Expanding Immunotherapy Beyond CAR T Cells: Engineering Diverse Immune Cells to Target Solid Tumors
Simple Summary
Abstract
1. Introduction
2. Autologous CAR Cell Therapy
3. Allogeneic CAR Cell Therapy: Promise and Challenges
4. In Vivo CAR Gene Therapy: Potential and Challenges
5. Beyond Conventional CAR T Cells: Alternative T Cell Platforms for CAR Engineering
5.1. Gene-Edited αβ T Cells
5.2. Memory T Cells
5.3. Virus-Specific T Cells (VSTs)
5.4. Invariant Natural Killer T (iNKT) Cells
5.5. γδ T Cells
6. CAR NK Cells: A Promising Alternative to Address Limitations of CAR T Cell Therapy
6.1. Structural Design and Generational Advances of CAR NK Cells
6.2. Functional Advantages and Challenges of CAR NK Cells
6.3. Recent Advances in NK Cells’ Antitumor Activity
7. Engineering CAR Macrophages (CAR Ms) for Enhanced Antitumor Immunity
7.1. Structural Design and Generational Advances of CAR Ms
7.2. Functional Advantages and Challenges of CAR Ms
7.3. Recent Advances in CAR Ms’ Antitumor Activity
8. CAR Dendritic Cells (CAR DCs)
9. Is There an Ideal Host Cell Type for CAR Cell Therapies in Solid Tumors?
10. Conditioning Regimens in CAR Cell Therapy
11. Safety Considerations Across CAR Cell Platforms
12. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAVs | adeno-associated viruses |
ATMP | advanced therapy manufacturing product |
CAR | chimeric antigen receptor |
CAR DC | chimeric antigen receptor dendritic cell |
CAR Ms | chimeric antigen receptor macrophages |
CAR NK | chimeric antigen receptor natural killer (cell) |
CRS | cytokine release syndrome |
DCs | dendritic cells |
ECM | extracellular matrix |
GMP | good manufacturing practice |
GvHD | graft-versus-host disease |
HCT | hematopoietic cell transplantation |
HSCs | hematopoietic stem cells |
HvG | host-versus-graft |
ICANS | immune effector cell-associated neurotoxicity syndrome |
iNKTs | invariant natural killer T cells |
iPSCs | induced pluripotent stem cells |
LNPs | lipid nanoparticles |
MHC | major histocompatibility complex |
NK | natural killer (cell) |
PBMCs | peripheral blood mononuclear cells |
TAAs | tumor-associated antigens |
TAMs | tumor-associated macrophages |
TBI | total body irradiation |
TCM | central memory T cells |
TCR | T cell receptor |
TGF-β | transforming growth factor-β |
TILs | tumor infiltrating lymphocytes |
TME | tumor microenvironment |
TSAs | tumor-specific antigens |
TSCM | stem cell memory T cells |
VSTs | virus-specific T cells |
ZFNs | zinc-finger nucleases |
References
- Patel, K.K.; Tariveranmoshabad, M.; Kadu, S.; Shobaki, N.; June, C. From concept to cure: The evolution of CAR-T cell therapy. Mol. Ther. 2025, 33, 2123–2140. [Google Scholar] [CrossRef] [PubMed]
- Uslu, U.; June, C.H. Beyond the blood: Expanding CAR T cell therapy to solid tumors. Nat. Biotechnol. 2025, 43, 506–515. [Google Scholar] [CrossRef] [PubMed]
- van de Donk, N.; Themeli, M.; Usmani, S.Z. Determinants of response and mechanisms of resistance of CAR T-cell therapy in multiple myeloma. Blood Cancer Discov. 2021, 2, 302–318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andreou, T.; Neophytou, C.; Kalli, M.; Mpekris, F.; Stylianopoulos, T. Breaking barriers: Enhancing CAR-armored T cell therapy for solid tumors through microenvironment remodeling. Front. Immunol. 2025, 16, 1638186. [Google Scholar] [CrossRef]
- Boyer, O.; Bensoussan, D.; Bonig, H.; Chabannon, C.; Clemenceau, B.; Cuffel, A.; Dachy, G.; de Vos, J.; Derenne, S.; Diana, J.S.; et al. Identification of the conditions and minimum requirements necessary for the release of autologous fresh CAR T-cell products under hospital exemption: A position paper from the WP-bioproduction of the UNITC consortium. Bone Marrow Transplant. 2025, 60, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Georgiadis, C.; Preece, R.; Qasim, W. Clinical development of allogeneic chimeric antigen receptor alphabeta-T cells. Mol. Ther. 2025, 33, 2426–2440. [Google Scholar] [CrossRef] [PubMed]
- Weng, N.P. Numbers and odds: TCR repertoire size and its age changes impacting on T cell functions. Semin. Immunol. 2023, 69, 101810. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Luo, W.; Chen, Z.; Li, C.; Zhou, J.; Huang, Z.; Tang, L.; Wu, J.; Wu, Z.; Li, Y.; et al. Co-expression of IL-15 and CCL21 strengthens CAR-NK cells to eliminate tumors in concert with T cells and equips them with PI3K/AKT/mTOR signal signature. J. Immunother. Cancer 2025, 13, e010822. [Google Scholar] [CrossRef] [PubMed]
- Hatae, R.; Watchmaker, P.B.; Yamamichi, A.; Kyewalabye, K.; Okada, K.; Phyu, S.; Goretsky, Y.; Haegelin, J.; Pineo-Cavanaugh, P.; Gallus, M.; et al. Comparative evaluation of CAR-expressing T-, NK-, NKT-cells, and macrophages in an immunocompetent mouse glioma model. Neuro-Oncol. Adv. 2025, 7, vdaf074. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duan, R.; Milton, P.; Sittplangkoon, C.; Liu, X.; Sui, Z.; Boyce, B.F.; Yao, Z. Chimeric antigen receptor dendritic cells targeted delivery of a single tumoricidal factor for cancer immunotherapy. Cancer Immunol. Immunother. 2024, 73, 203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, Q.; Yu, W.; Ma, J.; Zhao, M.; Zou, J.; Mir, S.; Zhang, J.; Germain, R.N.; Hassan, R. Robust differentiation of NK cells from MSLN.CAR-IL-15-engineered human iPSCs with enhanced antitumor efficacy against solid tumors. Sci. Adv. 2025, 11, eadt9932. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kwon, D.; Moon, B.K.; Han, M.; Lee, T.W.; Lee, J.; Kang, K.S. Genetically stable multi-gene edited iPSCs-derived NK cells for enhanced cancer immunotherapy. Mol. Ther. Oncol. 2024, 32, 200885. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, Z.; Wang, R.; Xu, Y.; Qiu, R.; Chen, J.; Liu, L.; Qian, Q. Comparative analysis and process optimization for manufacturing CAR-T using the PiggyBac system derived from cryopreserved versus fresh PBMCs. Sci. Rep. 2025, 15, 5023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rassek, K.; Misiak, J.; Oldak, T.; Rozwadowska, N.; Basak, G.; Kolanowski, T. New player in CAR-T manufacture field: Comparison of umbilical cord to peripheral blood strategies. Front. Immunol. 2025, 16, 1561174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farina, M.; Chiarini, M.; Almici, C.; Accorsi Buttini, E.; Zuccala, F.; Piva, S.; Volonghi, I.; Poli, L.; Bernardi, S.; Colnaghi, F.; et al. Timely Leukapheresis May Interfere with the “Fitness” of Lymphocytes Collected for CAR-T Treatment in High Risk DLBCL Patients. Cancers 2022, 14, 5276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lei, S.; Li, J.; Zhu, M.; Zhou, W.; Fu, X.; Wu, S.; Chen, X.; Zhang, J.; Duan, X.; Wang, W.; et al. Chimeric Antigen Receptor-Engineered Cell Membrane-Coated Nanoparticles Promote Dual-Targeted mRNA-Based Cancer Gene Therapy. ACS Nano 2025, 19, 15668–15684. [Google Scholar] [CrossRef] [PubMed]
- Jung, I.Y.; Lee, J. Unleashing the Therapeutic Potential of CAR-T Cell Therapy Using Gene-Editing Technologies. Mol. Cells 2018, 41, 717–723. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guiraud, V.; Denis, J.A.; Benhafoun, G.; Ablin, E.; Sayon, S.; Souchet, L.; Azar, N.; Grenier, A.; Metz, C.; Legrand, R.; et al. Longitudinal analysis of lentiviral and retroviral chimeric antigen receptors’ integration sites reveals distinct clonal evolutionary patterns. Br. J. Haematol. 2025, 206, 1173–1177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmidt, D.; Tirapelle, M.C.; Ebrahimabadi, S.; Biggi, A.F.B.; Dos Santos, M.H.; da Silva-Januario, M.E.; Picanco, E.C.V. Engineered CAR-NK Cells for Cancer Immunotherapy: Lentiviral-Based CAR Transduction of NK-92 Cells. Methods Mol. Biol. 2025, 2930, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Li, J.; Zhao, X.; Wu, Y.; Chen, L. CAR-T cell therapy: Developments, challenges and expanded applications from cancer to autoimmunity. Front. Immunol. 2024, 15, 1519671. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marchal, I. Making cell therapy accessible: Challenges and opportunities. Nat. Biotechnol. 2025, 43, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Baguet, C.; Larghero, J.; Mebarki, M. Early predictive factors of failure in autologous CAR T-cell manufacturing and/or efficacy in hematologic malignancies. Blood Adv. 2024, 8, 337–342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Truong, N.T.H.; Gargett, T.; Brown, M.P.; Ebert, L.M. Effects of Chemotherapy Agents on Circulating Leukocyte Populations: Potential Implications for the Success of CAR-T Cell Therapies. Cancers 2021, 13, 2225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stewart, A.G.; Henden, A.S. Infectious complications of CAR T-cell therapy: A clinical update. Ther. Adv. Infect. Dis. 2021, 8, 20499361211036773. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, L.; Zhao, L.; Yang, Y.; Gao, J.; Hu, C.; Guo, B.; Zhu, B. Cytotoxic chemotherapy reduces T cell trafficking to the spleen by downregulating the expression of C-C motif chemokine ligand 21 and C-C motif chemokine ligand 19. Oncol. Lett. 2018, 16, 5013–5019. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, A.X.; Ong, X.J.; D’Souza, C.; Neeson, P.J.; Zhu, J.J. Combining chemotherapy with CAR-T cell therapy in treating solid tumors. Front. Immunol. 2023, 14, 1140541. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ding, Z.C.; Munn, D.H.; Zhou, G. Chemotherapy-induced myeloid suppressor cells and antitumor immunity: The Janus face of chemotherapy in immunomodulation. Oncoimmunology 2014, 3, e954471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Plava, J.; Burikova, M.; Cihova, M.; Trnkova, L.; Smolkova, B.; Babal, P.; Krivosikova, L.; Janega, P.; Rojikova, L.; Drahosova, S.; et al. Chemotherapy-triggered changes in stromal compartment drive tumor invasiveness and progression of breast cancer. J. Exp. Clin. Cancer Res. 2021, 40, 302. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schuler, P.J.; Harasymczuk, M.; Schilling, B.; Saze, Z.; Strauss, L.; Lang, S.; Johnson, J.T.; Whiteside, T.L. Effects of adjuvant chemoradiotherapy on the frequency and function of regulatory T cells in patients with head and neck cancer. Clin. Cancer Res. 2013, 19, 6585–6596. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morris, E.C.; Neelapu, S.S.; Giavridis, T.; Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 2022, 22, 85–96. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sterner, R.C.; Sterner, R.M. Immune effector cell associated neurotoxicity syndrome in chimeric antigen receptor-T cell therapy. Front. Immunol. 2022, 13, 879608. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papathanasiou, M.M.; Stamatis, C.; Lakelin, M.; Farid, S.; Titchener-Hooker, N.; Shah, N. Autologous CAR T-cell therapies supply chain: Challenges and opportunities? Cancer Gene Ther. 2020, 27, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Hort, S.; Herbst, L.; Backel, N.; Erkens, F.; Niessing, B.; Frye, M.; Konig, N.; Papantoniou, I.; Hudecek, M.; Jacobs, J.J.L.; et al. Toward Rapid, Widely Available Autologous CAR-T Cell Therapy—Artificial Intelligence and Automation Enabling the Smart Manufacturing Hospital. Front. Med. 2022, 9, 913287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amini, L.; Silbert, S.K.; Maude, S.L.; Nastoupil, L.J.; Ramos, C.A.; Brentjens, R.J.; Sauter, C.S.; Shah, N.N.; Abou-El-Enein, M. Preparing for CAR T cell therapy: Patient selection, bridging therapies and lymphodepletion. Nat. Rev. Clin. Oncol. 2022, 19, 342–355. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, K.J.; Gottschalk, S.; Talleur, A.C. Allogeneic CAR Cell Therapy-More Than a Pipe Dream. Front. Immunol. 2020, 11, 618427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, X.; Schmidt-Wolf, I.G.H. An Alternative Source for Allogeneic CAR T Cells With a High Safety Profile. Front. Immunol. 2022, 13, 913123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brezinger-Dayan, K.; Itzhaki, O.; Melnichenko, J.; Kubi, A.; Zeltzer, L.A.; Jacoby, E.; Avigdor, A.; Shapira Frommer, R.; Besser, M.J. Impact of cryopreservation on CAR T production and clinical response. Front. Oncol. 2022, 12, 1024362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Depil, S.; Duchateau, P.; Grupp, S.A.; Mufti, G.; Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: Development and challenges. Nat. Rev. Drug Discov. 2020, 19, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Marin, D.; Li, Y.; Basar, R.; Rafei, H.; Daher, M.; Dou, J.; Mohanty, V.; Dede, M.; Nieto, Y.; Uprety, N.; et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: A phase 1/2 trial. Nat. Med. 2024, 30, 772–784. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iyer, S.P.; Sica, R.A.; Ho, P.J.; Prica, A.; Zain, J.; Foss, F.M.; Hu, B.; Beitinjaneh, A.; Weng, W.K.; Kim, Y.H.; et al. Safety and activity of CTX130, a CD70-targeted allogeneic CRISPR-Cas9-engineered CAR T-cell therapy, in patients with relapsed or refractory T-cell malignancies (COBALT-LYM): A single-arm, open-label, phase 1, dose-escalation study. Lancet Oncol. 2025, 26, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.A.; Mei, H.; Sang, R.; Ortega, D.G.; Deng, W. Advancements and challenges in developing in vivo CAR T cell therapies for cancer treatment. EBioMedicine 2024, 106, 105266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wakao, R.; Fukaya-Shiba, A. In vivo CAR T cells and targeted gene delivery: A theme for the Pharmaceuticals and Medical Devices Agency Science Board to address. Front. Med. 2023, 10, 1141880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinto, E.; Lione, L.; Compagnone, M.; Paccagnella, M.; Salvatori, E.; Greco, M.; Frezza, V.; Marra, E.; Aurisicchio, L.; Roscilli, G.; et al. From ex vivo to in vivo chimeric antigen T cells manufacturing: New horizons for CAR T-cell based therapy. J. Transl. Med. 2025, 23, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Michels, K.R.; Sheih, A.; Hernandez, S.A.; Brandes, A.H.; Parrilla, D.; Irwin, B.; Perez, A.M.; Ting, H.A.; Nicolai, C.J.; Gervascio, T.; et al. Preclinical proof of concept for VivoVec, a lentiviral-based platform for in vivo CAR T-cell engineering. J. Immunother. Cancer 2023, 11, e006292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agarwal, S.; Weidner, T.; Thalheimer, F.B.; Buchholz, C.J. In vivo generated human CAR T cells eradicate tumor cells. Oncoimmunology 2019, 8, e1671761. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamilton, J.R.; Chen, E.; Perez, B.S.; Sandoval Espinoza, C.R.; Kang, M.H.; Trinidad, M.; Ngo, W.; Doudna, J.A. In vivo human T cell engineering with enveloped delivery vehicles. Nat. Biotechnol. 2024, 42, 1684–1692. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kang, M.; Lee, S.H.; Kwon, M.; Byun, J.; Kim, D.; Kim, C.; Koo, S.; Kwon, S.P.; Moon, S.; Jung, M.; et al. Nanocomplex-Mediated In Vivo Programming to Chimeric Antigen Receptor-M1 Macrophages for Cancer Therapy. Adv. Mater. 2021, 33, e2103258. [Google Scholar] [CrossRef] [PubMed]
- Yun, K.; Sakemura, R.L.; Can, I.; Gutierrez Ruiz, O.; Ogbodo, E.J.; Zhang, S.; Saleh, A.; Huynh, T.N.; Manriquez Roman, C.; Sirpilla, O.L.; et al. Intrinsic immunosuppressive features of monocytes suppress CAR-T19 through IL-1 pathway modulation in mantle cell lymphoma. Mol. Ther. Oncol. 2025, 33, 200985. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verma, N.K.; Wong, B.H.S.; Poh, Z.S.; Udayakumar, A.; Verma, R.; Goh, R.K.J.; Duggan, S.P.; Shelat, V.G.; Chandy, K.G.; Grigoropoulos, N.F. Obstacles for T-lymphocytes in the tumour microenvironment: Therapeutic challenges, advances and opportunities beyond immune checkpoint. EBioMedicine 2022, 83, 104216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, J.A.; Espinosa-Cotton, M.; Guo, H.F.; Monette, S.; Cheung, N.V. Targeting tumor vasculature to improve antitumor activity of T cells armed ex vivo with T cell engaging bispecific antibody. J. Immunother. Cancer 2023, 11, e006680. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, L.; Chen, J.; Zhang, H.; Ye, J.; Moore, C.; Lu, C.; Fang, Y.; Fu, Y.X.; Li, B. Concurrent delivery of immune checkpoint blockade modulates T cell dynamics to enhance neoantigen vaccine-generated antitumor immunity. Nat. Cancer 2022, 3, 437–452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomas, D.A.; Massague, J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005, 8, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Bocca, P.; Di Carlo, E.; Caruana, I.; Emionite, L.; Cilli, M.; De Angelis, B.; Quintarelli, C.; Pezzolo, A.; Raffaghello, L.; Morandi, F.; et al. Bevacizumab-mediated tumor vasculature remodelling improves tumor infiltration and antitumor efficacy of GD2-CAR T cells in a human neuroblastoma preclinical model. Oncoimmunology 2017, 7, e1378843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deng, C.; Zhao, J.; Zhou, S.; Dong, J.; Cao, J.; Gao, J.; Bai, Y.; Deng, H. The Vascular Disrupting Agent CA4P Improves the Antitumor Efficacy of CAR-T Cells in Preclinical Models of Solid Human Tumors. Mol. Ther. 2020, 28, 75–88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, W.; He, H.; Zheng, L.; Zeng, S.; Cho, H.Y.; Kouhi, A.; Khawli, L.A.; Chen, L.; Stathopoulos, A.; Schonthal, A.H.; et al. Enhancing brain entry and therapeutic activity of chimeric antigen receptor T cells with intra-arterial NEO100 in a mouse model of CNS lymphoma. J. Neurosurg. 2024, 140, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Dong, Y.; Yang, S.; Tu, Y.; Wang, C.; Li, J.; Yuan, Y.; Lian, Z. Bioorthogonal Equipping CAR-T Cells with Hyaluronidase and Checkpoint Blocking Antibody for Enhanced Solid Tumor Immunotherapy. ACS Cent. Sci. 2022, 8, 603–614. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Y.T.; Fang, Y.; Wei, Q.; Shi, H.; Tan, H.; Deng, Y.; Zeng, Z.; Qiu, J.; Chen, C.; Sun, L.; et al. Tumor-targeted delivery of a STING agonist improvescancer immunotherapy. Proc. Natl. Acad. Sci. USA 2022, 119, e2214278119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hajiabadi, S.; Alidadi, S.; Montakhab Farahi, Z.; Ghahramani Seno, M.M.; Farzin, H.; Haghparast, A. Immunotherapy with STING and TLR9 agonists promotes synergistic therapeutic efficacy with suppressed cancer-associated fibroblasts in colon carcinoma. Front. Immunol. 2023, 14, 1258691. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lv, Q.; Zhang, Y.; Gao, W.; Wang, J.; Hu, Y.; Yang, H.; Xie, Y.; Lv, Y.; Zhang, H.; Wu, D.; et al. CSF1R inhibition reprograms tumor-associated macrophages to potentiate anti-PD-1 therapy efficacy against colorectal cancer. Pharmacol. Res. 2024, 202, 107126. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, M.; Yang, Y.; Liu, Y.; Xie, H.; Yu, Q.; Tian, L.; Tang, X.; Ren, K.; Li, J.; et al. Remodeling tumor immune microenvironment via targeted blockade of PI3K-gamma and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy. J. Control. Release 2020, 321, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Masui, H.; Kawada, K.; Itatani, Y.; Hirai, H.; Nakanishi, Y.; Kiyasu, Y.; Hanada, K.; Okamoto, M.; Hirata, W.; Nishikawa, Y.; et al. Synergistic antitumor activity by dual blockade of CCR1 and CXCR2 expressed on myeloid cells within the tumor microenvironment. Br. J. Cancer 2024, 131, 63–76. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, A.; Balasubramanian, S. The crossroads of cancer therapies and clonal hematopoiesis. Semin. Hematol. 2024, 61, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morita, K.; Wang, F.; Jahn, K.; Hu, T.; Tanaka, T.; Sasaki, Y.; Kuipers, J.; Loghavi, S.; Wang, S.A.; Yan, Y.; et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat. Commun. 2020, 11, 5327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomas, D.; Majeti, R. Biology and relevance of human acute myeloid leukemia stem cells. Blood 2017, 129, 1577–1585. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zugasti, I.; Espinosa-Aroca, L.; Fidyt, K.; Mulens-Arias, V.; Diaz-Beya, M.; Juan, M.; Urbano-Ispizua, A.; Esteve, J.; Velasco-Hernandez, T.; Menendez, P. CAR-T cell therapy for cancer: Current challenges and future directions. Signal Transduct. Target. Ther. 2025, 10, 210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, H.; Yang, X.; Ye, S.; Huang, L.; Mu, W. Antigen escape in CAR-T cell therapy: Mechanisms and overcoming strategies. Biomed. Pharmacother. 2024, 178, 117252. [Google Scholar] [CrossRef] [PubMed]
- Bagley, S.J.; Logun, M.; Fraietta, J.A.; Wang, X.; Desai, A.S.; Bagley, L.J.; Nabavizadeh, A.; Jarocha, D.; Martins, R.; Maloney, E.; et al. Intrathecal bivalent CAR T cells targeting EGFR and IL13Ralpha2 in recurrent glioblastoma: Phase 1 trial interim results. Nat. Med. 2024, 30, 1320–1329. [Google Scholar] [CrossRef] [PubMed]
- Ottaviano, G.; Qasim, W. Current landscape of vector safety and genotoxicity after hematopoietic stem or immune cell gene therapy. Leukemia 2025, 39, 1325–1333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jan, M.; Scarfo, I.; Larson, R.C.; Walker, A.; Schmidts, A.; Guirguis, A.A.; Gasser, J.A.; Slabicki, M.; Bouffard, A.A.; Castano, A.P.; et al. Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci. Transl. Med. 2021, 13, eabb6295. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giordano Attianese, G.M.P.; Shui, S.; Cribioli, E.; Triboulet, M.; Scheller, L.; Hafezi, M.; Reichenbach, P.; Gainza, P.; Georgeon, S.; Correia, B.E.; et al. Dual ON/OFF-switch chimeric antigen receptor controlled by two clinically approved drugs. Proc. Natl. Acad. Sci. USA 2024, 121, e2405085121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Geginat, J.; Lanzavecchia, A.; Sallusto, F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 2003, 101, 4260–4266. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, M.A.; Zhen, A.; Mu, W.; Rezek, V.; Martin, H.; Peterson, C.W.; Kiem, H.P.; Kitchen, S.G. Stem cell-derived CAR T cells show greater persistence, trafficking, and viral control compared to ex vivo transduced CAR T cells. Mol. Ther. 2024, 32, 1000–1015. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopez-Cantillo, G.; Uruena, C.; Camacho, B.A.; Ramirez-Segura, C. CAR-T Cell Performance: How to Improve Their Persistence? Front. Immunol. 2022, 13, 878209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Melenhorst, J.J.; Leen, A.M.; Bollard, C.M.; Quigley, M.F.; Price, D.A.; Rooney, C.M.; Brenner, M.K.; Barrett, A.J.; Heslop, H.E. Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood 2010, 116, 4700–4702. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cruz, C.R.; Micklethwaite, K.P.; Savoldo, B.; Ramos, C.A.; Lam, S.; Ku, S.; Diouf, O.; Liu, E.; Barrett, A.J.; Ito, S.; et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: A phase 1 study. Blood 2013, 122, 2965–2973. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heczey, A.; Liu, D.; Tian, G.; Courtney, A.N.; Wei, J.; Marinova, E.; Gao, X.; Guo, L.; Yvon, E.; Hicks, J.; et al. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood 2014, 124, 2824–2833. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, Y.; Yang, Y.; Yue, L.; Wan, L.; Ma, X.; Yang, Q.; Tian, X.; Li, Y.; Wang, K.; Wei, S.; et al. Efficacy of natural killer T and gammadelta T cells in mesothelin-targeted immunotherapy of pancreatic cancer. Front. Immunol. 2025, 16, 1524899. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daher, M.; Rezvani, K. Next generation natural killer cells for cancer immunotherapy: The promise of genetic engineering. Curr. Opin. Immunol. 2018, 51, 146–153. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kremer, V.; Ligtenberg, M.A.; Zendehdel, R.; Seitz, C.; Duivenvoorden, A.; Wennerberg, E.; Colon, E.; Scherman-Plogell, A.H.; Lundqvist, A. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma. J. Immunother. Cancer 2017, 5, 73. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Wallace, D.L.; de Lara, C.M.; Ghattas, H.; Asquith, B.; Worth, A.; Griffin, G.E.; Taylor, G.P.; Tough, D.F.; Beverley, P.C.; et al. In vivo kinetics of human natural killer cells: The effects of ageing and acute and chronic viral infection. Immunology 2007, 121, 258–265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Hermanson, D.L.; Moriarity, B.S.; Kaufman, D.S. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell 2018, 23, 181–192.E5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- MacLeod, D.T.; Antony, J.; Martin, A.J.; Moser, R.J.; Hekele, A.; Wetzel, K.J.; Brown, A.E.; Triggiano, M.A.; Hux, J.A.; Pham, C.D.; et al. Integration of a CD19 CAR into the TCR Alpha Chain Locus Streamlines Production of Allogeneic Gene-Edited CAR T Cells. Mol. Ther. 2017, 25, 949–961. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Torikai, H.; Reik, A.; Liu, P.Q.; Zhou, Y.; Zhang, L.; Maiti, S.; Huls, H.; Miller, J.C.; Kebriaei, P.; Rabinovich, B.; et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 2012, 119, 5697–5705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Osborn, M.J.; Webber, B.R.; Knipping, F.; Lonetree, C.L.; Tennis, N.; DeFeo, A.P.; McElroy, A.N.; Starker, C.G.; Lee, C.; Merkel, S.; et al. Evaluation of TCR Gene Editing Achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases. Mol. Ther. 2016, 24, 570–581. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eyquem, J.; Mansilla-Soto, J.; Giavridis, T.; van der Stegen, S.J.; Hamieh, M.; Cunanan, K.M.; Odak, A.; Gonen, M.; Sadelain, M. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 2017, 543, 113–117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stenger, D.; Stief, T.A.; Kaeuferle, T.; Willier, S.; Rataj, F.; Schober, K.; Vick, B.; Lotfi, R.; Wagner, B.; Grunewald, T.G.P.; et al. Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR. Blood 2020, 136, 1407–1418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, D.; Quan, Y.; Yan, Q.; Morales, J.E.; Wetsel, R.A. Targeted Disruption of the beta2-Microglobulin Gene Minimizes the Immunogenicity of Human Embryonic Stem Cells. Stem Cells Transl. Med. 2015, 4, 1234–1245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ren, J.; Liu, X.; Fang, C.; Jiang, S.; June, C.H.; Zhao, Y. Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clin. Cancer Res. 2017, 23, 2255–2266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kagoya, Y.; Guo, T.; Yeung, B.; Saso, K.; Anczurowski, M.; Wang, C.H.; Murata, K.; Sugata, K.; Saijo, H.; Matsunaga, Y.; et al. Genetic Ablation of HLA Class I, Class II, and the T-cell Receptor Enables Allogeneic T Cells to Be Used for Adoptive T-cell Therapy. Cancer Immunol. Res. 2020, 8, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Priesner, C.; Aleksandrova, K.; Esser, R.; Mockel-Tenbrinck, N.; Leise, J.; Drechsel, K.; Marburger, M.; Quaiser, A.; Goudeva, L.; Arseniev, L.; et al. Automated Enrichment, Transduction, and Expansion of Clinical-Scale CD62L+ T Cells for Manufacturing of Gene Therapy Medicinal Products. Hum. Gene Ther. 2016, 27, 860–869. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sabatino, M.; Hu, J.; Sommariva, M.; Gautam, S.; Fellowes, V.; Hocker, J.D.; Dougherty, S.; Qin, H.; Klebanoff, C.A.; Fry, T.J.; et al. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood 2016, 128, 519–528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sommermeyer, D.; Hudecek, M.; Kosasih, P.L.; Gogishvili, T.; Maloney, D.G.; Turtle, C.J.; Riddell, S.R. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 2016, 30, 492–500. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chan, W.K.; Suwannasaen, D.; Throm, R.E.; Li, Y.; Eldridge, P.W.; Houston, J.; Gray, J.T.; Pui, C.H.; Leung, W. Chimeric antigen receptor-redirected CD45RA-negative T cells have potent antileukemia and pathogen memory response without graft-versus-host activity. Leukemia 2015, 29, 387–395. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fernandez, L.; Fernandez, A.; Mirones, I.; Escudero, A.; Cardoso, L.; Vela, M.; Lanzarot, D.; de Paz, R.; Leivas, A.; Gallardo, M.; et al. GMP-Compliant Manufacturing of NKG2D CAR Memory T Cells Using CliniMACS Prodigy. Front. Immunol. 2019, 10, 2361. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Terakura, S.; Yamamoto, T.N.; Gardner, R.A.; Turtle, C.J.; Jensen, M.C.; Riddell, S.R. Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood 2012, 119, 72–82. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pule, M.A.; Savoldo, B.; Myers, G.D.; Rossig, C.; Russell, H.V.; Dotti, G.; Huls, M.H.; Liu, E.; Gee, A.P.; Mei, Z.; et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: Persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 2008, 14, 1264–1270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Savoldo, B.; Rooney, C.M.; Di Stasi, A.; Abken, H.; Hombach, A.; Foster, A.E.; Zhang, L.; Heslop, H.E.; Brenner, M.K.; Dotti, G. Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 2007, 110, 2620–2630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmed, N.; Brawley, V.; Hegde, M.; Bielamowicz, K.; Kalra, M.; Landi, D.; Robertson, C.; Gray, T.L.; Diouf, O.; Wakefield, A.; et al. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial. JAMA Oncol. 2017, 3, 1094–1101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Houghtelin, A.; Bollard, C.M. Virus-Specific T Cells for the Immunocompromised Patient. Front. Immunol. 2017, 8, 1272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keller, M.D.; Hanley, P.J.; Chi, Y.Y.; Aguayo-Hiraldo, P.; Dvorak, C.C.; Verneris, M.R.; Kohn, D.B.; Pai, S.Y.; Davila Saldana, B.J.; Hanisch, B.; et al. Antiviral cellular therapy for enhancing T-cell reconstitution before or after hematopoietic stem cell transplantation (ACES): A two-arm, open label phase II interventional trial of pediatric patients with risk factor assessment. Nat. Commun. 2024, 15, 3258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schneider, J.R.; Kwan, K.; Boockvar, J.A. Use of HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells as a Potential Therapeutic for Progressive HER2-Positive Glioblastoma. Neurosurgery 2017, 81, N42–N43. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Diamond, D.J.; Forman, S.J.; Nakamura, R. Development of CMV-CD19 bi-specific CAR T cells with post-infusion in vivo boost using an anti-CMV vaccine. Int. J. Hematol. 2021, 114, 544–553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tzannou, I.; Papadopoulou, A.; Naik, S.; Leung, K.; Martinez, C.A.; Ramos, C.A.; Carrum, G.; Sasa, G.; Lulla, P.; Watanabe, A.; et al. Off-the-Shelf Virus-Specific T Cells to Treat BK Virus, Human Herpesvirus 6, Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections After Allogeneic Hematopoietic Stem-Cell Transplantation. J. Clin. Oncol. 2017, 35, 3547–3557. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Quach, D.H.; Lulla, P.; Rooney, C.M. Banking on virus-specific T cells to fulfill the need for off-the-shelf cell therapies. Blood 2023, 141, 877–885. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matsuda, J.L.; Mallevaey, T.; Scott-Browne, J.; Gapin, L. CD1d-restricted iNKT cells, the ‘Swiss-Army knife’ of the immune system. Curr. Opin. Immunol. 2008, 20, 358–368. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Exley, M.A.; Friedlander, P.; Alatrakchi, N.; Vriend, L.; Yue, S.; Sasada, T.; Zeng, W.; Mizukami, Y.; Clark, J.; Nemer, D.; et al. Adoptive Transfer of Invariant NKT Cells as Immunotherapy for Advanced Melanoma: A Phase I Clinical Trial. Clin. Cancer Res. 2017, 23, 3510–3519. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rotolo, A.; Caputo, V.S.; Holubova, M.; Baxan, N.; Dubois, O.; Chaudhry, M.S.; Xiao, X.; Goudevenou, K.; Pitcher, D.S.; Petevi, K.; et al. Enhanced Anti-lymphoma Activity of CAR19-iNKT Cells Underpinned by Dual CD19 and CD1d Targeting. Cancer Cell 2018, 34, 596–610.E11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tian, G.; Courtney, A.N.; Jena, B.; Heczey, A.; Liu, D.; Marinova, E.; Guo, L.; Xu, X.; Torikai, H.; Mo, Q.; et al. CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo. J. Clin. Investig. 2016, 126, 2341–2355. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heczey, A.; Xu, X.; Courtney, A.N.; Tian, G.; Barragan, G.A.; Guo, L.; Amador, C.M.; Ghatwai, N.; Rathi, P.; Wood, M.S.; et al. Anti-GD2 CAR-NKT cells in relapsed or refractory neuroblastoma: Updated phase 1 trial interim results. Nat. Med. 2023, 29, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, K.P.; Lamture, G.; Chanthery, Y.; Teague, A.G.; Verma, Y.; Au, M.; Smith-Boeck, M.; Salum, M.; Murthy, P.; Gundurao, S.R.Y.; et al. ADI-270: An armored allogeneic gamma delta T cell therapy designed to target CD70-expressing solid and hematologic malignancies. J. Immunother. Cancer 2025, 13, e011704. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Rhijn, I.; Le Nours, J. CD1 and MR1 recognition by human γδ T cells. Mol. Immunol. 2021, 133, 95–100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, D.; Ren, X.; Xie, W.; Chen, J.; Liang, S.; Jiang, M.; Wang, J.; Zheng, Z. Potential of gamma/delta T cells for solid tumor immunotherapy. Front. Immunol. 2024, 15, 1466266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinot, L.; Sassor, A.; Moker, N.; Zhang, C.; Verhoeyen, E.; Hidalgo, J.V.; Orentas, R.J. Transduction of γδ T cells with Baboon envelope pseudotyped lentiviral vector encoding chimeric antigen receptors for translational and clinical applications. Front. Immunol. 2025, 16, 1548630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siegers, G.M.; Lamb, L.S., Jr. Cytotoxic and regulatory properties of circulating Vδ1+ γδ T cells: A new player on the cell therapy field? Mol. Ther. 2014, 22, 1416–1422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, G.; Wang, S.; Song, W.; Lu, C.; Chen, Z.; He, L.; Wang, X.; Wang, Y.; Shi, C.; Liu, Z.; et al. Integrating multi-omics data reveals the antitumor role and clinical benefits of gamma-delta T cells in triple-negative breast cancer. BMC Cancer 2025, 25, 623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vazaios, K.; Hernandez Lopez, P.; Aarts-Riemens, T.; Daudeij, A.; Kemp, V.; Hoeben, R.C.; Straetemans, T.; Hulleman, E.; Calkoen, F.G.; van der Lugt, J.; et al. Unusual Partners: γδ-TCR-Based T Cell Therapy in Combination with Oncolytic Virus Treatment for Diffuse Midline Gliomas. Int. J. Mol. Sci. 2025, 26, 2167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, Y.; Li, Y.; Wang, S.; Han, J.; Lu, M.; Xu, Y.; Qiao, W.; Cai, M.; Xu, Y.; Hu, Y.; et al. CAR-γδ T Cells Targeting Claudin18.2 Show Superior Cytotoxicity Against Solid Tumor Compared to Traditional CAR-alphabeta T Cells. Cancers 2025, 17, 998. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tomogane, M.; Sano, Y.; Shimizu, D.; Shimizu, T.; Miyashita, M.; Toda, Y.; Hosogi, S.; Tanaka, Y.; Kimura, S.; Ashihara, E. Human Vγ9Vδ2 T cells exert anti-tumor activity independently of PD-L1 expression in tumor cells. Biochem. Biophys. Res. Commun. 2021, 573, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Tu, W. Dual Face of Vγ9Vδ2-T Cells in Tumor Immunology: Anti- versus Pro-Tumoral Activities. Front. Immunol. 2017, 8, 1041. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siegers, G.M.; Dutta, I.; Lai, R.; Postovit, L.M. Functional Plasticity of Gamma Delta T Cells and Breast Tumor Targets in Hypoxia. Front. Immunol. 2018, 9, 1367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, J.H.; Lee, H.K. Function of γδ T cells in tumor immunology and their application to cancer therapy. Exp. Mol. Med. 2021, 53, 318–327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cieslak, S.G.; Shahbazi, R. Gamma delta T cells and their immunotherapeutic potential in cancer. Biomark. Res. 2025, 13, 51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ang, W.X.; Ng, Y.Y.; Xiao, L.; Chen, C.; Li, Z.; Chi, Z.; Tay, J.C.; Tan, W.K.; Zeng, J.; Toh, H.C.; et al. Electroporation of NKG2D RNA CAR Improves Vγ9Vδ2 T Cell Responses against Human Solid Tumor Xenografts. Mol. Ther. Oncolytics 2020, 17, 421–430. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Wang, L.; Seo, N.; Okumura, S.; Hayashi, T.; Akahori, Y.; Fujiwara, H.; Amaishi, Y.; Okamoto, S.; Mineno, J.; et al. CAR-Modified Vγ9Vδ2 T Cells Propagated Using a Novel Bisphosphonate Prodrug for Allogeneic Adoptive Immunotherapy. Int. J. Mol. Sci. 2023, 24, 10873. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Costa, G.P.; Mensurado, S.; Silva-Santos, B. Therapeutic avenues for γδ T cells in cancer. J. Immunother. Cancer 2023, 11, e007955. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Capsomidis, A.; Benthall, G.; Van Acker, H.H.; Fisher, J.; Kramer, A.M.; Abeln, Z.; Majani, Y.; Gileadi, T.; Wallace, R.; Gustafsson, K.; et al. Chimeric Antigen Receptor-Engineered Human Gamma Delta T Cells: Enhanced Cytotoxicity with Retention of Cross Presentation. Mol. Ther. 2018, 26, 354–365. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Becker, S.A.; Petrich, B.G.; Yu, B.; Knight, K.A.; Brown, H.C.; Raikar, S.S.; Doering, C.B.; Spencer, H.T. Enhancing the effectiveness of γδ T cells by mRNA transfection of chimeric antigen receptors or bispecific T cell engagers. Mol. Ther. Oncolytics 2023, 29, 145–157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, E.; Marin, D.; Banerjee, P.; Macapinlac, H.A.; Thompson, P.; Basar, R.; Nassif Kerbauy, L.; Overman, B.; Thall, P.; Kaplan, M.; et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N. Engl. J. Med. 2020, 382, 545–553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gong, J.H.; Maki, G.; Klingemann, H.G. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 1994, 8, 652–658. [Google Scholar] [PubMed]
- Tang, X.; Yang, L.; Li, Z.; Nalin, A.P.; Dai, H.; Xu, T.; Yin, J.; You, F.; Zhu, M.; Shen, W.; et al. First-in-man clinical trial of CAR NK-92 cells: Safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am. J. Cancer Res. 2018, 8, 1083–1089. [Google Scholar] [PubMed] [PubMed Central]
- Luevano, M.; Daryouzeh, M.; Alnabhan, R.; Querol, S.; Khakoo, S.; Madrigal, A.; Saudemont, A. The unique profile of cord blood natural killer cells balances incomplete maturation and effective killing function upon activation. Hum. Immunol. 2012, 73, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Dalle, J.H.; Menezes, J.; Wagner, E.; Blagdon, M.; Champagne, J.; Champagne, M.A.; Duval, M. Characterization of cord blood natural killer cells: Implications for transplantation and neonatal infections. Pediatr. Res. 2005, 57, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Blum, R.H.; Bjordahl, R.; Gaidarova, S.; Rogers, P.; Lee, T.T.; Abujarour, R.; Bonello, G.B.; Wu, J.; Tsai, P.F.; et al. Pluripotent stem cell-derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity. Blood 2020, 135, 399–410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pan, K.; Farrukh, H.; Chittepu, V.; Xu, H.; Pan, C.X.; Zhu, Z. CAR race to cancer immunotherapy: From CAR T, CAR NK to CAR macrophage therapy. J. Exp. Clin. Cancer Res. 2022, 41, 119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, L.; Sferruzza, G.; Yang, L.; Zhou, L.; Chen, S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol. Immunol. 2024, 21, 1089–1108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barrow, A.D.; Martin, C.J.; Colonna, M. The Natural Cytotoxicity Receptors in Health and Disease. Front. Immunol. 2019, 10, 909. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teng, K.Y.; Mansour, A.G.; Zhu, Z.; Li, Z.; Tian, L.; Ma, S.; Xu, B.; Lu, T.; Chen, H.; Hou, D.; et al. Off-the-Shelf Prostate Stem Cell Antigen-Directed Chimeric Antigen Receptor Natural Killer Cell Therapy to Treat Pancreatic Cancer. Gastroenterology 2022, 162, 1319–1333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shapiro, R.M.; Birch, G.C.; Hu, G.; Vergara Cadavid, J.; Nikiforow, S.; Baginska, J.; Ali, A.K.; Tarannum, M.; Sheffer, M.; Abdulhamid, Y.Z.; et al. Expansion, persistence, and efficacy of donor memory-like NK cells infused for posttransplant relapse. J. Clin. Investig. 2022, 132, e154334. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romee, R.; Rosario, M.; Berrien-Elliott, M.M.; Wagner, J.A.; Jewell, B.A.; Schappe, T.; Leong, J.W.; Abdel-Latif, S.; Schneider, S.E.; Willey, S.; et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci. Transl. Med. 2016, 8, 357ra123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verhaar, E.R.; van Keizerswaard, W.J.C.; Knoflook, A.; Balligand, T.; Ploegh, H.L. Nanobody-based CAR NK cells for possible immunotherapy of MICA+ tumors. PNAS Nexus 2024, 3, pgae184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leivas, A.; Valeri, A.; Cordoba, L.; Garcia-Ortiz, A.; Ortiz, A.; Sanchez-Vega, L.; Grana-Castro, O.; Fernandez, L.; Carreno-Tarragona, G.; Perez, M.; et al. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma. Blood Cancer J. 2021, 11, 146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Zhang, C.; He, M.; Xing, W.; Hou, R.; Zhang, H. Co-expression of IL-21-Enhanced NKG2D CAR-NK cell therapy for lung cancer. BMC Cancer 2024, 24, 119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhi, L.; Zhang, Z.; Gao, Q.; Shang, C.; He, W.; Wang, Y.; Guo, C.; Niu, Z.; Zhu, W. CAR-NK cells with dual targeting of PD-L1 and MICA/B in lung cancer tumor models. BMC Cancer 2025, 25, 337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burger, M.C.; Zhang, C.; Harter, P.N.; Romanski, A.; Strassheimer, F.; Senft, C.; Tonn, T.; Steinbach, J.P.; Wels, W.S. CAR-Engineered NK Cells for the Treatment of Glioblastoma: Turning Innate Effectors Into Precision Tools for Cancer Immunotherapy. Front. Immunol. 2019, 10, 2683. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kasahara, Y.; Shin, C.; Kubo, N.; Mihara, K.; Iwabuchi, H.; Takachi, T.; Imamura, M.; Saitoh, A.; Imai, C. Development and characterisation of NKp44-based chimeric antigen receptors that confer T cells with NK cell-like specificity. Clin. Transl. Immunol. 2020, 9, e1147. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, W.; Liu, Y.; He, Z.; Li, L.; Liu, S.; Jiang, M.; Zhao, B.; Deng, M.; Wang, W.; Mi, X.; et al. Breakthrough of solid tumor treatment: CAR-NK immunotherapy. Cell Death Discov. 2024, 10, 40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marangio, C.; Milito, N.D.; Putro, E.; Carnevale, A.; Capuano, C.; Zingoni, A.; Cippitelli, M.; Santoni, A.; Paolini, R.; Molfetta, R. NKG2D triggering hampers DNAM-1-mediated signaling in human NK cells. Front. Immunol. 2025, 16, 1575059. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paolini, R.; Molfetta, R. Dysregulation of DNAM-1-Mediated NK Cell Anti-Cancer Responses in the Tumor Microenvironment. Cancers 2023, 15, 4616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ross, P.; Cid, T.; Fernandez Quintero, M.; Loeffler, J.; Fatima, H.; Leaman, D.P.; Matthias, J.; Spencer, K.; Zwick, M.B.; Henderson, S.C.; et al. CD16a pairs form the basal molecular subunit for the NK-cell ADCC lytic synapse. J. Immunol. 2025, vkaf077. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.Y.; Marin, N.D.; Afrin, S.; Wong, P.; Tran, J.; Jacobs, M.T.; Becker-Hapak, M.; Marsala, L.; Foster, M.; Foltz, J.A.; et al. Memory-like NK cell differentiation, inhibitory NKG2A blockade, and improved recognition via antibody or CAR engineering combine to enhance NK cell attack against multiple myeloma. J. Immunol. 2025, 214, 1–11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhong, Y.; Liu, J. Emerging roles of CAR-NK cell therapies in tumor immunotherapy: Current status and future directions. Cell Death Discov. 2024, 10, 318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ng, Y.Y.; Tay, J.C.K.; Wang, S. CXCR1 Expression to Improve Anti-Cancer Efficacy of Intravenously Injected CAR-NK Cells in Mice with Peritoneal Xenografts. Mol. Ther. Oncolytics 2020, 16, 75–85. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bonanni, V.; Antonangeli, F.; Santoni, A.; Bernardini, G. Targeting of CXCR3 improves anti-myeloma efficacy of adoptively transferred activated natural killer cells. J. Immunother. Cancer 2019, 7, 290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rouce, R.H.; Shaim, H.; Sekine, T.; Weber, G.; Ballard, B.; Ku, S.; Barese, C.; Murali, V.; Wu, M.F.; Liu, H.; et al. The TGF-beta/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia 2016, 30, 800–811. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Antonioli, L.; Blandizzi, C.; Pacher, P.; Hasko, G. Immunity, inflammation and cancer: A leading role for adenosine. Nat. Rev. Cancer 2013, 13, 842–857. [Google Scholar] [CrossRef] [PubMed]
- Ryzhov, S.; Novitskiy, S.V.; Goldstein, A.E.; Biktasova, A.; Blackburn, M.R.; Biaggioni, I.; Dikov, M.M.; Feoktistov, I. Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells. J. Immunol. 2011, 187, 6120–6129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yvon, E.S.; Burga, R.; Powell, A.; Cruz, C.R.; Fernandes, R.; Barese, C.; Nguyen, T.; Abdel-Baki, M.S.; Bollard, C.M. Cord blood natural killer cells expressing a dominant negative TGF-beta receptor: Implications for adoptive immunotherapy for glioblastoma. Cytotherapy 2017, 19, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Shaim, H.; Shanley, M.; Basar, R.; Daher, M.; Gumin, J.; Zamler, D.B.; Uprety, N.; Wang, F.; Huang, Y.; Gabrusiewicz, K.; et al. Targeting the alphav integrin/TGF-beta axis improves natural killer cell function against glioblastoma stem cells. J. Clin. Investig. 2021, 131, e142116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stojanovic, A.; Fiegler, N.; Brunner-Weinzierl, M.; Cerwenka, A. CTLA-4 is expressed by activated mouse NK cells and inhibits NK Cell IFN-gamma production in response to mature dendritic cells. J. Immunol. 2014, 192, 4184–4191. [Google Scholar] [CrossRef] [PubMed]
- Davis, Z.; Felices, M.; Lenvik, T.; Badal, S.; Walker, J.T.; Hinderlie, P.; Riley, J.L.; Vallera, D.A.; Blazar, B.R.; Miller, J.S. Low-density PD-1 expression on resting human natural killer cells is functional and upregulated after transplantation. Blood Adv. 2021, 5, 1069–1080. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, J.; Kang, T.H.; Yoo, W.; Choi, H.; Jo, S.; Kong, K.; Lee, S.R.; Kim, S.U.; Kim, J.S.; Cho, D.; et al. An Antibody Designed to Improve Adoptive NK-Cell Therapy Inhibits Pancreatic Cancer Progression in a Murine Model. Cancer Immunol. Res. 2019, 7, 219–229. [Google Scholar] [CrossRef] [PubMed]
- van Ravenswaay Claasen, H.H.; Kluin, P.M.; Fleuren, G.J. Tumor infiltrating cells in human cancer. On the possible role of CD16+ macrophages in antitumor cytotoxicity. Lab. Investig. 1992, 67, 166–174. [Google Scholar] [PubMed]
- Orecchioni, M.; Ghosheh, Y.; Pramod, A.B.; Ley, K. Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS−) vs. Alternatively Activated Macrophages. Front. Immunol. 2019, 10, 1084. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sacristan Santos, V.; Pensado-Lopez, A.; Garcia-Campelo, R.; Antolin Novoa, S.; Senaris Rodriguez, R.; Andon, F.T. Reprogramming tumor-associated macrophages using STING or TLR agonists: A promising strategy to enhance immunotherapy in hormone-dependent cancers. J. Immunother. Cancer 2025, 13, e010950. [Google Scholar] [CrossRef] [PubMed]
- Klichinsky, M.; Ruella, M.; Shestova, O.; Lu, X.M.; Best, A.; Zeeman, M.; Schmierer, M.; Gabrusiewicz, K.; Anderson, N.R.; Petty, N.E.; et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 2020, 38, 947–953. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinto, I.S.; Cordeiro, R.A.; Faneca, H. Polymer- and lipid-based gene delivery technology for CAR T cell therapy. J. Control Release 2023, 353, 196–215. [Google Scholar] [CrossRef] [PubMed]
- Shah, Z.; Tian, L.; Li, Z.; Jin, L.; Zhang, J.; Li, Z.; Barr, T.; Tang, H.; Feng, M.; Caligiuri, M.A.; et al. Human anti-PSCA CAR macrophages possess potent antitumor activity against pancreatic cancer. Cell Stem Cell 2024, 31, 803–817.E6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, Y.; Fang, X.; Zhang, L.; Yin, X. Protocol for generating human CAR-engineered macrophages by Vpx-containing lentivirus. STAR Protoc. 2024, 5, 103350. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghasemi, A.; Martinez-Usatorre, A.; Li, L.; Hicham, M.; Guichard, A.; Marcone, R.; Fournier, N.; Torchia, B.; Martinez Bedoya, D.; Davanture, S.; et al. Cytokine-armed dendritic cell progenitors for antigen-agnostic cancer immunotherapy. Nat. Cancer 2024, 5, 240–261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Tian, L.; Dai, X.; Yu, H.; Wang, J.; Lei, A.; Zhu, M.; Xu, J.; Zhao, W.; Zhu, Y.; et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J. Hematol. Oncol. 2020, 13, 153. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lei, A.; Yu, H.; Lu, S.; Lu, H.; Ding, X.; Tan, T.; Zhang, H.; Zhu, M.; Tian, L.; Wang, X.; et al. A second-generation M1-polarized CAR macrophage with antitumor efficacy. Nat. Immunol. 2024, 25, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Bu, J.Y.; Shaw, A.S.; Chan, A.C. Analysis of the interaction of ZAP-70 and syk protein-tyrosine kinases with the T-cell antigen receptor by plasmon resonance. Proc. Natl. Acad. Sci. USA 1995, 92, 5106–5110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morrissey, M.A.; Williamson, A.P.; Steinbach, A.M.; Roberts, E.W.; Kern, N.; Headley, M.B.; Vale, R.D. Chimeric antigen receptors that trigger phagocytosis. eLife 2018, 7, e36688. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, S.Y.; Kim, I.S. Engulfment signals and the phagocytic machinery for apoptotic cell clearance. Exp. Mol. Med. 2017, 49, e331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schlam, D.; Bagshaw, R.D.; Freeman, S.A.; Collins, R.F.; Pawson, T.; Fairn, G.D.; Grinstein, S. Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins. Nat. Commun. 2015, 6, 8623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, S.; Yang, Y.; Ma, P.; Zha, Y.; Zhang, J.; Lei, A.; Li, N. CAR-macrophage: An extensive immune enhancer to fight cancer. EBioMedicine 2022, 76, 103873. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hobbs, H.T.; Shah, N.H.; Badroos, J.M.; Gee, C.L.; Marqusee, S.; Kuriyan, J. Differences in the dynamics of the tandem-SH2 modules of the Syk and ZAP-70 tyrosine kinases. Protein Sci. 2021, 30, 2373–2384. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, L.; Shi, C.; Yang, Z.; Jing, W.; Han, M.; Zhang, J.; Zhang, C.; Tang, C.; Dong, Y.; Liu, Y.; et al. Convection-enhanced delivery of nanoencapsulated gene locoregionally yielding ErbB2/Her2-specific CAR-macrophages for brainstem glioma immunotherapy. J. Nanobiotechnol. 2023, 21, 56. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jaynes, J.M.; Sable, R.; Ronzetti, M.; Bautista, W.; Knotts, Z.; Abisoye-Ogunniyan, A.; Li, D.; Calvo, R.; Dashnyam, M.; Singh, A.; et al. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci. Transl. Med. 2020, 12, eaax6337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, Z.; Sun, H.; Yu, J.; Tian, W.; Song, Y. Targeting CD47 for cancer immunotherapy. J. Hematol. Oncol. 2021, 14, 180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kelley, S.M.; Ravichandran, K.S. Putting the brakes on phagocytosis: “don’t-eat-me” signaling in physiology and disease. EMBO Rep. 2021, 22, e52564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Logtenberg, M.E.W.; Scheeren, F.A.; Schumacher, T.N. The CD47-SIRPalpha Immune Checkpoint. Immunity 2020, 52, 742–752. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boutilier, A.J.; Elsawa, S.F. Macrophage Polarization States in the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 6995. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flugel, C.L.; Majzner, R.G.; Krenciute, G.; Dotti, G.; Riddell, S.R.; Wagner, D.L.; Abou-El-Enein, M. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat. Rev. Clin. Oncol. 2023, 20, 49–62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, K.; Liu, M.L.; Wang, J.C.; Fang, S. CAR-macrophage versus CAR-T for solid tumors: The race between a rising star and a superstar. Biomol. Biomed. 2024, 24, 465–476. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, J.; Ma, Y.; Li, Q.; Xu, Y.; Xue, Y.; Xu, S. CAR Macrophages: A promising novel immunotherapy for solid tumors and beyond. Biomark. Res. 2024, 12, 86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, M.; Yang, C.S.; Guo, W.; Tang, J.; Huang, Q.; Feng, S.; Jiang, A.; Xu, X.; Jiang, G.; Liu, Y.Q. A novel fiber chimeric conditionally replicative adenovirus-Ad5/F35 for tumor therapy. Cancer Biol. Ther. 2017, 18, 833–840. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, M.; Liu, J.; Liang, Z.; Dai, K.; Gan, J.; Wang, Q.; Xu, Y.; Chen, Y.H.; Wan, X. CAR-Macrophages and CAR-T Cells Synergistically Kill Tumor Cells In Vitro. Cells 2022, 11, 3692. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reiss, K.A.; Angelos, M.G.; Dees, E.C.; Yuan, Y.; Ueno, N.T.; Pohlmann, P.R.; Johnson, M.L.; Chao, J.; Shestova, O.; Serody, J.S.; et al. CAR-macrophage therapy for HER2-overexpressing advanced solid tumors: A phase 1 trial. Nat. Med. 2025, 31, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Pickl, W.F.; Majdic, O.; Kohl, P.; Stockl, J.; Riedl, E.; Scheinecker, C.; Bello-Fernandez, C.; Knapp, W. Molecular and functional characteristics of dendritic cells generated from highly purified CD14+ peripheral blood monocytes. J. Immunol. 1996, 157, 3850–3859. [Google Scholar] [CrossRef] [PubMed]
- Vidalain, P.O.; Azocar, O.; Servet-Delprat, C.; Rabourdin-Combe, C.; Gerlier, D.; Manie, S. CD40 signaling in human dendritic cells is initiated within membrane rafts. EMBO J. 2000, 19, 3304–3313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, C.; Zhang, Y. Potential alternatives to alphabeta-T cells to prevent graft-versus-host disease (GvHD) in allogeneic chimeric antigen receptor (CAR)-based cancer immunotherapy: A comprehensive review. Pathol. Res. Pract. 2024, 262, 155518. [Google Scholar] [CrossRef] [PubMed]
- Ando, M.; Kondo, T.; Tomisato, W.; Ito, M.; Shichino, S.; Srirat, T.; Mise-Omata, S.; Nakagawara, K.; Yoshimura, A. Rejuvenating Effector/Exhausted CAR T Cells to Stem Cell Memory-Like CAR T Cells By Resting Them in the Presence of CXCL12 and the NOTCH Ligand. Cancer Res. Commun. 2021, 1, 41–55. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lickefett, B.; Chu, L.; Ortiz-Maldonado, V.; Warmuth, L.; Barba, P.; Doglio, M.; Henderson, D.; Hudecek, M.; Kremer, A.; Markman, J.; et al. Lymphodepletion—An essential but undervalued part of the chimeric antigen receptor T-cell therapy cycle. Front. Immunol. 2023, 14, 1303935. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goodman, E.R.; Fiedor, P.S.; Fein, S.; Athan, E.; Hardy, M.A. Fludarabine phosphate: A DNA synthesis inhibitor with potent immunosuppressive activity and minimal clinical toxicity. Am. Surg. 1996, 62, 435–442. [Google Scholar] [PubMed]
- Lee, J.H.; Choi, J.; Kwon, K.A.; Lee, S.; Oh, S.Y.; Kwon, H.C.; Kim, H.J.; Han, J.Y.; Kim, S.H. Fludarabine-based myeloablative regimen as pretransplant conditioning therapy in adult acute leukemia/myelodysplastic syndrome: Comparison with oral or intravenous busulfan with cyclophosphamide. Korean J. Hematol. 2010, 45, 102–108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ding, Z.C.; Habtetsion, T.; Cao, Y.; Li, T.; Liu, C.; Kuczma, M.; Chen, T.; Hao, Z.; Bryan, L.; Munn, D.H.; et al. Adjuvant IL-7 potentiates adoptive T cell therapy by amplifying and sustaining polyfunctional antitumor CD4+ T cells. Sci. Rep. 2017, 7, 12168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miller, J.S.; Soignier, Y.; Panoskaltsis-Mortari, A.; McNearney, S.A.; Yun, G.H.; Fautsch, S.K.; McKenna, D.; Le, C.; Defor, T.E.; Burns, L.J.; et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005, 105, 3051–3057. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, R.; Jain, N.; Maus, M.V.; Boissel, N.; Graham, C.; Jozwik, A.; Yallop, D.; Konopleva, M.; Frigault, M.J.; Teshima, T.; et al. UCART19, a first-in-class allogeneic anti-CD19 chimeric antigen receptor T-cell therapy for adults with relapsed or refractory B-cell acute lymphoblastic leukaemia (CALM): A phase 1, dose-escalation trial. Lancet Haematol. 2022, 9, e833–e843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mailankody, S.; Matous, J.V.; Chhabra, S.; Liedtke, M.; Sidana, S.; Oluwole, O.O.; Malik, S.; Nath, R.; Anwer, F.; Cruz, J.C.; et al. Allogeneic BCMA-targeting CAR T cells in relapsed/refractory multiple myeloma: Phase 1 UNIVERSAL trial interim results. Nat. Med. 2023, 29, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, S.; Noei, A.; Maali, A.; Seyed-Motahari, S.S.; Sharifzadeh, Z. Recent updates on allogeneic CAR-T cells in hematological malignancies. Cancer Cell Int. 2024, 24, 304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bharadwaj, S.; Lau, E.; Hamilton, M.P.; Goyal, A.; Srinagesh, H.; Jensen, A.; Lee, D.; Mallampet, J.; Elkordy, S.; Syal, S.; et al. Bendamustine is a safe and effective lymphodepletion agent for axicabtagene ciloleucel in patients with refractory or relapsed large B-cell lymphoma. J. Immunother. Cancer 2024, 12, e008975. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lv, M.; He, Y.; Yang, D.; Ma, Q.; Pang, A.; Zhai, W.; Wei, J.; Chen, X.; Feng, S.; Han, M.; et al. Total body irradiation versus chemotherapy myeloablative conditioning in B-cell acute lymphoblastic leukaemia patients with first complete remission. Sci. Rep. 2025, 15, 10079. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stepanova, V.M.; Volkov, D.V.; Osipova, D.S.; Wang, W.; Hou, Y.; Pershin, D.E.; Fadeeva, M.S.; Malakhova, E.A.; Kulakovskaya, E.A.; Cuicui, L.; et al. Targeting CD45 by gene-edited CAR T cells for leukemia eradication and hematopoietic stem cell transplantation preconditioning. Mol. Ther. Oncol. 2024, 32, 200843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.R.; Zhu, Y.; Fang, Y.; Lyu, Z.; Yang, L. Emerging trends in clinical allogeneic CAR cell therapy. Med 2025, 6, 100677. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Huang, S.; Chen, S.; Wang, Y.; Sun, Q.; Xu, X.; Li, Y. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. J. Exp. Clin. Cancer Res. 2021, 40, 367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wat, J.; Barmettler, S. Hypogammaglobulinemia After Chimeric Antigen Receptor (CAR) T-Cell Therapy: Characteristics, Management, and Future Directions. J. Allergy Clin. Immunol. Pract. 2022, 10, 460–466. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qasim, W.; Zhan, H.; Samarasinghe, S.; Adams, S.; Amrolia, P.; Stafford, S.; Butler, K.; Rivat, C.; Wright, G.; Somana, K.; et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 2017, 9, eaaj2013. [Google Scholar] [CrossRef] [PubMed]
- Hunter, T.L.; Bao, Y.; Zhang, Y.; Matsuda, D.; Riener, R.; Wang, A.; Li, J.J.; Soldevila, F.; Chu, D.S.H.; Nguyen, D.P.; et al. In vivo CAR T cell generation to treat cancer and autoimmune disease. Science 2025, 388, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; Giobbie-Hurder, A.; Adu-Berchie, K.; Ranasinghe, S.; Lako, A.; Severgnini, M.; Thrash, E.M.; Weirather, J.L.; Baginska, J.; Manos, M.P.; et al. First-in-Human Clinical Trial of Vaccination with WDVAX, a Dendritic Cell-Activating Scaffold Incorporating Autologous Tumor Cell Lysate, in Patients with Metastatic Melanoma. Cancer Immunol. Res. 2025, 13, 978–989. [Google Scholar] [CrossRef] [PubMed]
- Mouhssine, S.; Maher, N.; Gaidano, G. A STEP ahead for CAR-T cell therapy of large B cell lymphoma: Understanding the molecular determinants of resistance. Transl. Cancer Res. 2023, 12, 2970–2975. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Cell Type | Hallmark Biomarkers | Typical in Vivo Lifespan * | Isolation/Culture and Engineering | Scale-Up and In Vivo Challenges | Key References |
---|---|---|---|---|---|
αβ T cells (CAR T) | CD3, CD8, TCRαβ; Memory markers (CCR7/CD45RA/RO) | months–years (memory subsets) | leukapheresis → CD3/CD28 activation; IL-2/7/15; viral or non-viral gene transfer | exhaustion and dysfunction in TME; antigen escape; trafficking into solid tumors; time-/cost-intensive autologous manufacture; CRS/ICANS risk | [2] |
Memory T cells (TCM, TEM, TSCM) | TCM: CD45RO+; CCR7+ TEM: CCR7− TSCM: CD95+CD45RA+ | years (especially TSCM) | isolation via FACS/MACS using CCR7/CD45 isoforms; IL-7/IL-15 culture favors memory phenotype; CAR/TCR engineering possible | lower exhaustion risk but harder to expand to clinical doses; preserving phenotype during manufacturing | [72,73,74] |
Virus-specific T cells (VSTs) | CD3+; TCR specific for viral peptides (e.g., CMV pp65, EBV LMP2, adenovirus Hexon) | months–years | expansion from donor or patient PBMCs using viral peptide pools or infected APCs; CAR modification possible for dual specificity | HLA restriction limits allogeneic use; maintaining antiviral specificity post-engineering; donor screening required | [75,76] |
Invariant NKT (iNKT) | TCR Vα24-Jα18/Vβ11 (human); CD3, CD161 | weeks–months | α-GalCer-loaded APCs or CD1d-based stimulation; CAR-iNKT programs | rarity in blood; expansion yield; persistence in humans | [77] |
γδ T cells (e.g., Vγ9Vδ2) | CD3, TCRγδ; NK-like receptors variably | weeks–months | expand with zoledronate/IPP + IL-2/15; CAR-γδ under development | persistence; homing; donor variability; fewer clinical-grade reagents | [78] |
NK cells/CAR NK | CD56+ CD3−; CD16 variably; killer Ig-like receptors | days–weeks (longer with IL-15 support) | sources: peripheral blood, cord blood, iPSC; feeder-based expansions (e.g., K562-41BBL/mbIL-21); mRNA/viral CARs; membrane-bound IL-15 | limited persistence; sensitivity to cryostorage; inhibition by TME; GMP feeder systems/logistics | [79,80,81] |
iPSC-derived T/NK | as per lineage; pluripotency QA | variable; under study | directed differentiation; gene edits at iPSC stage; clonally defined banks | maturation state; genomic stability; release testing and comparability | [2,82] |
Cell Type | Hallmark Biomarkers | Typical In Vivo Lifespan | Isolation/Culture and Engineering Methods | Scale-Up and In Vivo Challenges | Key References |
---|---|---|---|---|---|
Macrophages/CAR Ms | CD14+ (monocytes), CD68+, HLA-DR; M1/M2 polarization markers | weeks–months (tissue-resident) | monocytes differentiated with M-CSF/GM-CSF; non-integrating viral vectors often used; polarization controlled with cytokines/agonists | prone to re-programming by tumor microenironment (TME); limited proliferation ex vivo; delivery to solid tumors; durability of engineered phenotype | [166,167,168,169] |
Dendritic cells (DC vaccines/engineered DCs) | cDC1: CD141/BDCA3 cDC2: CD1c/BDCA1 pDC: CD303; HLA-DR+ | days | generated from monocytes with GM-CSF + IL-4; matured with cytokine cocktails; antigen loading using defined peptides, mRNA electroporation, or tumor lysates (providing a broad repertoire of tumor-associated antigens (TAAs), including patient-specific neoantigens) | short half-life; migration to lymph nodes; variability in antigen presentation; batch consistency | [10,170] |
iPSC-derived myeloid (macrophage/DC) | as per lineage | variable | differentiation from iPSCs; possible genetic engineering at pluripotent stage; “off-the-shelf” cell banks | maturation/function equivalence to primary cells; genomic stability; batch consistency and release criteria | [171,172] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreou, T.; Neophytou, C.; Mpekris, F.; Stylianopoulos, T. Expanding Immunotherapy Beyond CAR T Cells: Engineering Diverse Immune Cells to Target Solid Tumors. Cancers 2025, 17, 2917. https://doi.org/10.3390/cancers17172917
Andreou T, Neophytou C, Mpekris F, Stylianopoulos T. Expanding Immunotherapy Beyond CAR T Cells: Engineering Diverse Immune Cells to Target Solid Tumors. Cancers. 2025; 17(17):2917. https://doi.org/10.3390/cancers17172917
Chicago/Turabian StyleAndreou, Tereza, Constantina Neophytou, Fotios Mpekris, and Triantafyllos Stylianopoulos. 2025. "Expanding Immunotherapy Beyond CAR T Cells: Engineering Diverse Immune Cells to Target Solid Tumors" Cancers 17, no. 17: 2917. https://doi.org/10.3390/cancers17172917
APA StyleAndreou, T., Neophytou, C., Mpekris, F., & Stylianopoulos, T. (2025). Expanding Immunotherapy Beyond CAR T Cells: Engineering Diverse Immune Cells to Target Solid Tumors. Cancers, 17(17), 2917. https://doi.org/10.3390/cancers17172917