemotherapy and Furosemide: 55 Cases (2009–2015). J. Am. Vet. Med. Assoc. 2016, 249, 1408–1414. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.Y.K.; Krockenberger, M.; Bennett, P. Use of Metronomic Chemotherapy in the Management of a Cat with Abdominal Haemangiosarcoma. J. Feline Med. Surg. Open Rep. 2018, 4, 2055116918793455. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, T.A.G.; Caetano, C.M.R.; Lima, B.d.T.A.R. Carcinoma de Células Escamosas Em Felino, Tratado Com Nosectomia e Quimioterapia Metronômica: Relato de Caso. Pubvet 2022, 16, 1–4. [Google Scholar] [CrossRef]
- Mahmood, N.; Mihalcioiu, C.; Rabbani, S.A. Multifaceted Role of the Urokinase-Type Plasminogen Activator (UPA) and Its Receptor (UPAR): Diagnostic, Prognostic, and Therapeutic Indications. Front. Oncol. 2018, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Endo-Munoz, L.; Cai, N.; Cumming, A.; Macklin, R.; De Long, L.M.; Topkas, E.; Mukhopadhyay, P.; Hill, M.; Saunders, N.A. Progression of Osteosarcoma from a Non-Metastatic to a Metastatic Phenotype Is Causally Associated with Activation of an Autocrine and Paracrine UPA Axis. PLoS ONE 2015, 10, e0133592. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, A. The Role of the Urokinase Plasminogen Activator System in Metronomic Chemotherapy and Canine Sarcomas. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2021. [Google Scholar]
- Harbeck, N.; Schmitt, M.; Meisner, C.; Friedel, C.; Untch, M.; Schmidt, M.; Sweep, C.G.J.; Lisboa, B.W.; Lux, M.P.; Beck, T.; et al. Ten-Year Analysis of the Prospective Multicentre Chemo-N0 Trial Validates American Society of Clinical Oncology (ASCO)-Recommended Biomarkers UPA and PAI-1 for Therapy Decision Making in Node-Negative Breast Cancer Patients. Eur. J. Cancer 2013, 49, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
Drug | Dose (Orally) | Half-Life | Key Toxicities |
---|---|---|---|
Cyclophosphamide | 10–25 mg/m2/day or 25 mg/m2/EOD | 4–12 h (IV) | Myelosuppression (nadir ~7 d), sterile hemorrhagic cystitis, GI signs, alopecia |
Chlorambucil | 4 mg/m2/day | 1.5 h (parent); 2.4 h (metabolite) | Cumulative myelosuppression |
Thalidomide | 5–10 mg/kg/day | 4.8–17 h | Infrequent; caution due to unknown excretion route |
Piroxicam | 0.3 mg/kg/day | ~12 h | GI toxicity, nephrotoxicity (especially in cats) |
Doxycycline | 5–10 mg/kg/twice a day | Variable | GI signs (especially in cats), staining of unerupted teeth in young animals |
Tumoral Type | Nature of the Study (Number of Animals) | Treatment Group | Disease Setting | Metronomic Drug | MC-Associated Drugs | MTDC +/− Other Drugs | Response Evaluation and Survival Data | Adapted CEBM Score * (1–5) |
---|---|---|---|---|---|---|---|---|
Soft tissue sarcoma | Retrospective (n = 85) [23] | Sx + MC: n = 30; Sx alone: n = 55. | Microscopic | CYC (10 mg/m2/day orally) | Piroxicam | None | MC group achieved significantly longer DFI than control group (median not reached vs. 211 days, respectively). | 3 |
Retrospective (n = 50) [41] | RT + MC: n = 20; RT alone: n = 30 | Macroscopic (palliative) | CYC (7 mg/m2/EOD orally) | Thalidomide and piroxicam | None | OST was significantly longer in RT + MC group when compared to RT alone group (757 vs. 286 days). | 4 | |
Splenic HSA | Retrospective (n = 33) [17] | Sx + MC: n = 9; Sx + DOX: n = 24. | Microscopic (stages I and II) | CYC (12.5–25 mg/m2/day orally) | Etoposide and piroxicam | DOX | MST was significantly longer in Sx + MC group than Sx + DOX group (178 vs. 133 days, respectively) | 4 |
Retrospective (n = 93) [27] | Sx + MC: n = 20; Sx + MTDC + MC (sequentially) n = 23; Sx + MTDC: n = 50. | Microscopic (stages I and II) | CYC (10–15 mg/m2/day or EOD orally) or chlorambucil (4 mg/m2/day orally) | NSAIDs (n = 23: Piroxicam, meloxicam or firocoxibe) and/or thalidomide (n = 3) | DOX, EPI or PL-DOX | MST and TTP did not differ between the groups (p > 0.05) | 4 | |
Retrospective (n = 103) [26] | Sx + MC: n = 38; Sx + MTDC: n = 23; Sx alone: n = 42 | Microscopic (stage III) | CYC (10–15 mg/m2/day or EOD orally) | NSAIDs (n = 38: Piroxicam or meloxicam) and/or thalidomide (n = 35) | DOX +/− CYC or Dacarbazine or EPI alone | MST and TTP were significantly lower in MC group compared to MTDC group (134 vs. 52 days e 140 vs. 58 days, respectively) | 4 | |
Retrospective (n = 208) [42] | Sx + MC: n = 13; Sx + MTDC: n = 28; Sx + MTDC + MC (concurrently): n = 9; Sx + MTDC + MC (sequentially): n = 4; Sx alone: n = 154 | Microscopic (89% stages II or III) | CYC (9.3–16 mg/m2/day orally) | NSAIDs (n= 12: Piroxicam, meloxicam or deracoxib) | DOX +/− CYC, cisplatin, ifosfamide or vincristine | Combination of MC and MTDC apperead to be more effective than these drugs alone, but improvement in ST was modest. | 4 | |
Retrospective (n = 33) [43] | Sx + MTDC + MC (sequentially): n = 14; Sx + MTDC + MC (concurrent): n = 4; Sx + MTDC: n = 15 | Microscopic (84% stages II or III) | CYC (10–25 mg/m2/day or EOD orally) | NSAIDs (n = 13): meloxicam (n = 11), piroxicam (n = 1) and deracoxib (n = 1) | DOX | PFS and OST were not significantly improved with MC addition. | 4 | |
Retrospective (n = 61) [21] | Sx + MTDC + MC (concurrent): n = 22; Sx + MTDC: n = 39 | Microscopic (68% stage II) | CYC (12–25 mg/m2/day or EOD orally) | NSAIDs (n = 13) or doxycycline (n = 5) | DOX +/− CYC | Addition of MC did not improve the outcome. | 4 | |
Osteosarcoma | Retrospective (n = 39). [24] | Sx + MTDC + MC (sequentially): n = 19; Sx + MTDC: n = 20 | Microscopic | CYC (15 mg/m2/day orally) | Meloxicam (n = 18) | Carboplatin | OST and PFT did not improve significantly with MC addition. | 4 |
Retrospective (n = 86) [34] | RT + MC: n = 43; RT +/− MTDC: n = 43 | Macroscopic. | Lomustine (2.84 mg/m2/day orally) | NSAID (n = 40) | Carboplatin, cisplatin, toceranib or masitinib | MST was not significantly improved with MC addition. | 4 | |
Mammary carcinoma | Prospective (n = 58) [20] | Sx + MTDC + MC (concurrently): n = 9; Sx + MTDC + thalidomide: n = 23; Sx + MTDC: n = 15; Sx alone: n = 11 | Microscopic (59.2% stage IV) | CYC (15 mg/m2/day orally) | Firocoxib | Carboplatin and thalidomide | MST did not significantly differ between the groups. | 3 |
Prospective (n = 16) [22] | Sx + MTDC: n = 8; Grupo Sx + MTDC + MC (concurrently): n = 8 | Microscopic (87.5% Stage III or IV and grade II) | CYC (12.5 mg/m2/day orally) | None | Carboplatin | MC addition did not improve significantly the MST. | 3 | |
Mammary inflammatory carcinoma | Retrospective (n = 16) [36] | MC + Toceranib + NSAIDs +/− Sx: n = 8; NSAIDs +/− Sx: n = 8 | Microscopic (n = 10); Macroscopic (n = 6) | CYC (12.5 mg/m2/day orally) | NSAIDs (firocoxib, cimicoxib, meloxicam or piroxicam) and toceranib | None | Clinical benefit in all dogs of the multi-drug therapy, as well as significantly longer OST and TTP, compared to NSAIDs group. | 4 |
Urothelial carcinoma | Prospective (n = 31). [31] | MC as sole therapy | Macroscopic (palliative: first-line or rescue therapy) | Chlorambucil (4 mg/m2/day orally) | NSAIDs (n = 25): piroxicam or firocoxib | None | PR (3%; n = 1); SD (67%; n = 20) and PD (30%; n = 9). Median PFT of 119 days and MST of 221 days. | 3 |
Hepatocellular carcinoma | Prospective (n = 13). [35] | MC alone: n = 6; Sorafenib alone: n = 7 | Macroscopic (palliative: first-line therapy; stages III-IV) | CYC (10 mg/m2/day orally) | Piroxicam and thalidomide | Sorafenib | MC group: SD (n = 3) and PD (n = 3); MST and TTP were significantly longer in sorafenib group. | 3 |
Primary pulmonary carcinoma | Retrospective (n = 91) [33] | MC alone: n = 25; Sx alone: n = 36; MTDC alone: n = 11. No treatment: n = 19 | Macroscopic (palliative: first-line therapy) | CYC (10 mg/m2/day or EOD orally) | Piroxicam and thalidomide | Vinorelbine, Carboplatin or Gemcitabine | MC group: PR (n = 4; 16%), SD (n = 19; 76%), and PD (n = 2; 8%). Clinical benefit of 92%. MST was similar between the groups. | 4 |
Mast cell tumors | Prospective (n = 32) [44] | Sx + MC: n = 16; Sx + MTDC: n = 16 | Microscopic (67.5% grade II/low grade) | Lomustine (2.84 mg/m2/day orally) | None | Vinblastine and Prednisone | No significant difference between ST and DFI between the groups. | 3 |
Transmissible venereal tumors | Prospective (n = 12). [45] | MC alone: n = 6; MTDC alone: n = 6 | Macroscopic | Vincristine (0.25 mg/m2/3x a week IV) | None. | Vincristine | MC provided fewer AEs and similar results compared to MTD vincristine. | 3 |
Malignant oral tumors | Retrospective (n = 12) [2] | Non-applicable | Macroscopic disease (palliative: first-line therapy). | CYC (15–25 mg/m2/day orally) | Piroxicam, meloxicam or carprofen | None | DP in 83.3% and MST of 155 days. Clinical benefit of 50% (1st month) and 33% (2nd month). | 4 |
Glioma | Prospective (n = 8) [25] | Non-applicable | Macroscopic disease (pre-Sx) and microscopic disease (post-Sx) | Chlorambucil (4 mg/m2/day orally) | Lomustine and prednisone | None | Median PFS and ST were 253 and 257 days, respectively. | 3 |
Tumoral Type | Nature of the Study (Number of Animals) | Treatment Group | Disease Setting | Metronomic Drug | MC-Associated Drugs | MTDC +/− Other Drugs | Response Evaluation and Survival Data | Adapted CEBM Score (1–5) |
---|---|---|---|---|---|---|---|---|
Various tumor types ** | Retrospective (n = 24) [46] | NA | Macroscopic (n = 17) and microscopic (n = 7) | CYC: 6–27 mg/m2 (median 14 mg/m2/day or EOD orally) | NSAIDs (n = 11): meloxicam, piroxicam or firocoxib +/− toceranib (n = 4) +/− thalidomide (n = 6) | None | Median PFS was 297 and 90 days for adjuvant and palliative groups, respectively | 5 |
Mammary carcinoma | Retrospective (n = 137) [28] | Sx + MC + meloxicam: n = 23; Sx + MTDC: n = 34; Sx alone: n = 80 | Microscopic (64% stage III) | CYC (15 mg/m2/day orally) | Meloxicam | DOX | Adjuvant MC did not improve survival. Differences in median DFI and OS were not significant | 4 |
Retrospective (n = 73) [28] | MC +/− Sx: n = 15; MTDC +/− Sx: n = 9; Toceranib +/− Sx: n = 10; Sx alone: n = 39. | Macroscopic metastatic disease (stage IV) | CYC (n = 11): 15 mg/m2/day orally or chlorambucil (n = 4): 0.4–0.6 mg/m2, EOD orally | None | DOX (n = 7) or carboplatin (n = 2) or Toceranib | Median TSS was 58, 75 and 63 days for groups, MTDC, MC and toceranib, respectively, but with no significant difference between them | 4 |
Adapted CEBM Score | Description | Key Characteristics |
---|---|---|
1 | Very high evidence | Well-designed randomized controlled trial (RCT) with proper allocation and low bias risk. |
2 | High evidence | Prospective study with a control group, but without randomization or with some limitations. |
3 | Moderate evidence | Retrospective study with a control group, or single-arm prospective study with clear design. |
4 | Low evidence | Retrospective study without a control group, case series, or incomplete cohort data (e.g., major confounding factors, heterogeneous treatments, unstandardized follow up). |
5 | Very low evidence | Case report, expert opinion, or study with critical methodological flaws. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bitencourt, R.C.; Cruvinel, G.G.; Terrabuio, V.M.T.d.C.; Linhares, L.C.M.; Bispo, G.A.; Anai, L.A.; Sobreira, M.F.d.R.; Camplesi, A.C.; De Nardi, A.B.; Santana, A.E. Metronomic Chemotherapy in Dogs and Cats: Mechanisms, Indications, and Clinical Perspectives. Cancers 2025, 17, 3318. https://doi.org/10.3390/cancers17203318
Bitencourt RC, Cruvinel GG, Terrabuio VMTdC, Linhares LCM, Bispo GA, Anai LA, Sobreira MFdR, Camplesi AC, De Nardi AB, Santana AE. Metronomic Chemotherapy in Dogs and Cats: Mechanisms, Indications, and Clinical Perspectives. Cancers. 2025; 17(20):3318. https://doi.org/10.3390/cancers17203318
Chicago/Turabian StyleBitencourt, Rafael Costa, Giovanna Gabrielle Cruvinel, Verônica Maria Teixeira de Castro Terrabuio, Laís Calazans Menescal Linhares, Guilherme Andraus Bispo, Letícia Abrahão Anai, Márcia Ferreira da Rosa Sobreira, Annelise Carla Camplesi, Andrigo Barboza De Nardi, and Aureo Evangelista Santana. 2025. "Metronomic Chemotherapy in Dogs and Cats: Mechanisms, Indications, and Clinical Perspectives" Cancers 17, no. 20: 3318. https://doi.org/10.3390/cancers17203318
APA StyleBitencourt, R. C., Cruvinel, G. G., Terrabuio, V. M. T. d. C., Linhares, L. C. M., Bispo, G. A., Anai, L. A., Sobreira, M. F. d. R., Camplesi, A. C., De Nardi, A. B., & Santana, A. E. (2025). Metronomic Chemotherapy in Dogs and Cats: Mechanisms, Indications, and Clinical Perspectives. Cancers, 17(20), 3318. https://doi.org/10.3390/cancers17203318