Unlocking the Potential of Immune Checkpoint Inhibitors in HR+/HER2− Breast Cancer: A Systematic Review
Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
3.1. ICIs and Chemotherapy
3.2. ICIs and Endocrine Therapy with or Without CDK4/6 Inhibitors
3.3. Other Combinations
3.4. Ongoing Clinical Trials
3.5. Biomarkers of Response to ICIs in HR+/HER2− BC
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nicolini, A.; Ferrari, P.; Silvestri, R.; Gemignani, F. The breast cancer tumor microenvironment and precision medicine: Immunogenicity and conditions favoring response to immunotherapy. J. Natl. Cancer Cent. 2024, 4, 14–24. [Google Scholar] [CrossRef]
- Leon-Ferre, R.A.; Jonas, S.F.; Salgado, R.; Loi, S.; de Jong, V.; Carter, J.M.; Nielsen, T.O.; Leung, S.; Riaz, N.; Chia, S.; et al. Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer. JAMA 2024, 331, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Bareche, Y.; Buisseret, L.; Gruosso, T.; Girard, E.; Venet, D.; Dupont, F.; Desmedt, C.; Larsimont, D.; Park, M.; Rothé, F.; et al. Unraveling Triple-Negative Breast Cancer Tumor Microenvironment Heterogeneity: Towards an Optimized Treatment Approach. JNCI J. Natl. Cancer Inst. 2020, 112, 708–719. [Google Scholar] [CrossRef]
- Gennari, A.; André, F.; Barrios, C.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.; et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; André, F.; Bachelot, T.; Barrios, C.; Bergh, J.; Burstein, H.; Cardoso, M.; Carey, L.; Dawood, S.; Del Mastro, L.; et al. Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2024, 35, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.S.; Delord, J.-P.; Im, S.-A.; Ott, P.A.; Piha-Paul, S.A.; Bedard, P.L.; Sachdev, J.; Le Tourneau, C.; van Brummelen, E.M.; Varga, A.; et al. Safety and Antitumor Activity of Pembrolizumab in Patients with Estrogen Receptor–Positive/Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer. Clin. Cancer Res. 2018, 24, 2804–2811. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Barroso-Sousa, R.; Keenan, T.; Li, T.; Trippa, L.; Vaz-Luis, I.; Wulf, G.; Spring, L.; Sinclair, N.F.; Andrews, C.; et al. Effect of Eribulin with or without Pembrolizumab on Progression-Free Survival for Patients with Hormone Receptor-Positive, ERBB2-Negative Metastatic Breast Cancer: A Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1598–1605. [Google Scholar] [CrossRef]
- Nunes Filho, P.; Albuquerque, C.; Pilon Capella, M.; Debiasi, M. Immune Checkpoint Inhibitors in Breast Cancer: A Narrative Review. Oncol. Ther. 2024, 11, 171–183. [Google Scholar] [CrossRef]
- Butterfield, L.H.; Najjar, Y.G. Immunotherapy combination approaches: Mechanisms, biomarkers and clinical observations. Nat. Rev. Immunol. 2023, 24, 399–416. [Google Scholar] [CrossRef]
- Emens, L.A.; Middleton, G. The Interplay of Immunotherapy and Chemotherapy: Harnessing Potential Synergies. Cancer Immunol. Res. 2015, 3, 436–443. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sonnenblick, A.; Im, S.-A.; Lee, K.; Tan, A.; Telli, M.; Shachar, S.S.; Tchaleu, F.B.; Cha, E.; DuPree, K.; Nikanjam, M.; et al. 267P Phase Ib/II open-label, randomized evaluation of second- or third-line (2L/3L) atezolizumab (atezo) + entinostat (entino) in MORPHEUS-HR+ breast cancer (M-HR+BC). Ann. Oncol. 2021, 32, S479. [Google Scholar] [CrossRef]
- Mayer, E.L.; Ren, Y.; Wagle, N.; Mahtani, R.; Ma, C.; DeMichele, A.; Cristofanilli, M.; Meisel, J.; Miller, K.D.; Jolly, T.; et al. Abstract GS3-06: GS3-06 Palbociclib After CDK4/6i and Endocrine Therapy (PACE): A Randomized Phase II Study of Fulvestrant, Palbociclib, and Avelumab for Endocrine Pre-treated ER+/HER2- Metastatic Breast Cancer. Cancer Res. 2023, 83, GS3-06. [Google Scholar] [CrossRef]
- Yap, T.A.; Bardia, A.; Dvorkin, M.; Galsky, M.D.; Beck, J.T.; Wise, D.R.; Karyakin, O.; Rubovszky, G.; Kislov, N.; Rohrberg, K.; et al. Avelumab Plus Talazoparib in Patients with Advanced Solid Tumors: The JAVELIN PARP Medley Nonrandomized Controlled Trial. JAMA Oncol. 2023, 9, 40–50. [Google Scholar] [CrossRef]
- Moon, Y.W.; Kim, E.; Kim, M.H.; Kim, G.M.; Kim, S.-G.; Chae, Y.; Lee, J.; Jeong, J.H.; Lee, K.-H.; Kim, H.J.; et al. Abstract P1-19-03: Phase II trial of durvalumab and tremelimumab in the hormone receptor-positive metastatic breast cancer with high tumor mutational burden selected by whole exome sequencing: Korean cancer study group trial (KCSG BR17-04). Cancer Res. 2022, 82, P1-19-03. [Google Scholar] [CrossRef]
- Kyte, J.A.; Andresen, N.K.; Russnes, H.G.; Fretland, S.; Falk, R.S.; Lingjærde, O.C.; Naume, B. ICON: A randomized phase IIb study evaluating immunogenic chemotherapy combined with ipilimumab and nivolumab in patients with metastatic hormone receptor positive breast cancer. J. Transl. Med. 2020, 18, 269. [Google Scholar] [CrossRef]
- Kim, S.H.; Im, S.-A.; Suh, K.J.; Lee, K.-H.; Kim, M.H.; Sohn, J.; Park, Y.H.; Kim, J.-Y.; Jeong, J.H.; Lee, K.E.; et al. Clinical activity of nivolumab in combination with eribulin in HER2-negative metastatic breast cancer: A phase IB/II study (KCSG BR18-16). Eur. J. Cancer 2023, 195, 113386. [Google Scholar] [CrossRef]
- Takada, M.; Yoshimura, M.; Kotake, T.; Kawaguchi, K.; Uozumi, R.; Kataoka, M.; Kato, H.; Yoshibayashi, H.; Suwa, H.; Tsuji, W.; et al. Phase Ib/II study of nivolumab combined with palliative radiation therapy for bone metastasis in patients with HER2-negative metastatic breast cancer. Sci. Rep. 2022, 12, 22397. [Google Scholar] [CrossRef] [PubMed]
- Masuda, J.; Sakai, H.; Tsurutani, J.; Tanabe, Y.; Masuda, N.; Iwasa, T.; Takahashi, M.; Futamura, M.; Matsumoto, K.; Aogi, K.; et al. Efficacy, safety, and biomarker analysis of nivolumab in combination with abemaciclib plus endocrine therapy in patients with HR-positive HER2-negative metastatic breast cancer: A phase II study (WJOG11418B NEWFLAME trial). J. Immunother. Cancer 2023, 11, e007126. [Google Scholar] [CrossRef]
- Ozaki, Y.; Tsurutani, J.; Mukohara, T.; Iwasa, T.; Takahashi, M.; Tanabe, Y.; Kawabata, H.; Masuda, N.; Futamura, M.; Minami, H.; et al. Safety and efficacy of nivolumab plus bevacizumab, paclitaxel for HER2-negative metastatic breast cancer: Primary results and biomarker data from a phase 2 trial (WJOG9917B). Eur. J. Cancer 2022, 171, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.N.; Flaum, L.; Helenowski, I.; A Santa-Maria, C.; Jain, S.; Rademaker, A.; Nelson, V.; Tsarwhas, D.; Cristofanilli, M.; Gradishar, W. Phase II study of pembrolizumab and capecitabine for triple negative and hormone receptor-positive, HER2-negative endocrine-refractory metastatic breast cancer. J. Immunother. Cancer 2020, 8, e000173. [Google Scholar] [CrossRef]
- Pérez-García, J.M.; Llombart-Cussac, A.; Gion, M.; Curigliano, G.; López-Miranda, E.; Alonso, J.L.; Bermejo, B.; Calvo, L.; Carañana, V.; Sánchez, S.D.l.C.; et al. Pembrolizumab plus eribulin in hormone-receptor–positive, HER2-negative, locally recurrent or metastatic breast cancer (KELLY): An open-label, multicentre, single-arm, phase Ⅱ trial. Eur. J. Cancer 2021, 148, 382–394. [Google Scholar] [CrossRef]
- Barroso-Sousa, R.; Krop, I.E.; Trippa, L.; Tan-Wasielewski, Z.; Li, T.; Osmani, W.; Andrews, C.; Dillon, D.; Richardson, E.T.; Pastorello, R.G.; et al. A Phase II Study of Pembrolizumab in Combination With Palliative Radiotherapy for Hormone Receptor-positive Metastatic Breast Cancer. Clin. Breast Cancer 2020, 20, 238–245. [Google Scholar] [CrossRef]
- Yuan, Y.; Lee, J.S.; Yost, S.E.; Frankel, P.H.; Ruel, C.; Egelston, C.A.; Guo, W.; Padam, S.; Tang, A.; Martinez, N.; et al. Phase I/II trial of palbociclib, pembrolizumab and letrozole in patients with hormone receptor-positive metastatic breast cancer. Eur. J. Cancer 2021, 154, 11–20. [Google Scholar] [PubMed]
- Cortesi, L.; Venturelli, M.; Cortesi, G.; Caggia, F.; Toss, A.; Barbieri, E.; De Giorgi, U.; Guarneri, V.; Musolino, A.; De Matteis, E.; et al. A phase II study of pembrolizumab plus carboplatin in BRCA-related metastatic breast cancer (PEMBRACA). ESMO Open 2023, 8, 101207. [Google Scholar] [CrossRef] [PubMed]
- Novik, Y.; Klar, N.; Zamora, S.; Kwa, M.; Speyer, J.; Oratz, R.; Muggia, F.; Meyers, M.; Hochman, T.; Goldberg, J.; et al. 129P Phase II study of pembrolizumab and nab-paclitaxel in HER2-negative metastatic breast cancer: Hormone receptor-positive cohort. Ann. Oncol. 2020, 31, S59. [Google Scholar] [CrossRef]
- Prat, A.; Pascual, T.; Muñoz, M.; Hernando, C.; Vazquez, S.; Blanch, S.; Alva, M.; Oliveira, M.; Sanfeliu, E.; Villanueva, L.; et al. Abstract P3-06-02: TATEN TRIAL (SOLTI-1716) Targeting non-Luminal disease by PAM50 with pembrolizumab + paclitaxel in Hormone Receptor-positive/HER2-negative (HR+/HER2-) metastatic breast cancer (MBC): Interim analysis. Cancer Res. 2023, 83, P3-06-02. [Google Scholar]
- Chen, I.-C.; Lin, C.-H.; Chang, D.-Y.; Chen, T.W.-W.; Wang, M.-Y.; Ma, W.-L.; Lin, Y.-T.; Huang, S.-M.; Lu, Y.-S. Abstract CT141: Combination of hormone therapy, GnRH agonist, and immunotherapy enhance immune activation in premenopausal ER+/HER2- metastatic breast cancer patients: Results of biomarker analysis from a pilot phase II study. Cancer Res. 2023, 83, CT141. [Google Scholar] [CrossRef]
- Pascual, T.; Vidal, M.; Cejalvo, J.M.; Vega, E.; Sanfeliu, E.; Ganau, S.; Julve, A.; Zamora, E.; Miranda, I.; Delgado, A.; et al. Abstract PD11-04: PD11-04 Primary results of SOLTI-1503 PROMETEO phase 2 trial of Combination of Talimogene Laherparepvec (T-VEC) with Atezolizumab in patients with residual breast cancer after standard neoadjuvant multi-agent chemotherapy. Cancer Res. 2023, 83, PD11-04. [Google Scholar]
- Pusztai, L.; Yau, C.; Wolf, D.M.; Han, H.S.; Du, L.; Wallace, A.M.; String-Reasor, E.; Boughey, J.C.; Chien, A.J.; Elias, A.D.; et al. Durvalumab with olaparib and paclitaxel for high-risk HER2-negative stage II/III breast cancer: Results from the adaptively randomized I-SPY2 trial. Cancer Cell 2021, 39, 989–998.e5. [Google Scholar] [CrossRef]
- Nanda, R.; Liu, M.C.; Yau, C.; Shatsky, R.; Pusztai, L.; Wallace, A.; Chien, A.J.; Forero-Torres, A.; Ellis, E.; Han, H.; et al. Effect of Pembrolizumab Plus Neoadjuvant Chemotherapy on Pathologic Complete Response in Women with Early-Stage Breast Cancer: An Analysis of the Ongoing Phase 2 Adaptively Randomized I-SPY2 Trial. JAMA Oncol. 2020, 6, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Devaux, A.; Beniuga, G.; Quaghebeur, C.; Henry, S.; Van Bockstal, M.; Galant, C.; Delrée, P.; Canon, J.-L.; Honhon, B.; Korman, D.; et al. Abstract P4-07-16: B-IMMUNE final analysis: A phase Ib/II study of durvalumab combined with dose-dense EC in a neoadjuvant setting for patients with locally advanced luminal B HER2(-) or triple negative breast cancers. Cancer Res. 2023, 83, P4-07-16. [Google Scholar] [CrossRef]
- Dieci, M.V.; Guarneri, V.; Tosi, A.; Bisagni, G.; Musolino, A.; Spazzapan, S.; Moretti, G.; Vernaci, G.M.; Griguolo, G.; Giarratano, T.; et al. Neoadjuvant Chemotherapy and Immunotherapy in Luminal B-like Breast Cancer: Results of the Phase II GIADA Trial. Clin. Cancer Res. 2022, 28, 308–317. [Google Scholar] [CrossRef]
- Jerusalem, G.; Prat, A.; Salgado, R.; Reinisch, M.; Saura, C.; Ruiz-Borrego, M.; Nikolinakos, P.; Ades, F.; Filian, J.; Huang, N.; et al. Neoadjuvant nivolumab + palbociclib + anastrozole for oestrogen receptor-positive/human epidermal growth factor receptor 2-negative primary breast cancer: Results from CheckMate 7A8. Breast 2023, 72, 103580. [Google Scholar] [CrossRef]
- Loi, S.; Curigliano, G.; Salgado, R.; Diaz, R.R.; Delaloge, S.; Rojas, C.; Kok, M.; Manich, C.S.; Harbeck, N.; Mittendorf, E.; et al. LBA20 A randomized, double-blind trial of nivolumab (NIVO) vs. placebo (PBO) with neoadjuvant chemotherapy (NACT) followed by adjuvant endocrine therapy (ET) ± NIVO in patients (pts) with high-risk, ER+ HER2− primary breast cancer (BC). Ann. Oncol. 2023, 34, S1259–S1260. [Google Scholar] [CrossRef]
- Cardoso, F.; McArthur, H.; Schmid, P.; Cortés, J.; Harbeck, N.; Telli, M.; Cescon, D.; O’SHaughnessy, J.; Fasching, P.; Shao, Z.; et al. LBA21 KEYNOTE-756: Phase III study of neoadjuvant pembrolizumab (pembro) or placebo (pbo) + chemotherapy (chemo), followed by adjuvant pembro or pbo + endocrine therapy (ET) for early-stage high-risk ER+/HER2– breast cancer. Ann. Oncol. 2023, 34, S1260–S1261. [Google Scholar] [CrossRef]
- Andresen, N.K.; Røssevold, A.H.; Quaghebeur, C.; Gilje, B.; Boge, B.; Gombos, A.; Falk, R.S.; Mathiesen, R.R.; Julsrud, L.; Garred, Ø.; et al. Ipilimumab and nivolumab combined with anthracycline-based chemotherapy in metastatic hormone receptor-positive breast cancer: A randomized phase 2b trial. J. Immunother. Cancer 2024, 12, e007990. [Google Scholar] [CrossRef]
- Emens, L.A.; Loi, S. Immunotherapy Approaches for Breast Cancer Patients in 2023. Cold Spring Harb. Perspect. Med. 2023, 13, a041332. [Google Scholar] [CrossRef]
- Goel, S.; DeCristo, M.J.; Watt, A.C.; BrinJones, H.; Sceneay, J.; Li, B.B.; Khan, N.; Ubellacker, J.M.; Xie, S.; Metzger-Filho, O.; et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017, 548, 471–475. [Google Scholar] [CrossRef]
- Lassen, U. Combining PARP inhibition with PD-1 inhibitors. Lancet Oncol. 2019, 20, 1196–1198. [Google Scholar] [CrossRef]
- Callari, M.; Barreca, M.; Dugo, M.; Galbardi, B.; Viganò, L.; Locatelli, A.; Licata, L.; Viale, G.; Valagussa, P.; Viale, G.; et al. Abstract PD10-09: Comparison of early modulation of biological pathways and immune microenvironment by anthracyclines- or taxane-based treatment. Cancer Res. 2022, 82, PD10-09. [Google Scholar] [CrossRef]
- Voorwerk, L.; Slagter, M.; Horlings, H.M.; Sikorska, K.; van de Vijver, K.K.; de Maaker, M.; Nederlof, I.; Kluin, R.J.C.; Warren, S.; Ong, S.; et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: The TONIC trial. Nat. Med. 2019, 25, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Spring, L.M.; Fell, G.; Arfe, A.; Sharma, C.; Greenup, R.; Reynolds, K.L.; Smith, B.L.; Alexander, B.; Moy, B.; Isakoff, S.J.; et al. Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis. Clin. Cancer Res. 2020, 26, 2838–2848. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rugo, H.S.; Kabos, P.; Beck, J.T.; Jerusalem, G.; Wildiers, H.; Sevillano, E.; Paz-Ares, L.; Chisamore, M.J.; Chapman, S.C.; Hossain, A.M.; et al. Abemaciclib in combination with pembrolizumab for HR+, HER2− metastatic breast cancer: Phase 1b study. npj Breast Cancer 2022, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Penson, R.; Drew, Y.; de Jonge, M.; Hong, S.-H.; Park, Y.; Wolfer, A.; Brown, J.; Ferguson, M.; Gore, M.; Alvarez, R.; et al. MEDIOLA: A phase I/II trial of olaparib (PARP inhibitor) in combination with durvalumab (anti-PD-L1 antibody) in pts with advanced solid tumours—New ovarian cancer cohorts. Ann. Oncol. 2018, 29, viii147. [Google Scholar] [CrossRef]
- Konstantinopoulos, P.A.; Waggoner, S.E.; Vidal, G.A.; Mita, M.M.; Fleming, G.F.; Holloway, R.W.; Van Le, L.; Sachdev, J.C.; Chapman-Davis, E.; Colon-Otero, G.; et al. TOPACIO/Keynote-162 (NCT02657889): A phase 1/2 study of niraparib + pembrolizumab in patients (pts) with advanced triple-negative breast cancer or recurrent ovarian cancer (ROC)—Results from ROC cohort. J. Clin. Oncol. 2018, 36, 106. [Google Scholar] [CrossRef]
- Harter, P.; Bidziński, M.; Colombo, N.; Floquet, A.; Pérez, M.J.R.; Kim, J.-W.; Lheureux, S.; Marth, C.; Nyvang, G.-B.; Okamoto, A.; et al. DUO-O: A randomized phase III trial of durvalumab (durva) in combination with chemotherapy and bevacizumab (bev), followed by maintenance durva, bev and olaparib (olap), in newly diagnosed advanced ovarian cancer patients. J. Clin. Oncol. 2019, 37, TPS5598. [Google Scholar] [CrossRef]
- Nucera, S.; Conti, C.; Martorana, F.; Wilson, B.; Genta, S. Antibody-Drug Conjugates to Promote Immune Surveillance: Lessons Learned from Breast Cancer. Biomedicines 2024, 12, 1491. [Google Scholar] [CrossRef]
- Pinto, A.; Guarini, C.; Giampaglia, M.; Sanna, V.; Melaccio, A.; Lanotte, L.; Santoro, A.N.; Pini, F.; Cusmai, A.; Giuliani, F.; et al. Synergizing Immunotherapy and Antibody–Drug Conjugates: New Horizons in Breast Cancer Therapy. Pharmaceutics 2024, 16, 1146. [Google Scholar] [CrossRef]
- Cetinbas, N.M.; Monnell, T.; Soomer-James, J.; Shaw, P.; Lancaster, K.; Catcott, K.C.; Dolan, M.; Mosher, R.; Routhier, C.; Chin, C.-N.; et al. Tumor cell-directed STING agonist antibody-drug conjugates induce type III interferons and anti-tumor innate immune responses. Nat. Commun. 2024, 15, 5842. [Google Scholar] [CrossRef]
- Lv, Y.; Cui, X.; Li, T.; Liu, C.; Wang, A.; Wang, T.; Zhou, X.; Li, R.; Zhang, F.; Hu, Y.; et al. Mechanism of action and future perspectives of ADCs in combination with immune checkpoint inhibitors for solid tumors. Clin. Exp. Med. 2025, 25, 139. [Google Scholar] [CrossRef]
- Garrido-Castro, A.C.; Kim, S.E.; Desrosiers, J.; Nanda, R.; Carey, L.A.; Clark, A.S.; Sacks, R.L.; O’COnnor, T.P.; Sinclair, N.F.; Lo, K.S.; et al. SACI-IO HR+: A randomized phase II trial of sacituzumab govitecan with or without pembrolizumab in patients with metastatic hormone receptor-positive/HER2-negative breast cancer. J. Clin. Oncol. 2024, 42, LBA1004. [Google Scholar] [CrossRef]
- Andre, F.; Hamilton, E.P.; Loi, S.; Im, S.-A.; Sohn, J.; Tseng, L.-M.; Anders, C.K.; Schmid, P.; Boston, S.; Darilay, A.; et al. Dose-finding and -expansion studies of trastuzumab deruxtecan in combination with other anti-cancer agents in patients (pts) with advanced/metastatic HER2+ (DESTINY-Breast07 [DB-07]) and HER2-low (DESTINY-Breast08 [DB-08]) breast cancer (BC). J. Clin. Oncol. 2022, 40, 3025. [Google Scholar] [CrossRef]
- McArthur, H.L.; Tolaney, S.M.; Dent, R.; Schmid, P.; Asselah, J.; Liu, Q.; Meisel, J.L.; Niikura, N.; Park, Y.H.; Werutsky, G.; et al. TROPION-Breast04: A randomized phase III study of neoadjuvant datopotamab deruxtecan (Dato-DXd) plus durvalumab followed by adjuvant durvalumab versus standard of care in patients with treatment-naïve early-stage triple negative or HR-low/HER2− breast cancer. Ther. Adv. Med Oncol. 2025, 17. [Google Scholar] [CrossRef]
- Wildiers, H.; Armstrong, A.; Cuypere, E.; Dalenc, F.; Dirix, L.; Chan, S.; Marme, F.; Schröder, C.P.; Huober, J.; Duhoux, F.P.; et al. Paclitaxel plus Eftilagimod Alpha, a Soluble LAG-3 Protein, in Metastatic, HR+ Breast Cancer: Results from AIPAC, a Randomized, Placebo Controlled Phase IIb Trial. Clin. Cancer Res. 2024, 30, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Escrivá-De-Romani, S.; Cejalvo, J.M.; Alba, E.; Friedmann, J.; Rodríguez-Lescure, Á.; Savard, M.-F.; Pezo, R.C.; Gion, M.; Ruiz-Borrego, M.; Hamilton, E.; et al. Zanidatamab plus palbociclib and fulvestrant in previously treated patients with hormone receptor-positive, HER2-positive metastatic breast cancer: Primary results from a two-part, multicentre, single-arm, phase 2a study. Lancet Oncol. 2025, 26, 745–758. [Google Scholar] [CrossRef]
- Parvez, A.; Choudhary, F.; Mudgal, P.; Khan, R.; Qureshi, K.A.; Farooqi, H.; Aspatwar, A. PD-1 and PD-L1: Architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Front. Immunol. 2023, 14, 1296341. [Google Scholar] [CrossRef]
- Chan, T.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol. 2019, 30, 44–56. [Google Scholar] [CrossRef]
- Loi, S.; Salgado, R.; Curigliano, G.; Díaz, R.I.R.; Delaloge, S.; García, C.I.R.; Kok, M.; Saura, C.; Harbeck, N.; Mittendorf, E.A.; et al. Neoadjuvant nivolumab and chemotherapy in early estrogen receptor-positive breast cancer: A randomized phase 3 trial. Nat. Med. 2025, 31, 433–441. [Google Scholar] [CrossRef]
- Cardoso, F.; O’sHaughnessy, J.; Liu, Z.; McArthur, H.; Schmid, P.; Cortes, J.; Harbeck, N.; Telli, M.L.; Cescon, D.W.; Fasching, P.A.; et al. Pembrolizumab and chemotherapy in high-risk, early-stage, ER+/HER2− breast cancer: A randomized phase 3 trial. Nat. Med. 2025, 31, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ramineni, M.; Li, X. Estrogen receptor-low positive breast cancer: Historical perspective and recent advancements. Hum. Pathol. 2025, 162, 105820. [Google Scholar] [CrossRef] [PubMed]
- Massa, D.; Vernieri, C.; Nicolè, L.; Criscitiello, C.; Boissière-Michot, F.; Guiu, S.; Bobrie, A.; Griguolo, G.; Miglietta, F.; Vingiani, A.; et al. Immune and gene-expression profiling in estrogen receptor low and negative early breast cancer. JNCI J. Natl. Cancer Inst. 2024, 116, 1914–1927. [Google Scholar] [CrossRef] [PubMed]
- Denkert, C.; Von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018, 19, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Ciarka, A.; Piątek, M.; Pęksa, R.; Kunc, M.; Senkus, E. Tumor-Infiltrating Lymphocytes (TILs) in Breast Cancer: Prognostic and Predictive Significance across Molecular Subtypes. Biomedicines 2024, 12, 763. [Google Scholar] [CrossRef]
- Sun, T.; Wang, T.; Li, X.; Wang, H.; Mao, Y. Tumor-infiltrating lymphocytes provides recent survival information for early-stage HER2-low-positive breast cancer: A large cohort retrospective study. Front. Oncol. 2023, 13, 1148228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.; Zhang, Y.; Zhang, P.; Xue, S.; Chen, Y.; Sun, L.; Yang, R. Predictive and prognostic values of tumor infiltrating lymphocytes in breast cancers treated with neoadjuvant chemotherapy: A meta-analysis. Breast 2022, 66, 97–109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Finkelman, B.S.; Zhang, H.; Hicks, D.G.; Rimm, D.L.; Turner, B.M. Tumor infiltrating lymphocytes in breast cancer: A narrative review with focus on analytic validity, clinical validity, and clinical utility. Hum. Pathol. 2025, 162, 105866. [Google Scholar] [CrossRef] [PubMed]
- Parakh, S.; Musafer, A.; Paessler, S.; Witkowski, T.; Suen, C.S.N.L.W.; Tutuka, C.S.A.; Carlino, M.S.; Menzies, A.M.; Scolyer, R.A.; Cebon, J.; et al. PDCD1 Polymorphisms May Predict Response to Anti-PD-1 Blockade in Patients With Metastatic Melanoma. Front. Immunol. 2021, 12, 672521. [Google Scholar] [CrossRef]
- Gong, Q.; Qie, H.; Dong, S.; Jiang, H. Implication of PD-L1 polymorphisms rs2297136 on clinical outcomes of patients with advanced NSCLC who received PD-1 blockades: A retrospective exploratory study. Oncol. Lett. 2024, 27, 144. [Google Scholar] [CrossRef] [PubMed]
Study ID/Name | ICIs | Phase | Primary Endpoint | Study Design | Interventions (No. of pts) | Efficacy Outcomes | TRAEs G ≥ 3 (%) | Biomarkers |
---|---|---|---|---|---|---|---|---|
NCT03280563/ MORPHEUS-HR+ Breast Cancer [12] Sonnenblick A et al. | Atezolizumab | Ib/II | ORR | Open-label, randomized (1:1) | Atezolizumab + entinostat (n = 15) vs. fulvestrant (n = 14) | ORR 6.7% (95% CI 0.17–31.95%) vs. 0% (95% CI 0–23.16) mPFS 1.8 m (95% CI 1.5–3.6%) vs. 1.8 m (95% CI 1.5–2.7%) | 40% vs. 21.4% | PD-L1 |
NCT03147287/ PACE [13] Mayer EL et al. | Avelumab | II | PFS | Open-label, randomized (1:2:1) | Fulvestrant + palbociclib + avelumab (F + P + A) (n = 54) vs. fulvestrant + palbociclib (F + P) (n = 111) vs. fulvestrant (F) (n = 55) | mPFS (F + P+A) 8.1 m (HR = 0.75 vs. F, 90% CI 0.50–1.12; p = 0.23) mPFS (F + P) 4.6 m (HR = 1.11, 90% CI 0.79–1.55; p = 0.62) vs. (F) 4.8 m ORR (F + P+A) 13% (90% CI 5.4–20.5%) vs. (F + P) 9% (90% CI 4.5-13.5%) vs. (F) 7% (90% CI 1.5–13.0) | No new safety signal | NA |
NCT03330405/ JAVELIN PARP Medley [14] Yap TA et al. | Avelumab | Ib/II | ORR | Single-arm | Talazoparib + avelumab (n = 23) | ORR 34.8% (95% CI 16.4–57.3%) ORR (PD-L1+) 66.7% (95% CI 9.4, 99.2%) ORR (PD-L1-) 25.0% (95% CI 7.3–52.4%) | 57% | PD-L1 bDDR tDDR, gDDR TMB bTMB CD8 |
NCT03608865/ KCSG BR17-04 [15] Moon YW et al. | Durvalumab, Tremelimumab | II | ORR, CBR | Single-arm | Durvalumab + tremelimumab (n = 30) | ORR 6.3% CBR (20%) | NA | TMB. TILs PD-L1 |
NCT03409198/ ICON [16] Kyte JA et al. | Nivolumab, Ipilimumab | IIb | Safety, PFS | Open-label, randomized (2:3) | PLD + cyclophosphamide + nivolumab + ipilimumab (n = 49) Vs PLD + cyclophosphamide (n = 33) cross-over to Nivo + Ipi at PD in control arm (n = 16) | mPFS 5.1 m (95% CI 3.4 to 6.5) vs. 3.6 m (95% CI 1.8 to 9.0) HR 0.94 (95% CI 0.59 to 1.51) ORR 55% (E) vs. 48% (C) vs. 19% (cross-over arm) | 63% (E) vs. 39% (C) vs. 31% (Ipi + Nivo cross-over) | PD-L1 TMB PBMCs Treg gene expression signature |
NCT04061863/ KORNELIA [17] Kim SH et al. | Nivolumab | Ib/II | 6-month PFS rate | Single-arm | Eribulin + nivolumab (n = 45) | mOS 17.9 m (95% CI: 15.1–NR) mPFS 5.6 m (95% CI, 5.3–7.4) ORR 53.3% (95% CI 37.9–68.3) | 65.6% | NA |
NCT03430479 [18] Takada M et al. | Nivolumab | Ib/II | ORR of unirradiated lesions | Single-arm | RT + nivolumab (n = 28, HR+ = 18) | ORR 11% (90% CI 4–29%) mPFS 4.1 m (95% CI 2.1–6.1) | 0% | PD-L1 |
UMIN000036970/NEWFLAME [19] Masuda J et al. | Nivolumab | II | ORR | Single-arm | Abemaciclib + letrozole/fulvestrant + nivolumab (n = 17) | ORR (FUL) 54.5% (95% CI, 28.0–78.7) ORR (LET) 40% (95% CI, 11.7 to 76.9) | 100% (LET) 91.6% (FUL) | PD-L1 |
UMIN000030242/NEWBEAT [20] Ozaki Y et al. | Nivolumab | II | ORR | Single-arm | Paclitaxel + bevacizumab + nivolumab (n = 39) | mPFS 16.1 m ORR 74% | 53% G3 5% G4. | PD-L1 Serum VEGF-A concentrations |
NCT03044730 [21] Shah AN et al. | Pembrolizumab | II | PFS | Single-arm, compared with historical control | Capecitabine + pembrolizumab (n = 14 HR+) | mPFS 5.1 m (95% CI, 2.0–11.0) vs. 3 m | NA | PD-L1 TIL score |
NCT03222856/KELLY [22] Pérez-García JM et al. | Pembrolizumab | II | CBR lasting for ≥24 weeks | Single-arm | Eribulin + pembrolizumab (n = 44) | CBR 56.8 (95% CI, 41.0–71.7) ORR 40.9% (95% CI, 26.3–56.8) mPFS 6 m (95% CI, 3.7–8.4) | 56.8% G3 15.9% G4 | PD-L1 |
NCT03051672 [23] Barroso-Sousa R et al. | Pembrolizumab | II | ORR outside the field of radiation | Single-arm | RT + pembrolizumab (n = 8) | ORR: 0%. mOS 2.9 m (95% CI, 0.9–3.6) mPFS 1.4 m (95% CI, 0.4–2.1) | NA | PD-L1 TILs TMB |
NCT02778685 [24] Yuan Y et al. | Pembrolizumab | I/II | ORR | Single-arm | Palbociclib + letrozole + pembrolizumab (n = 20) | ORR: 55% (CR 25% PR 30%) mOS 36.9 months (95% CI, 36.9-NR) mPFS 25.2 months (95% CI, 5.3-NR) | 87% G3 30% G4 | PD-L1 TILs TMB PBMCs |
NCT03732391/PEMBRACA * [25] Cortesi L et al. | Pembrolizumab | II | ORR | Single-arm | Carboplatin + pembrolizumab (n = 16) | ORR 47% | 22.7% | NA |
NCT03051659 [7] Tolaney SM et al. | Pembrolizumab | II | PFS | Open-label, randomized (1:1) | Eribulin + pembrolizumab (n = 44) vs. eribulin (n = 44) | mPFS 4.1 m (95% CI, 3.5–6.2) vs. 4.2 m (95% CI, 3.7–6.1) mOS 13.4 m (95% CI, 10.4-NA) vs. 12.5 m (95% CI, 8.6-NA) ORR 27% (95% CI, 14.9–42.8%) vs. 34% (95% CI, 20.5–49.9%) | 68% (E) vs. 61% (C) | PD-L1 TILs TMB NLR genomic alterations |
NCT02752685 [26] Novik Y et al. | Pembrolizumab | II | Best overall response rate | Single-arm | Nab-paclitaxel+ pembrolizumab (n = 20) | ORR: 25% (PR 25%) mOS 15.7 m mPFS 5.6 m | 70% | NA |
NCT04251169/TATEN Trial (SOLTI1716) [27] Prat A et al. | Pembrolizumab | II | ORR | Single-arm | Pembrolizumab + paclitaxel (n = 25) | ORR 53.3% (95% CI 26.6–78.7%) mPFS 7.5 m (95% CI: 5.6–10.2) | 53.5% | PD-L1 (IHC) TILs PAM50 |
NCT02990845 [28] Chen I-C et al. | Pembrolizumab | II | 8-month PFS rate | Single-arm | Pembrolizumab + GnRH-agonist + exemestane (n = 15) | 8 m-PFS rate 64.3% mPFS 10.34 m ORR 35.7% mOS 39.56 m | NA | TILs PD-L1 (IHC) TMB RNAseq IO360 analysis |
Study ID/Name | Drug | Phase | Primary Endpoint | Study Design | Interventions (No. of pts) | Efficacy Outcomes | TRAEs G ≥ 3 | Biomarkers |
---|---|---|---|---|---|---|---|---|
NCT03802604/ SOLTI-1503 PROMETEO [29] Pascual T et al. | Atezolizumab | II | RCB-0/I-rate | Single-arm | T-VEC + atezolizumab (n = 20) | RCB-0/1 rate 25% (95% CI 10.7–44.9%) pCR rate 30% | 3.5% | Gene expression TILs PD-L1 TMB |
NCT01042379/ I-SPY2 [30,31] Pusztai L et al. Nanda R et al. | Durvalumab | II/III | pCR-rate | Platform trial, non-randomized | Durvalumab + olaparib + paclitaxel → AC (HER2− n = 52) vs. paclitaxel → AC (HER2− n = 157) | pCR 28% (95% CI 18–38%) vs. 14% (95% CI 9–19%) | 56% (E) vs. 34% (C) | PD-1 PD-L1 T-cell signature B-cell signature Dendritic-cell signature Mast-cell signature CD68 TIS signature STAT1 signature TAMsurr_TcClassII ratio signature PARPi7 signature Mitotic signatures ESR1_PGR average. |
Pembrolizumab | Open-label, adaptive platform trial | Pembrolizumab paclitaxel → AC (n = 40) vs. paclitaxel → AC (n = 92) | pCR rate 30% (95% CI 17–43%) vs. 13% % (95% CI 7–19%) | 42% (E) vs. 18% (C) | NA | |||
NCT03356860/ B-IMMUNE [32] Devaux A | Durvalumab | Ib/II | pCR | Single-arm, compared with historical control | Paclitaxel → durvalumab + ddEC (n = 24) | pCR rate: 20% | 14.6% | PD-L1 TILs |
NCT04659551/ GIADA [33] Dieci MV | Nivolumab | II | pCR rate | Single-arm | EC + triptorelin → nivolumab + exemestane (n = 43) | pCR rate: 16.3% (95% CI 7.4–34.9) RCB 0-I rate: 25.6% (95% CI, 14.0–41.8) | CT phase: 23.4% Nivolumab phase: 52.9% | TILs Immune-related gene expression signatures Specific immune cell subpopulations PAM50 |
NCT04075604/ CheckMate7A8 [34] Jerusalem G et al. | Nivolumab | Ib/II | pCR rate | Single-arm | Nivolumab + palbociclib + anastrozole (n = 21) | pCR rate 9.5% ORR 71.4% | 81% | NA |
NCT04109066/ Checkmate 7FL [35] Loi S et al. | Nivolumab | III | pCR rate | Randomized (1:1), placebo-controlled | Nivolumab + paclitaxel → A/EC or ddA/EC → adjuvant nivolumab plus endocrine therapy (n = 263) vs. placebo + paclitaxel → A/EC or ddA/EC (n = 258) | pCR rate: 24.5% (95% CI 19.4–30.2) vs. 13.8% (95% CI 9.8–18.7) AD: 10.5% (OR 2.05; 95% CI 1.29–3.27; p = 0.0021) RCB 0-I rate: 30.7% (95% CI 25.2–36.8) vs. 21.4% (95% CI 16.5–26.9) | 35% (E) vs. 32% (C) | PD-L1 |
NCT03725059/ KEYNOTE-756 [36] Cardoso F et al. | Pembrolizumab | III | pCR, EFS | Randomized (1:1), placebo-controlled | Pembrolizumab + paclitaxel → A/EC or ddA/EC → pembrolizumab post-surgery + endocrine therapy (n = 635) vs. placebo + paclitaxel → A/EC or ddA/EC (n = 643) | pCR rate: 24.3% vs. 15.6% | 52.5% (E) vs. 46.4% (C) | PD-L1 TILs |
Trial ID/Name | Phase | Estimated Enrollment | Estimated End Date | Study Design | Population | ICI | Combination Agent(s) | Primary Endpoint(s) |
---|---|---|---|---|---|---|---|---|
Advanced setting | ||||||||
NCT05187338 | I/II | 100 | October 2024 | Single group assignment, open-label | Advanced solid tumors | Ipilimumab | Pembrolizumab + durvalumab | Safety PFS DCR DOR |
NCT03650894 | II | 138 | April 2026 | Single group assignment, open-label | HER2− LA unresectable mBC (for TNBC, AR+ was required) | Ipilimumab | Nivolumab, bicalutamide | Best ORR PFS 2y-OS rate |
NCT05620134 | I/II | 149 | February 2026 | Non-randomized open-label | Advanced solid tumors | JK08 ** | NA | DLT Dose finding Safety and tolerability |
NCT04683679 | II | 56 | January 2025 | Non-randomized, open-label | Advanced HER2− BC | Pembrolizumab | Olaparib + radiation | ORR |
NCT06312176 | III | 1200 | April 2031 | Randomized, open-label | Unresectable LA or HR+/HER2− mBC | Pembrolizumab | Sacituzumab–tirumotecan | PFS |
NCT04448886 | II | 110 | June 2027 | Randomized, open-label | Unresectable LA or HR+/HER2− mBC | Pembrolizumab | Sacituzumab–govitecan | PFS |
Early setting | ||||||||
NCT03573648/ImmunoADAPT | II | 33 | December 2025 | Randomized, open-label | Stage II-III HR+/HER2− | Avelumab | Palbociclib Endocrine therapy | CCR |
NCT04243616 | II | 36 | January 2025 | Single group assignment, open-label | Stage II-III HER2− BC with positive PD-L1 and/or PD-L1 protein expression * | Cemiplimab | Paclitaxel, carboplatin, doxorubicin, cyclophosphamide | pCR |
NCT01042379/I-SPY | II | 5000 | December 2031 | Randomized, open-label | Stage II or III, or T4 M0, inflammatory cancer or regional stage IV § BC of any subtype | Cemiplimab | Chemotherapy | pCR for each biomarker signature established at trial entry |
NCT06058377 | III | 3680 | May 2026 | Randomized, open-label | Stage II-III HR+/HER2− BC MP2 | Durvalumab | Paclitaxel Doxorubicin Cyclophosphamide | BC-EFS |
NCT01042379/I-SPY | II | 5000 | December 2031 | Randomized, open-label | Stage II or III, or T4, M0, inflammatory cancer or regional stage IV §, gBRCA1/2 mut, HER2− BC | Durvalumab | Olaparib | pCR for each biomarker signature established at trial entry |
NCT06112379/TROPION-Breast04 | III | 1728 | August 2030 | Randomized open-label | Stage II or III TNBC or HR-low/HER2− BC | Durvalumab | Dato-DXd, adjuvant chemotherapy (if residual disease) | EFS |
NCT03815890/BELLINI | II | 80 | January 2033 | Non-randomized platform study | Resectable stage I-III BC (TN or luminal B) | Nivolumab | Ipilimumab | pCR rate per cohort |
NCT05203445 | II | 23 | January 2026 | Single group assignment, open-label, non-randomized | Stage I-III, HER2− BC with gBRCA1, gBRCA2, gPALB2, gRAD51C, or gRAD51D mut | Pembrolizumab | Olaparib | Pathologically negative MRI-guided biopsy |
NCT02971748 | II | 37 | December 2024 | Single group assignment, open-label | HR+ localized inflammatory BC who did not achieve a pCR | Pembrolizumab | Endocrine therapy, radiation | DFS |
NCT02957968 | II | 47 | February 2025 | Non-randomized, open-label | Stage II-III HER2− BC | Pembrolizumab | Decitabine, followed by cyclophosphamide, paclitaxel, carboplatin | Percentage of increase in tumor and stroma with TILs from baseline pretreatment biopsy to post-immunotherapy biopsy following administration of decitabine followed by pembrolizumab |
NCT04443348 | II | 120 | December 2024 | Randomized, open-label | Stage II-III HER2− BC, for HR+: histologic G2-3 or a high-risk genomic assay score | Pembrolizumab | Radiation therapy boost, paclitaxel, carboplatin, cyclophosphamide, doxorubicin, capecitabine | TILs, CD3+/CD8+ T-cell Breast Immunoscore Rate of pathologic response in the lymph node |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Grazia, G.; Dri, A.; Grieco, A.; Martinelli, C.; Palleschi, M.; Martorana, F.; Barchiesi, G.; Arpino, G.; De Angelis, C.; De Laurentiis, M.; et al. Unlocking the Potential of Immune Checkpoint Inhibitors in HR+/HER2− Breast Cancer: A Systematic Review. Cancers 2025, 17, 2940. https://doi.org/10.3390/cancers17172940
Di Grazia G, Dri A, Grieco A, Martinelli C, Palleschi M, Martorana F, Barchiesi G, Arpino G, De Angelis C, De Laurentiis M, et al. Unlocking the Potential of Immune Checkpoint Inhibitors in HR+/HER2− Breast Cancer: A Systematic Review. Cancers. 2025; 17(17):2940. https://doi.org/10.3390/cancers17172940
Chicago/Turabian StyleDi Grazia, Giuseppe, Arianna Dri, Angela Grieco, Claudia Martinelli, Michela Palleschi, Federica Martorana, Giacomo Barchiesi, Grazia Arpino, Carmine De Angelis, Michelino De Laurentiis, and et al. 2025. "Unlocking the Potential of Immune Checkpoint Inhibitors in HR+/HER2− Breast Cancer: A Systematic Review" Cancers 17, no. 17: 2940. https://doi.org/10.3390/cancers17172940
APA StyleDi Grazia, G., Dri, A., Grieco, A., Martinelli, C., Palleschi, M., Martorana, F., Barchiesi, G., Arpino, G., De Angelis, C., De Laurentiis, M., Del Mastro, L., Puglisi, F., Vigneri, P., & Giuliano, M. (2025). Unlocking the Potential of Immune Checkpoint Inhibitors in HR+/HER2− Breast Cancer: A Systematic Review. Cancers, 17(17), 2940. https://doi.org/10.3390/cancers17172940