Integrating Artificial Intelligence in Bronchoscopy and Endobronchial Ultrasound (EBUS) for Lung Cancer Diagnosis and Staging: A Comprehensive Review
Simple Summary
Abstract
1. Introduction
2. Core Concepts of Artificial Intelligence
Critical Overview of Artificial Intelligence Applications in Medicine
3. Artificial Intelligence in Bronchoscopy for Lung Cancer Diagnosis
Input Data Type | Diagnostic Task | Model Type | Unit of Analysis | Dataset Size | Ground Truth | Performance Metrics | External Validation | Data Availability | Year | Authors [Ref.] |
---|---|---|---|---|---|---|---|---|---|---|
WLB | Lesion detection | CNN | Frames | 2908 | Expert consensus | Acc: 93.3% | Yes | Public | 2025 | Liu et al. [33] |
WLB | Lesion detection | CNN | Patients/Frames | 615/2900 | Histopathology | Acc: 97.8% | No | Public | 2024 | Sun et al. [29] |
WLB | Lesion detection | CNN | Frames | 28,032 | Expert consensus | Acc: 83.3%, Sen: 79.3%, Spe: 86.1% | No | On request | 2024 | Cao et al. [35] |
WLB | Lesion classification | CNN | Patients/Frames | 208/2921 | Histopathology | Acc: 82–94% | No | Public | 2023 | Vu et al. [34] |
WLB | Lesion detection | CNN | Patients/Frames | 200/2029 | Expert consensus | Acc: 94.8% | No | On request | 2023 | Yan et al. [32] |
WLB | Lesion detection | CNN | Patients/Frames | 818/2238 | Histopathology | Acc: 95.1%, Sen: 97.8%, Spe: 83.3% | No | Not available | 2022 | Deng et al. [30] |
WLB | Lesion classification | CNN | Patients | 434 | Histopathology | Acc: 82% | No | Not available | 2018 | Tan et al. [31] |
AFB | Lesion detection | AE | Patients/Frames | 20/685 | Expert consensus | Prec: 86.2% | No | Public | 2024 | Chang et al. [39] |
AFB | Lesion detection | SVM, ML | Patients/Frames | 4/39,899 | Expert consensus | Acc: ≥ 97% | No | Not available | 2020 | Chang et al. [36] |
AFB | Lesion classification | ML | Patients | 23 | Histopathology | Acc: 83%, Sen: 73%, Spe: 92% | No | Not available | 2018 | Feng et al. [38] |
AFB | Lesion classification | ML | Patients/Frames | 11/715 | Histopathology | Acc: 95.4%, Sen: 95.5%, Spe: 95.2% | No | Not available | 2014 | Haritou et al. [37] |
NBI | Lesion detection | CNN | Patients/Frames | 23/66,219 | Expert consensus | Sen: 93%, Spe: 86% | No | Not available | 2024 | Daneshpajooh et al. [40] |
RS | Lesion classification | ML | Patients/Spectra | 70/78 | Histopathology | Acc: 87.2% | No | On request | 2024 | Fousková et al. [41] |
3.1. The Role of Artificial Intelligence in Bronchonavigation
3.2. Artificial Intelligence in Competency-Based Endoscopy Training
4. Artificial Intelligence in Endobronchial Ultrasound (EBUS) for Lung Cancer Diagnosis and Staging
Input Data Type | Diagnostic Task | Model Type | Unit of Analysis | Dataset Size | Ground Truth | Performance Metrics | External Validation | Data Availability | Year | Authors [Ref.] |
---|---|---|---|---|---|---|---|---|---|---|
EBUS | Malignant LN recognition | CNN | Patients/frames | 773/2569 | Histopathology | Acc: 80.6%, Sen: 43.2%, Spe: 96.9% | No | Not available | 2024 | Patel et al. [102] |
EBUS | Malignant LN recognition | CNN | Videos/LNs | 53/90 | Histopathology | Acc: 96.7% | No | Not available | 2024 | Ishiwata et al. [100] |
EBUS | Malignant LN recognition | SVM | Patients/Lesions | 197/205 | Histopathology | Acc: 74.2%, Sen: 70.3%, Spe: 74.1% | No | Not available | 2024 | Hu et al. [97] |
EBUS | Malignant LN recognition | SVM/KNN | LNs | 992 | Histopathology | Acc: 95.9–96.4% | No | Not available | 2023 | Koseoglu et al. [96] |
EBUS | Malignant LN recognition | AE | Patients/LNs | 140/298 | Histopathology | Acc: 72.9–73.8% | No | Not available | 2022 | Churchill et al. [98] |
EBUS | Malignant LN recognition | CNN | Patients/LNs/frames | 91/166/11,699 | Histopathology/follow-up | Acc: 87.9%, Sen: 76.9%, Spe: 95.0% | No | Not available | 2022 | Ito et al. [99] |
EBUS | Malignant LN recognition | CNN | LNs/frames | 2394/2396 | Histopathology | Acc: 75.8%, Sen: 72.7%, Spe: 79.0% | No | On request | 2022 | Yong et al. [101] |
EBUS | Malignant LN recognition | ANN | LNs/frames | 345/345 | Histopathology/follow-up | Acc: 82%, Sen: 89%, Spe: 72% | No | Not available | 2020 | Ozcelik et al. [95] |
EBUS | Malignant LN recognition | ANN | Patients/LNs | 91/91 | Histopathology | Acc: 75.8–91.2%, Sen: 84.9–98.5%, Spe: 48–84% | No | Not available | 2008 | Tagaya et al. [94] |
EBUS | LN segmentation | CNN | Patients/frames | 56/28,134 | Expert consensus | Acc: 59.5% | No | On request | 2025 | Ervik et al. [92] |
EBUS | LN segmentation | AE | Patients/frames | 40/1161 | Expert consensus | Sen: 71%, Spe: 98% | No | On request | 2024 | Ervik et al. [91] |
EBUS (elastography) | Malignant LN recognition | CNN | Patients/LNs | 124/187 | Histopathology | Acc: 70.6%, Sen: 43.0%, Spe: 90.7% | No | Not available | 2024 | Patel et al. [105] |
EBUS (elastography) | Malignant LN recognition | CNN | Videos | 727 | Histopathology/follow-up | Acc: 81.3% | No | Not available | 2023 | Xu et al. [104] |
EBUS (elastography) | Malignant LN recognition | ML | Patients/LNs | 351/415 | Histopathology/follow-up | Acc: 82.4% | No | On request | 2021 | Zhi et al. [103] |
EBUS (elastography) | LN segmentation | AE, ViT | Patients/frames | 206/263 | Expert consensus | Prec: 84.4% | No | On request | 2024 | Zhou et al. [93] |
EBUS (gray scale, Doppler, elastography) | Malignant LN recognition | CNN, ViT | Patients/videos | 150/330 | Histopathology/follow-up | Acc: 82%, Sen: 84.2%, Spe: 80.7% | No | Not available | 2025 | Lin et al. [107] |
EBUS (gray scale, Doppler, elastography) | Malignant LN recognition | AE | Patients/LNs | 267/294 | Histopathology/follow-up | Acc: 88.6%, Sen: 92.4%, Spe: 83.0% | No | Not available | 2021 | Li et al. [106] |
rEBUS | Malignant PPN recognition | KNN | Patients | 156 | Histopathology/follow-up | Acc: 99.4%, Sen: 100.0%, Spe: 98.9% | No | Not available | 2024 | Xing et al. [112] |
rEBUS | Malignant PPN recognition | CNN | Patients/PPNs/frames | 260/265/769 | Histopathology/follow-up | Sen: 58–80%, Spe: 75–92% | Yes | On request | 2023 | Yu et al. [110] |
rEBUS | Malignant PPN recognition | CNN | PPNs | 200 | Histopathology | Acc: 95%, Sen: 100%, Spe: 86.7% | No | Not available | 2022 | Khomkham et al. [111] |
rEBUS | Malignant PPN recognition | CNN | Patients/frames | 213/2421,360 | Histopathology/follow-up | Acc: 83.4%, Sen: 95.3%, Spe: 53.6% | No | On request | 2022 | Hotta et al. [109] |
rEBUS | Malignant PPN recognition | CNN | Patients/frames | 164/164 | Histopathology/follow-up | Acc: 85.4%, Sen: 87.0%, Spe: 82.1% | No | Not available | 2019 | Chen et al. [108] |
5. Artificial Intelligence Assistance in Histopathological Examination and Rapid On-Site Evaluation (ROSE)
6. Artificial Intelligence in Other Imaging Modalities and Lung Cancer Screening
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EBUS | endobronchial ultrasound |
AI | artificial intelligence |
EBUS-TBNA | endobronchial ultrasound-guided transbronchial needle aspiration |
ML | machine learning |
DL | deep learning |
CNN | convolutional neural network |
CT | computed tomography |
WLB | white light bronchoscopy |
AFB | autofluorescence bronchoscopy |
NBI | narrow band imaging |
RS | Raman spectroscopy |
AE | autoEncoder |
SVM | support vector machine |
Acc | accuracy |
AUC | area under the curve |
Sen | sensitivity |
Spe | specificity |
Prec | precision |
MARN | multiscale attention residual network |
TL | transfer learning |
SFT | sequential fine-tuning |
PKDN | prior knowledge distillation network |
KD MFAD | knowledge distillation-based memory feature unsupervised anomaly detection |
DDC | downward deformable convolution |
CB Mem | convolutional block focused memory matrix |
PPN | peripheral pulmonary nodule |
NeRF | neural radiance fields |
FBG | fiber Bragg grating |
ICU | intensive care unit |
BRadSTAT | bronchoscopy–radiologic skills and task assessment tool |
rEBUS | radial endobronchial ultrasound |
LN | lymph node |
ViT | vision transformer |
KNN | K-nearest neighbors |
ANN | artificial neural network |
ROI | region of interest |
GPU | graphics processing unit |
ROSE | rapid on-site evaluation |
PET | positron emission tomography |
LDCT | low-dose computed tomography |
SCC | squamous cell carcinoma |
AC | adenocarcinoma |
SCLS | small cell lung carcinoma |
References
- Prabhakar, B.; Shende, P.; Augustine, S. Current trends and emerging diagnostic techniques for lung cancer. Biomed. Pharmacother. 2018, 106, 1586–1599. [Google Scholar] [CrossRef]
- Dollin, Y.; Munoz Pineda, J.A.; Sung, L.; Hasteh, F.; Fortich, M.; Lopez, A.; Van Nostrand, K.; Patel, N.M.; Miller, R.; Cheng, G. Diagnostic modalities in the mediastinum and the role of bronchoscopy in mediastinal assessment: A narrative review. Mediastinum 2024, 8, 51. [Google Scholar] [CrossRef]
- Minami, H.; Ando, Y.; Nomura, F.; Sakai, S.; Shimokata, K. Interbronchoscopist variability in the diagnosis of lung cancer by flexible bronchoscopy. Chest 1994, 105, 1658–1662. [Google Scholar] [CrossRef]
- Mwesigwa, N.W.; Tentzeris, V.; Gooseman, M.; Qadri, S.; Maxine, R.; Cowen, M. Electromagnetic Navigational Bronchoscopy Learning Curve Regarding Pneumothorax Rate and Diagnostic Yield. Cureus 2024, 16, e58289. [Google Scholar] [CrossRef]
- Ishiwata, T.; Yasufuku, K. Artificial intelligence in interventional pulmonology. Curr. Opin. Pulm. Med. 2024, 30, 92–98. [Google Scholar] [CrossRef]
- Bertolaccini, L.; Guarize, J.; Diotti, C.; Donghi, S.M.; Casiraghi, M.; Mazzella, A.; Spaggiari, L. Harnessing artificial intelligence for breakthroughs in lung cancer management: Are we ready for the future? Front. Oncol. 2024, 14, 1450568. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Mori, K.; Peters, T.M. Advanced Endoscopic Navigation: Surgical Big Data, Methodology, and Applications. Annu. Rev. Biomed. Eng. 2018, 20, 221–251. [Google Scholar] [CrossRef]
- Shafi, S.; Parwani, A.V. Artificial intelligence in diagnostic pathology. Diagn. Pathol. 2023, 18, 109. [Google Scholar] [CrossRef]
- Amisha Malik, P.; Pathania, M.; Rathaur, V.K. Overview of artificial intelligence in medicine. J. Fam. Med. Prim. Care 2019, 8, 2328–2331. [Google Scholar] [CrossRef] [PubMed]
- Bellini, V.; Cascella, M.; Cutugno, F.; Russo, M.; Lanza, R.; Compagnone, C.; Bignami, E.G. Understanding basic principles of Artificial Intelligence: A practical guide for intensivists. Acta Biomed. 2022, 93, e2022297. [Google Scholar]
- Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [Google Scholar]
- Jiang, T.; Gradus, J.L.; Rosellini, A.J. Supervised Machine Learning: A Brief Primer. Behav. Ther. 2020, 51, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Eckhardt, C.M.; Madjarova, S.J.; Williams, R.J.; Ollivier, M.; Karlsson, J.; Pareek, A.; Nwachukwu, B.U. Unsupervised machine learning methods and emerging applications in healthcare. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Al-Hamadani, M.N.A.; Fadhel, M.A.; Alzubaidi, L.; Balazs, H. Reinforcement Learning Algorithms and Applications in Healthcare and Robotics: A Comprehensive and Systematic Review. Sensors 2024, 24, 2461. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Kufel, J.; Bargieł-Łączek, K.; Kocot, S.; Koźlik, M.; Bartnikowska, W.; Janik, M.; Czogalik, Ł.; Dudek, P.; Magiera, M.; Lis, A.; et al. What Is Machine Learning, Artificial Neural Networks and Deep Learning?—Examples of Practical Applications in Medicine. Diagnostics 2023, 13, 2582. [Google Scholar] [CrossRef]
- Ayachi, R.; Said, Y.; Atri, M. A Convolutional Neural Network to Perform Object Detection and Identification in Visual Large-Scale Data. Big Data 2021, 9, 41–52. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80–93. [Google Scholar] [CrossRef]
- Chatterjee, S.; Das, S.; Ganguly, K.; Mandal, D. Advancements in robotic surgery: Innovations, challenges and future prospects. J. Robot. Surg. 2024, 18, 28. [Google Scholar] [CrossRef]
- Lanotte, F.; O’Brien, M.K.; Jayaraman, A. AI in Rehabilitation Medicine: Opportunities and Challenges. Ann. Rehabil. Med. 2023, 47, 444–458. [Google Scholar] [CrossRef]
- Olawade, D.B.; Wada, O.J.; David-Olawade, A.C.; Kunonga, E.; Abaire, O.; Ling, J. Using artificial intelligence to improve public health: A narrative review. Front. Public. Health 2023, 11, 1196397. [Google Scholar] [CrossRef]
- Bellini, V.; Valente, M.; Del Rio, P.; Bignami, E. Artificial intelligence in thoracic surgery: A narrative review. J. Thorac. Dis. 2021, 13, 6963–6975. [Google Scholar] [CrossRef]
- Mehta, V. Artificial intelligence augmentation raises questions about the future of bronchoscopy. ERJ Open Res. 2025, 11, 00931–02024. [Google Scholar] [CrossRef]
- Lee, P.; Colt, H.G. Bronchoscopy in lung cancer: Appraisal of current technology and for the future. J. Thorac. Oncol. 2010, 5, 1290–1300. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, G.A.; Vachani, A.; Whitney, D.; Elashoff, M.; Porta Smith, K.; Ferguson, J.S.; Parsons, E.; Mitra, N.; Brody, J.; Lenburg, M.E.; et al. A Bronchial Genomic Classifier for the Diagnostic Evaluation of Lung Cancer. N. Engl. J. Med. 2015, 373, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Agbontaen, K.O.; Cold, K.M.; Woods, D.; Grover, V.; Aboumarie, H.S.; Kaul, S.; Konge, L.; Singh, S. Artificial Intelligence-Guided Bronchoscopy is Superior to Human Expert Instruction for the Performance of Critical-Care Physicians: A Randomized Controlled Trial. Crit. Care Med. 2025, 53, e1105. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Yan, P.; Li, M.; Li, X.; Jiang, Y.; Luo, H.; Zhao, Y. An accurate prediction for respiratory diseases using deep learning on bronchoscopy diagnosis images. J. Adv. Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Chen, Y.; Xie, L.; Wang, L.; Zhan, J. The investigation of construction and clinical application of image recognition technology assisted bronchoscopy diagnostic model of lung cancer. Front. Oncol. 2022, 12, 1001840. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Li, Z.; Liu, H.; Zanjani, F.G.; Ouyang, Q.; Tang, Y.; Hu, Z.; Li, Q. Optimize Transfer Learning for Lung Diseases in Bronchoscopy Using a New Concept: Sequential Fine-Tuning. IEEE J. Transl. Eng. Health Med. 2018, 6, 1800808. [Google Scholar] [CrossRef]
- Yan, P.; Sun, W.; Li, X.; Li, M.; Jiang, Y.; Luo, H. PKDN: Prior Knowledge Distillation Network for bronchoscopy diagnosis. Comput. Biol. Med. 2023, 166, 107486. [Google Scholar] [CrossRef]
- Liu, Q.; Zheng, H.; Jia, Z.; Shi, Z. Tumor detection on bronchoscopic images by unsupervised learning. Sci. Rep. 2025, 15, 245. [Google Scholar] [CrossRef]
- Vu, V.G.; Hoang, A.D.; Phan, T.P.; Nguyen, N.D.; Nguyen, T.T.; Nguyen, D.N.; Dao, N.P.; Doan, T.P.L.; Nguyen, T.T.H.; Trinh, T.H.; et al. BM-BronchoLC—A rich bronchoscopy dataset for anatomical landmarks and lung cancer lesion recognition. Sci. Data 2024, 11, 321. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhang, J.; Zhuo, R.; Zhao, J.; Dong, Y.; Liu, T.; Zhao, H. BrYOLO-Mamba: A Approach to Efficient Tracheal Lesion Detection in Bronchoscopy. IEEE Access 2024, 12, 174630–174639. [Google Scholar] [CrossRef]
- Chang, Q.; Bascom, R.; Toth, J.; Ahmad, D.; Higgins, W.E. Autofluorescence Bronchoscopy Video Analysis for Lesion Frame Detection. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020, 2020, 1556–1559. [Google Scholar]
- Haritou, M.; Bountris, P.; Passalidou, E.; Koklonis, K.; Koutsouris, D. An image analysis tool for the classification of lesions suspicious for malignancy in autofluorescence bronchoscopy. Biomed. Spectrosc. Imaging 2014, 3, 167–183. [Google Scholar] [CrossRef]
- Feng, P.H.; Chen, T.T.; Lin, Y.T.; Chiang, S.Y.; Lo, C.M. Classification of lung cancer subtypes based on autofluorescence bronchoscopic pattern recognition: A preliminary study. Comput. Methods Programs Biomed. 2018, 163, 33–38. [Google Scholar] [CrossRef]
- Chang, Q.; Ahmad, D.; Toth, J.; Bascom, R.; Higgins, W.E. ESFPNet: Efficient Stage-Wise Feature Pyramid on Mix Transformer for Deep Learning-Based Cancer Analysis in Endoscopic Video. J. Imaging 2024, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- Daneshpajooh, V.; Ahmad, D.; Toth, J.; Bascom, R.; Higgins, W.E. Automatic lesion detection for narrow-band imaging bronchoscopy. J. Med. Imaging 2024, 11, 036002. [Google Scholar] [CrossRef] [PubMed]
- Fousková, M.; Habartová, L.; Vališ, J.; Nahodilová, M.; Vaňková, A.; Synytsya, A.; Šestáková, Z.; Votruba, J.; Setnička, V. Raman spectroscopy in lung cancer diagnostics: Can an in vivo setup compete with ex vivo applications? Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 322, 124770. [Google Scholar] [CrossRef]
- Kiraly, A.P.; Odry, B.L.; Godoy, M.C.; Geiger, B.; Novak, C.L.; Naidich, D.P. Computer-aided diagnosis of the airways: Beyond nodule detection. J. Thorac. Imaging 2008, 23, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, E.; Sánchez, C.; Gil, D. Localizing Pulmonary Lesions Using Fuzzy Deep Learning. In Proceedings of the 2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, 4–7 September 2019; pp. 290–294. [Google Scholar]
- Zhang, M.; Gu, Y. Towards Connectivity-Aware Pulmonary Airway Segmentation. IEEE J. Biomed. Health Inform. 2023, 28, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.W.; Wang, Y.; Zhu, H.; Zhang, J.; Deng, X.; Liu, W. A Cascaded Network for Airway Tree Segmentation Incorporating Multiple Attention Mechanisms. In Proceedings of the 2024 7th International Symposium on Autonomous Systems (ISAS), Chongqing, China, 7–9 May 2024; pp. 1–5. [Google Scholar]
- Meng, Q.; Kitasaka, T.; Nimura, Y.; Oda, M.; Ueno, J.; Mori, K. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 245–261. [Google Scholar] [CrossRef]
- Mori, K.; Ota, S.; Deguchi, D.; Kitasaka, T.; Suenaga, Y.; Iwano, S.; Hasegawa, Y.; Takabatake, H.; Mori, M.; Natori, H. Automated anatomical labeling of bronchial branches extracted from CT datasets based on machine learning and combination optimization and its application to bronchoscope guidance. Med. Image Comput. Comput. Assist. Interv. 2009, 12, 707–714. [Google Scholar]
- Zhou, Z.Q.; Guo, Z.Y.; Zhong, C.H.; Qiu, H.Q.; Chen, Y.; Rao, W.Y.; Chen, X.B.; Wu, H.K.; Tang, C.L.; Su, Z.Q.; et al. Deep Learning-Based Segmentation of Airway Morphology from Endobronchial Optical Coherence Tomography. Respiration 2023, 102, 227–236. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, X.; Xie, F.; Ye, L.; Bignami, E.; Tandon, Y.K.; Rodríguez, M.; Gu, Y.; Sun, J. Development and validation of the artificial intelligence (AI)-based diagnostic model for bronchial lumen identification. Transl. Lung Cancer Res. 2022, 11, 2261–2274. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Herth, F.J.; Zuo, Y.; Li, H.; Liang, X.; Chen, Y.; Ren, J.; Jian, W.; Zhong, C.; Li, S. Distinguishing bronchoscopically observed anatomical positions of airway under by convolutional neural network. Ther. Adv. Chronic Dis. 2023, 14, 20406223231181495. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Kang, S.Y.; Park, J.S.; Cho, Y.J.; Park, S.Y.; Yoon, H.I.; Park, S.J.; Jeong, H.G.; Kim, T. Deep learning for anatomical interpretation of video bronchoscopy images. Sci. Rep. 2021, 11, 23765. [Google Scholar] [CrossRef]
- Borrego-Carazo, J.; Sanchez, C.; Castells-Rufas, D.; Carrabina, J.; Gil, D. BronchoPose: An analysis of data and model configuration for vision-based bronchoscopy pose estimation. Comput. Methods Programs Biomed. 2023, 228, 107241. [Google Scholar] [CrossRef]
- Wang, C.; Oda, M.; Hayashi, Y.; Kitasaka, T.; Itoh, H.; Honma, H.; Takebatake, H.; Mori, M.; Natori, H.; Mori, K. Anatomy Aware-Based 2.5D Bronchoscope Tracking for Image-Guided Bronchoscopic Navigation. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2022, 11, 1122–1129. [Google Scholar] [CrossRef]
- Zhu, L.; Zheng, J.; Wang, C.; Jiang, J.; Song, A. A bronchoscopic navigation method based on neural radiation fields. Int. J. Comput. Assist. Radiol. Surg. 2024, 19, 2011–2021. [Google Scholar] [CrossRef]
- Keuth, R.; Heinrich, M.; Eichenlaub, M.; Himstedt, M. Airway label prediction in video bronchoscopy: Capturing temporal dependencies utilizing anatomical knowledge. Int. J. Comput. Assist. Radiol. Surg. 2024, 19, 713–721. [Google Scholar] [CrossRef]
- Cicenia, J.; Sethi, S. Navigation to peripheral lung nodules using an artificial intelligence-driven augmented image fusion platform (LungVision): A pilot study. Chest 2019, 156, A830. [Google Scholar] [CrossRef]
- Whitten, P. Artificial intelligence driven diagnosis of lung cancer in patients with multiple pulmonary nodules. Chest 2019, 156, A534. [Google Scholar] [CrossRef]
- Gruionu, L.G.; Udriștoiu, A.L.; Iacob, A.V.; Constantinescu, C.; Stan, R.; Gruionu, G. Feasibility of a lung airway navigation system using fiber-Bragg shape sensing and artificial intelligence for early diagnosis of lung cancer. PLoS ONE 2022, 17, e0277938. [Google Scholar] [CrossRef]
- Fried, I.; Hoelscher, J.; Akulian, J.A.; Pizer, S.; Alterovitz, R. Landmark Based Bronchoscope Localization for Needle Insertion Under Respiratory Deformation. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 6593–6600. [Google Scholar]
- Chahla, B.; Ozen, M. Fluoroscopy and Cone Beam CT Guidance in Robotic Interventions. Tech. Vasc. Interv. Radiol. 2024, 27, 101007. [Google Scholar] [CrossRef]
- Boac, B.M.; Kanathanavanich, M.; Li, X.; Imai, T.; Fan, X.; Walts, A.E.; Marchevsky, A.M.; Bose, S. Accuracy and efficacy of Ion robotic-assisted bronchoscopic fine needle aspiration of lung lesions. J. Am. Soc. Cytopathol. 2024, 13, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, L.; Xiang, P.; Fang, Q.; Nie, X.; Ma, H.; Hu, J.; Xiong, R.; Wang, Y.; Lu, H. AI co-pilot bronchoscope robot. Nat. Commun. 2024, 15, 241. [Google Scholar] [CrossRef] [PubMed]
- Mitros, Z.; Thamo, B.; Bergeles, C.; da Cruz, L.; Dhaliwal, K.; Khadem, M. Design and Modelling of a Continuum Robot for Distal Lung Sampling in Mechanically Ventilated Patients in Critical Care. Front. Robot. AI 2021, 8, 611866. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, X.; Qin, Y.; Wang, H.; Yu, N.; Han, J. Depth-Awareness Shared Self-Supervised Bronchial Orifice Segmentation for Center Detection in Vision-Based Robotic Bronchoscopy. In Proceedings of the 2024 IEEE 14th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Copenhagen, Denmark, 16–19 July 2024; pp. 345–351. [Google Scholar]
- Zheng, M.; Ye, M.; Rafii-Tari, H. Automatic Biopsy Tool Presence and Episode Recognition in Robotic Bronchoscopy Using a Multi-Task Vision Transformer Network. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 7349–7355. [Google Scholar]
- Zhao, J.; Chen, H.; Tian, Q.; Chen, J.; Yang, B.; Zhang, Z.; Liu, H. BronchoCopilot: Towards Autonomous Robotic Bronchoscopy via Multimodal Reinforcement Learning. In Proceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United Arab Emirates, 14–18 October 2024; pp. 6923–6930. [Google Scholar]
- Sachdeva, A.; Sethi, S. Motivation and Learning: Leveraging Artificial Intelligence to Improve Bronchoscopy Performance. Chest 2024, 165, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Hostetter, L.J.; Nelson, D.R. Competency-based medical education in interventional pulmonology: Current state and future opportunities. Curr. Opin. Pulm. Med. 2025, 31, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Healy, W.J.; Musani, A.; Fallaw, D.J.; Islam, S.U. Emerging Role of Artificial Intelligence in Academic Pulmonary Medicine. South. Med. J. 2024, 117, 369–370. [Google Scholar] [CrossRef]
- Cold, K.M.; Vamadevan, A.; Nielsen, A.O.; Konge, L.; Clementsen, P.F. Systematic Bronchoscopy: The Four Landmarks Approach. J. Vis. Exp. 2023, e65358. [Google Scholar] [CrossRef]
- Cold, K.M.; Agbontaen, K.; Nielsen, A.O.; Andersen, C.S.; Singh, S.; Konge, L. Artificial intelligence improves bronchoscopy performance: A randomised crossover trial. ERJ Open Res. 2025, 11, 00395–02024. [Google Scholar] [CrossRef] [PubMed]
- Cold, K.M.; Xie, S.; Nielsen, A.O.; Clementsen, P.F.; Konge, L. Artificial Intelligence Improves Novices’ Bronchoscopy Performance: A Randomized Controlled Trial in a Simulated Setting. Chest 2024, 165, 405–413. [Google Scholar] [CrossRef]
- Cold, K.M.; Wei, W.; Agbontaen, K.; Singh, S.; Konge, L. Mastery Learning Guided by Artificial Intelligence Is Superior to Directed Self-Regulated Learning in Flexible Bronchoscopy Training: An RCT. Respiration 2025, 104, 206–215. [Google Scholar] [CrossRef]
- Xu, W.; Hou, G.; Deng, M. A novel artificial intelligence feedback system boosts novice bronchoscopy performance based on chest-CT simulated tracheal models: A randomized controlled trial. Eur. Respir. J. 2024, 64, RCT998. [Google Scholar] [CrossRef]
- Mora, A.; Debiasi, E. Leveraging artificial intelligence for development of a cost-effective bronchoscopy simulator for resource-constrained settings. Chest 2023, 164, A3896. [Google Scholar] [CrossRef]
- Cold, K.M.; Agbontaen, K.; Nielsen, A.O.; Andersen, C.S.; Singh, S.; Konge, L. Artificial intelligence for automatic and objective assessment of competencies in flexible bronchoscopy. J. Thorac. Dis. 2024, 16, 5718–5726. [Google Scholar] [CrossRef] [PubMed]
- Yap, E.L.C.; Vandal, A.C.; Williamson, J.P.; Nguyen, P.; Colt, H. Development of a Bronchoscopy-Radiologic Skills and Task Assessment Tool (BRadSTAT): A Tool for Evaluating the Radiological Skills of Bronchoscopists with Different Experience. Respiration 2022, 101, 990–1005. [Google Scholar] [CrossRef]
- Huang, J.; Lin, J.; Lin, Z.; Li, S.; Zhong, C. Artificial Intelligence Feedback for Bronchoscopy Training: Old Wine in a New Bottle or True Innovation? Chest 2024, 165, e60–e61. [Google Scholar] [CrossRef] [PubMed]
- Jaliawala, H.A.; Farooqui, S.M.; Harris, K.; Abdo, T.; Keddissi, J.I.; Youness, H.A. Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration (EBUS-TBNA): Technical Updates and Pathological Yield. Diagnostics 2021, 11, 2331. [Google Scholar] [CrossRef]
- Fielding, D.I.; Kurimoto, N. EBUS-TBNA/staging of lung cancer. Clin. Chest Med. 2013, 34, 385–394. [Google Scholar] [CrossRef]
- Torre, M.; Reda, M.; Musso, V.; Danuzzo, F.; Mohamed, S.; Conforti, S. Diagnostic accuracy of endobronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA) for mediastinal lymph node staging of lung cancer. Mediastinum 2021, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, Y. Diagnostic utility of endobronchial ultrasound elastography for detecting benign and malignant lymph nodes: A retrospective study. J. Thorac. Dis. 2025, 17, 614–622. [Google Scholar] [CrossRef]
- Nosotti, M.; Palleschi, A.; Tosi, D.; Mendogni, P.; Righi, I.; Carrinola, R.; Rosso, L. Color-Doppler sonography patterns in endobronchial ultrasound-guided transbronchial needle aspiration of mediastinal lymph-nodes. J. Thorac. Dis. 2017, 9, S376–S380. [Google Scholar] [CrossRef]
- Chen, A.; Chenna, P.; Loiselle, A.; Massoni, J.; Mayse, M.; Misselhorn, D. Radial probe endobronchial ultrasound for peripheral pulmonary lesions. A 5-year institutional experience. Ann. Am. Thorac. Soc. 2014, 11, 578–582. [Google Scholar] [CrossRef] [PubMed]
- McGuire, A.L.; Myers, R.; Grant, K.; Lam, S.; Yee, J. The Diagnostic Accuracy and Sensitivity for Malignancy of Radial-Endobronchial Ultrasound and Electromagnetic Navigation Bronchoscopy for Sampling of Peripheral Pulmonary Lesions: Systematic Review and Meta-analysis. J. Bronchol. Interv. Pulmonol. 2020, 27, 106–121. [Google Scholar] [CrossRef]
- Wang, B.; Guo, Q.; Wang, J.Y.; Yu, Y.; Yi, A.J.; Cui, X.W.; Dietrich, C.F. Ultrasound Elastography for the Evaluation of Lymph Nodes. Front. Oncol. 2021, 11, 714660. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, L.; Chen, J.; Zhi, X.; Sun, J. A risk-scoring model based on endobronchial ultrasound multimodal imaging for predicting metastatic lymph nodes in lung cancer patients. Endosc. Ultrasound 2024, 13, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Zo, S.; Kim, J.H.; Oh, Y.J.; Ahn, J.H.; Kim, M.; Lee, K.; Lee, H.Y. Nondiagnostic, radial-probe endobronchial ultrasound-guided biopsy for peripheral lung lesions: The added value of radiomics from ultrasound imaging for predicting malignancy. Thorac. Cancer 2023, 14, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wu, C.; Zhou, C.; Zheng, W.; Li, P. Recent advances in convex probe endobronchial ultrasound: A narrative review. Ann. Transl. Med. 2021, 9, 419. [Google Scholar] [CrossRef]
- Achim, C.; Rusu-Both, R.; Chira, R.I. Computerised application for lung cancer diagnosis based on transthoracic ultrasonography. In Proceedings of the 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, 3–6 December 2018; pp. 211–216. [Google Scholar]
- Ervik, Ø.; Tveten, I.; Hofstad, E.F.; Langø, T.; Leira, H.O.; Amundsen, T.; Sorger, H. Automatic Segmentation of Mediastinal Lymph Nodes and Blood Vessels in Endobronchial Ultrasound (EBUS) Images Using Deep Learning. J. Imaging 2024, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Ervik, Ø.; Rødde, M.; Hofstad, E.F.; Tveten, I.; Langø, T.; Leira, H.O.; Amundsen, T.; Sorger, H. A New Deep Learning-Based Method for Automated Identification of Thoracic Lymph Node Stations in Endobronchial Ultrasound (EBUS): A Proof-of-Concept Study. J. Imaging 2025, 11, 10. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhou, Y.; Hou, N.; Zhang, Y.; Zhu, G.; Li, L. DFA-UNet: Dual-stream feature-fusion attention U-Net for lymph node segmentation in lung cancer diagnosis. Front. Neurosci. 2024, 18, 1448294. [Google Scholar] [CrossRef]
- Tagaya, R.; Kurimoto, N.; Osada, H.; Kobayashi, A. Automatic objective diagnosis of lymph nodal disease by B-mode images from convex-type echobronchoscopy. Chest 2008, 133, 137–142. [Google Scholar] [CrossRef]
- Ozcelik, N.; Ozcelik, A.E.; Bulbul, Y.; Oztuna, F.; Ozlu, T. Can artificial intelligence distinguish between malignant and benign mediastinal lymph nodes using sonographic features on EBUS images? Curr. Med. Res. Opin. 2020, 36, 2019–2024. [Google Scholar] [CrossRef]
- Koseoglu, F.D.; Alıcı, I.O.; Er, O. Machine learning approaches in the interpretation of endobronchial ultrasound images: A comparative analysis. Surg. Endosc. 2023, 37, 9339–9346. [Google Scholar] [CrossRef]
- Hu, W.; Wen, F.; Zhao, M.; Li, X.; Luo, P.; Jiang, G.; Yang, H.; Herth, F.J.F.; Zhang, X.; Zhang, Q. Endobronchial Ultrasound-Based Support Vector Machine Model for Differentiating between Benign and Malignant Mediastinal and Hilar Lymph Nodes. Respiration 2024, 103, 675–685. [Google Scholar] [CrossRef]
- Churchill, I.F.; Gatti, A.A.; Hylton, D.A.; Sullivan, K.A.; Patel, Y.S.; Leontiadis, G.I.; Farrokhyar, F.; Hanna, W.C. An Artificial Intelligence Algorithm to Predict Nodal Metastasis in Lung Cancer. Ann. Thorac. Surg. 2022, 114, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Nakajima, T.; Inage, T.; Otsuka, T.; Sata, Y.; Tanaka, K.; Sakairi, Y.; Suzuki, H.; Yoshino, I. Prediction of Nodal Metastasis in Lung Cancer Using Deep Learning of Endobronchial Ultrasound Images. Cancers 2022, 14, 3334. [Google Scholar] [CrossRef]
- Ishiwata, T.; Inage, T.; Aragaki, M.; Gregor, A.; Chen, Z.; Bernards, N.; Kafi, K.; Yasufuku, K. Deep learning-based prediction of nodal metastasis in lung cancer using endobronchial ultrasound. JTCVS Tech. 2024, 28, 151–161. [Google Scholar] [CrossRef]
- Yong, S.H.; Lee, S.H.; Oh, S.I.; Keum, J.S.; Kim, K.N.; Park, M.S.; Chang, Y.S.; Kim, E.Y. Malignant thoracic lymph node classification with deep convolutional neural networks on real-time endobronchial ultrasound (EBUS) images. Transl. Lung Cancer Res. 2022, 11, 14–23. [Google Scholar] [CrossRef]
- Patel, Y.S.; Gatti, A.A.; Farrokhyar, F.; Xie, F.; Hanna, W.C. Artificial Intelligence Algorithm Can Predict Lymph Node Malignancy from Endobronchial Ultrasound Transbronchial Needle Aspiration Images for Non-Small Cell Lung Cancer. Respiration 2024, 103, 741–751. [Google Scholar] [CrossRef]
- Zhi, X.; Li, J.; Chen, J.; Wang, L.; Xie, F.; Dai, W.; Sun, J.; Xiong, H. Automatic Image Selection Model Based on Machine Learning for Endobronchial Ultrasound Strain Elastography Videos. Front. Oncol. 2021, 11, 673775. [Google Scholar] [CrossRef]
- Xu, M.; Chen, J.; Li, J.; Zhi, X.; Dai, W.; Sun, J.; Xiong, H. Automatic Representative Frame Selection and Intrathoracic Lymph Node Diagnosis With Endobronchial Ultrasound Elastography Videos. IEEE J. Biomed. Health Inform. 2023, 27, 29–40. [Google Scholar] [CrossRef]
- Patel, Y.S.; Gatti, A.A.; Farrokhyar, F.; Xie, F.; Hanna, W.C. Clinical utility of artificial intelligence-augmented endobronchial ultrasound elastography in lymph node staging for lung cancer. JTCVS Tech. 2024, 27, 158–166. [Google Scholar] [CrossRef]
- Li, J.; Zhi, X.; Chen, J.; Wang, L.; Xu, M.; Dai, W.; Sun, J.; Xiong, H. Deep learning with convex probe endobronchial ultrasound multimodal imaging: A validated tool for automated intrathoracic lymph nodes diagnosis. Endosc. Ultrasound 2021, 10, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.K.; Wu, S.H.; Chua, Y.W.; Fan, H.J.; Cheng, Y.C. TransEBUS: The interpretation of endobronchial ultrasound image using hybrid transformer for differentiating malignant and benign mediastinal lesions. J. Formos. Med. Assoc. 2025, 124, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Lee, Y.W.; Huang, Y.S.; Lan, W.R.; Chang, R.F.; Tu, C.Y.; Chen, C.Y.; Liao, W.C. Computer-aided diagnosis of endobronchial ultrasound images using convolutional neural network. Comput. Methods Programs Biomed. 2019, 177, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Hotta, T.; Kurimoto, N.; Shiratsuki, Y.; Amano, Y.; Hamaguchi, M.; Tanino, A.; Tsubata, Y.; Isobe, T. Deep learning-based diagnosis from endobronchial ultrasonography images of pulmonary lesions. Sci. Rep. 2022, 12, 13710. [Google Scholar] [CrossRef]
- Yu, K.L.; Tseng, Y.S.; Yang, H.C.; Liu, C.J.; Kuo, P.C.; Lee, M.R.; Huang, C.T.; Kuo, L.C.; Wang, J.Y.; Ho, C.C.; et al. Deep learning with test-time augmentation for radial endobronchial ultrasound image differentiation: A multicentre verification study. BMJ Open Respir. Res. 2023, 10, e001602. [Google Scholar] [CrossRef]
- Khomkham, B.; Lipikorn, R. Pulmonary Lesion Classification Framework Using the Weighted Ensemble Classification with Random Forest and CNN Models for EBUS Images. Diagnostics 2022, 12, 1552. [Google Scholar] [CrossRef]
- Xing, J.; Li, C.; Wu, P.; Cai, X.; Ouyang, J. Optimized fuzzy K-nearest neighbor approach for accurate lung cancer prediction based on radial endobronchial ultrasonography. Comput. Biol. Med. 2024, 171, 108038. [Google Scholar] [CrossRef]
- Um, S.W.; Kim, H.K.; Jung, S.H.; Han, J.; Lee, K.J.; Park, H.Y.; Choi, Y.S.; Shim, Y.M.; Ahn, M.J.; Park, K.; et al. Endobronchial ultrasound versus mediastinoscopy for mediastinal nodal staging of non-small-cell lung cancer. J. Thorac. Oncol. 2015, 10, 331–337. [Google Scholar] [CrossRef]
- Czarnecka-Kujawa, K.; Yasufuku, K. The role of endobronchial ultrasound versus mediastinoscopy for non-small cell lung cancer. J. Thorac. Dis. 2017, 9, S83–S97. [Google Scholar] [CrossRef]
- Jain, D.; Allen, T.C.; Aisner, D.L.; Beasley, M.B.; Cagle, P.T.; Capelozzi, V.L.; Hariri, L.P.; Lantuejoul, S.; Miller, R.; Mino-Kenudson, M.; et al. Rapid On-Site Evaluation of Endobronchial Ultrasound-Guided Transbronchial Needle Aspirations for the Diagnosis of Lung Cancer: A Perspective From Members of the Pulmonary Pathology Society. Arch. Pathol. Lab. Med. 2018, 142, 253–262. [Google Scholar] [CrossRef]
- Kalluri, M.; Puttagunta, L.; Ohinmaa, A.; Thanh, N.X.; Wong, E. Cost Analysis of Intra Procedural Rapid on Site Evaluation of Cytopathology with Endobronchial Ultrasound. Int. J. Technol. Assess. Health Care 2015, 31, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Witt, B.L. Rapid On Site Evaluation (ROSE): A Pathologists’ Perspective. Tech. Vasc. Interv. Radiol. 2021, 24, 100767. [Google Scholar] [CrossRef] [PubMed]
- Asfahan, S.; Elhence, P.; Dutt, N.; Niwas Jalandra, R.; Chauhan, N.K. Digital-Rapid On-site Examination in Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration (DEBUT): A proof of concept study for the application of artificial intelligence in the bronchoscopy suite. Eur. Respir. J. 2021, 58, 2100915. [Google Scholar] [CrossRef]
- Koratala, A.; Chandra, N.C.; Pulipaka, S.P.; Colleti, S.; Lee-Mateus, A.Y.; Barrios-Ruiz, A.; Neshat, S.; Diaz-Churion, F.; Johnson, M.M.; Abia Trujillo, D.; et al. Artificial Intelligence in Rapid On-Site Evaluation of Bronchoscopy Samples. Am. J. Respir. Crit. Care Med. 2023, 207, A4467. [Google Scholar]
- Lan, H.; Chen, P.; Wang, C.; Chen, C.; Yao, C.; Jin, F.; Wan, T.; Lv, X.; Wang, J. A Multiscale Connected UNet for the Segmentation of Lung Cancer Cells in Pathology Sections Stained Using Rapid On-Site Cytopathological Evaluation. Am. J. Pathol. 2024, 194, 1712–1723. [Google Scholar] [CrossRef]
- Subramanian, H.; Oleari, N.; Bluestone, A.; Danczuk, J.; Randolph, M.; Costaldi, M. Improving the Efficiency of Rapid Onsite Evaluation Utilizing Artificial Intelligence. J. Am. Soc. Cytopathol. 2024, 13, S6–S7. [Google Scholar] [CrossRef]
- Yan, S.; Li, Y.; Pan, L.; Jiang, H.; Gong, L.; Jin, F. The application of artificial intelligence for Rapid On-Site Evaluation during flexible bronchoscopy. Front. Oncol. 2024, 14, 1360831. [Google Scholar] [CrossRef]
- Lin, C.K.; Chang, J.; Huang, C.C.; Wen, Y.F.; Ho, C.C.; Cheng, Y.C. Effectiveness of convolutional neural networks in the interpretation of pulmonary cytologic images in endobronchial ultrasound procedures. Cancer Med. 2021, 10, 9047–9057. [Google Scholar] [CrossRef]
- Wang, C.W.; Khalil, M.A.; Lin, Y.J.; Lee, Y.C.; Huang, T.W.; Chao, T.K. Deep Learning Using Endobronchial-Ultrasound-Guided Transbronchial Needle Aspiration Image to Improve the Overall Diagnostic Yield of Sampling Mediastinal Lymphadenopathy. Diagnostics 2022, 12, 2234. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, C.; Xie, J.; Zheng, X.; Gu, P.; Liu, S.; Zhou, Y.; Wu, J.; Chen, Y.; Wang, Y.; et al. Automatic lung cancer subtyping using rapid on-site evaluation slides and serum biological markers. Respir. Res. 2024, 25, 391. [Google Scholar] [CrossRef]
- van Huizen, L.M.G.; Blokker, M.; Daniels, J.M.A.; Radonic, T.; von der Thüsen, J.H.; Veta, M.; Annema, J.T.; Groot, M.L. Rapid On-Site Histology of Lung and Pleural Biopsies Using Higher Harmonic Generation Microscopy and Artificial Intelligence Analysis. Mod. Pathol. 2025, 38, 100633. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Raff, R.; Rossi, J.; Zukovsky, E.; Thosani, N. Rapid Onsite Evaluation (ROSE) Anywhere and Anytime: Developing a Cloud Based Artificial Intelligence (AI) Platform Service. J. Am. Soc. Cytopathol. 2023, 12, S76. [Google Scholar] [CrossRef]
- Travis, W.D. Lung Cancer Pathology: Current Concepts. Clin. Chest Med. 2020, 41, 67–85. [Google Scholar] [CrossRef] [PubMed]
- Hays, P. Artificial intelligence in cytopathological applications for cancer: A review of accuracy and analytic validity. Eur. J. Med. Res. 2024, 29, 553. [Google Scholar] [CrossRef] [PubMed]
- Vaickus, L.J.; Kerr, D.A.; Velez Torres, J.M.; Levy, J. Artificial Intelligence Applications in Cytopathology: Current State of the Art. Surg. Pathol. Clin. 2024, 17, 521–531. [Google Scholar] [CrossRef]
- Kiyuna, T.; Cosatto, E.; Hatanaka, K.C.; Yokose, T.; Tsuta, K.; Motoi, N.; Makita, K.; Shimizu, A.; Shinohara, T.; Suzuki, A.; et al. Evaluating Cellularity Estimation Methods: Comparing AI Counting with Pathologists’ Visual Estimates. Diagnostics 2024, 14, 1115. [Google Scholar] [CrossRef]
- Tomlinson, G.S.; Thomas, N.; Chain, B.M.; Best, K.; Simpson, N.; Hardavella, G.; Brown, J.; Bhowmik, A.; Navani, N.; Janes, S.M.; et al. Transcriptional Profiling of Endobronchial Ultrasound-Guided Lymph Node Samples Aids Diagnosis of Mediastinal Lymphadenopathy. Chest 2016, 149, 535–544. [Google Scholar] [CrossRef]
- Choi, Y.; Qu, J.; Wu, S.; Hao, Y.; Zhang, J.; Ning, J.; Yang, X.; Lofaro, L.; Pankratz, D.G.; Babiarz, J.; et al. Improving lung cancer risk stratification leveraging whole transcriptome RNA sequencing and machine learning across multiple cohorts. BMC Med. Genomics. 2020, 13, 151. [Google Scholar] [CrossRef]
- Wang, S.; Wang, R.; Hu, D.; Zhang, C.; Cao, P.; Huang, J. Machine learning reveals diverse cell death patterns in lung adenocarcinoma prognosis and therapy. NPJ Precis. Oncol. 2024, 8, 49. [Google Scholar] [CrossRef]
- Leblond, F.; Dallaire, F.; Tran, T.; Yadav, R.; Aubertin, K.; Goudie, E.; Romeo, P.; Kent, C.; Leduc, C.; Liberman, M. Subsecond lung cancer detection within a heterogeneous background of normal and benign tissue using single-point Raman spectroscopy. J. Biomed. Opt. 2023, 28, 090501. [Google Scholar] [CrossRef]
- Sano, H.; Okoshi, E.N.; Tachibana, Y.; Tanaka, T.; Lami, K.; Uegami, W.; Ohta, Y.; Brcic, L.; Bychkov, A.; Fukuoka, J. Machine-Learning-Based Classification Model to Address Diagnostic Challenges in Transbronchial Lung Biopsy. Cancers 2024, 16, 731. [Google Scholar] [CrossRef]
- Guglielmo, P.; Marturano, F.; Bettinelli, A.; Sepulcri, M.; Pasello, G.; Gregianin, M.; Paiusco, M.; Evangelista, L. Additional Value of PET and CT Image-Based Features in the Detection of Occult Lymph Node Metastases in Lung Cancer: A Systematic Review of the Literature. Diagnostics 2023, 13, 2153. [Google Scholar] [CrossRef] [PubMed]
- Flechsig, P.; Frank, P.; Kratochwil, C.; Antoch, G.; Rath, D.; Moltz, J.; Rieser, M.; Warth, A.; Kauczor, H.U.; Schwartz, L.H.; et al. Radiomic Analysis using Density Threshold for FDG-PET/CT-Based N-Staging in Lung Cancer Patients. Mol. Imaging Biol. 2017, 19, 315–322. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Matsuura, Y.; Kondo, Y.; Ichinose, J.; Nakao, M.; Okumura, S.; Mun, M. The predictive power of artificial intelligence on mediastinal lymphnode metastasis. Gen. Thorac. Cardiovasc. Surg. 2021, 69, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, A.; Tsujimoto, M.; Inoue, T.; Tsukamoto, T.; Imaizumi, K.; Toyama, H.; Saito, K.; Fujita, H. Automated Classification of Pulmonary Nodules through a Retrospective Analysis of Conventional CT and Two-phase PET Images in Patients Undergoing Biopsy. Asia Ocean. J. Nucl. Med. Biol. 2019, 7, 29–37. [Google Scholar] [PubMed]
- Guberina, M.; Herrmann, K.; Pöttgen, C.; Guberina, N.; Hautzel, H.; Gauler, T.; Ploenes, T.; Umutlu, L.; Wetter, A.; Theegarten, D.; et al. Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT. Sci. Rep. 2022, 12, 17511. [Google Scholar] [CrossRef] [PubMed]
- Rogasch, J.M.M.; Michaels, L.; Baumgärtner, G.L.; Frost, N.; Rückert, J.C.; Neudecker, J.; Ochsenreither, S.; Gerhold, M.; Schmidt, B.; Schneider, P.; et al. A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [18F]FDG-PET/CT parameters. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2140–2151. [Google Scholar] [CrossRef] [PubMed]
- Laros, S.S.A.; Dieckens, D.; Blazis, S.P.; van der Heide, J.A. Machine learning classification of mediastinal lymph node metastasis in NSCLC: A multicentre study in a Western European patient population. EJNMMI Phys. 2022, 9, 66. [Google Scholar] [CrossRef]
- Ouyang, M.L.; Wang, Y.R.; Deng, Q.S.; Zhu, Y.F.; Zhao, Z.H.; Wang, L.; Wang, L.X.; Tang, K. Development and Validation of a 18F-FDG PET-Based Radiomic Model for Evaluating Hypermetabolic Mediastinal-Hilar Lymph Nodes in Non-Small-Cell Lung Cancer. Front. Oncol. 2021, 11, 710909. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, X.L.; Zhang, T.; Wang, J.; Zhang, T.; Tian, R. Use of radiomics based on 18F-FDG PET/CT and machine learning methods to aid clinical decision-making in the classification of solitary pulmonary lesions: An innovative approach. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2904–2913. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Murakami, Y.; Omura, K.; Takahashi, H.; Suzuki, R.; Yoshioka, Y.; Oguchi, M.; Ichinose, J.; Matsuura, Y.; Nakao, M.; et al. Prediction of Tumor PD-L1 Expression in Resectable Non-Small Cell Lung Cancer by Machine Learning Models Based on Clinical and Radiological Features: Performance Comparison With Preoperative Biopsy. Clin. Lung Cancer 2024, 25, e26–e34.e6. [Google Scholar] [CrossRef]
- Digumarthy, S.R.; Padole, A.M.; Gullo, R.L.; Sequist, L.V.; Kalra, M.K. Can CT radiomic analysis in NSCLC predict histology and EGFR mutation status? Medicine 2019, 98, e13963. [Google Scholar] [CrossRef]
- Yamazaki, M.; Yagi, T.; Tominaga, M.; Minato, K.; Ishikawa, H. Role of intratumoral and peritumoral CT radiomics for the prediction of EGFR gene mutation in primary lung cancer. Br. J. Radiol. 2022, 95, 20220374. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, P.; Chen, G.; Dai, Z.; Song, P.; Yao, J. Radiomics nomogram for the prediction of Ki-67 index in advanced non-small cell lung cancer based on dual-phase enhanced computed tomography. J. Cancer Res. Clin. Oncol. 2023, 149, 9301–9315. [Google Scholar] [CrossRef]
- Boulogne, L.H.; Charbonnier, J.P.; Jacobs, C.; van der Heijden, E.H.F.M.; van Ginneken, B. Estimating lung function from computed tomography at the patient and lobe level using machine learning. Med. Phys. 2024, 51, 2834–2845. [Google Scholar] [CrossRef]
- Ziegelmayer, S.; Graf, M.; Makowski, M.; Gawlitza, J.; Gassert, F. Cost-Effectiveness of Artificial Intelligence Support in Computed Tomography-Based Lung Cancer Screening. Cancers 2022, 14, 1729. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, J.C.; Soriano, J.B.; Marzo, M.; Higuera, O.; Gorospe, L.; Pajares, V.; Olmedo, M.E.; Arrabal, N.; Flores, A.; García, J.F.; et al. Cost-effectiveness of a machine learning risk prediction model (LungFlag) in the selection of high-risk individuals for non-small cell lung cancer screening in Spain. J. Med. Econ. 2025, 28, 147–156. [Google Scholar] [CrossRef]
- Ye, M.; Tong, L.; Zheng, X.; Wang, H.; Zhou, H.; Zhu, X.; Zhou, C.; Zhao, P.; Wang, Y.; Wang, Q.; et al. A Classifier for Improving Early Lung Cancer Diagnosis Incorporating Artificial Intelligence and Liquid Biopsy. Front. Oncol. 2022, 12, 853801. [Google Scholar] [CrossRef]
- Mohamed, E.I.; Mohamed, M.A.; Abdel-Mageed, S.M.; Abdel-Mohdy, T.S.; Badawi, M.I.; Darwish, S.H. Volatile organic compounds of biofluids for detecting lung cancer by an electronic nose based on artificial neural network. J. Appl. Biomed. 2019, 17, 67. [Google Scholar] [CrossRef] [PubMed]
- Hesso, I.; Kayyali, R.; Zacharias, L.; Charalambous, A.; Lavdaniti, M.; Stalika, E.; Ajami, T.; Acampa, W.; Boban, J.; Gebara, S.N. Cancer care pathways across seven countries in Europe: What are the current obstacles? And how can artificial intelligence help? J. Cancer Policy 2024, 39, 100457. [Google Scholar] [CrossRef] [PubMed]
- Purohit, L.; Kiamos, A.; Ali, S.; Alvarez-Pinzon, A.M.; Raez, L. Incidental Pulmonary Nodule (IPN) Programs Working Together with Lung Cancer Screening and Artificial Intelligence to Increase Lung Cancer Detection. Cancers 2025, 17, 1143. [Google Scholar] [CrossRef]
Aspect | Competency-Based Training | Volume-Based Training |
---|---|---|
Focus | Skill mastery and application | Amount of training/time spent |
Progression | Based on demonstration of skills | Based on time or sessions |
Assessment | Performance-based | Time or attendance-based |
Pace | Individualized | Fixed |
Strength | Ensures readiness and proficiency | Easy to measure and manage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winiarski, S.; Radziszewski, M.; Wiśniewski, M.; Cisek, J.; Wąsowski, D.; Plewczyński, D.; Górska, K.; Korczyński, P. Integrating Artificial Intelligence in Bronchoscopy and Endobronchial Ultrasound (EBUS) for Lung Cancer Diagnosis and Staging: A Comprehensive Review. Cancers 2025, 17, 2835. https://doi.org/10.3390/cancers17172835
Winiarski S, Radziszewski M, Wiśniewski M, Cisek J, Wąsowski D, Plewczyński D, Górska K, Korczyński P. Integrating Artificial Intelligence in Bronchoscopy and Endobronchial Ultrasound (EBUS) for Lung Cancer Diagnosis and Staging: A Comprehensive Review. Cancers. 2025; 17(17):2835. https://doi.org/10.3390/cancers17172835
Chicago/Turabian StyleWiniarski, Sebastian, Marcin Radziszewski, Maciej Wiśniewski, Jakub Cisek, Dariusz Wąsowski, Dariusz Plewczyński, Katarzyna Górska, and Piotr Korczyński. 2025. "Integrating Artificial Intelligence in Bronchoscopy and Endobronchial Ultrasound (EBUS) for Lung Cancer Diagnosis and Staging: A Comprehensive Review" Cancers 17, no. 17: 2835. https://doi.org/10.3390/cancers17172835
APA StyleWiniarski, S., Radziszewski, M., Wiśniewski, M., Cisek, J., Wąsowski, D., Plewczyński, D., Górska, K., & Korczyński, P. (2025). Integrating Artificial Intelligence in Bronchoscopy and Endobronchial Ultrasound (EBUS) for Lung Cancer Diagnosis and Staging: A Comprehensive Review. Cancers, 17(17), 2835. https://doi.org/10.3390/cancers17172835