Prognostic Value of Circulating Tumor DNA in HR+/HER2− Stage I–III Breast Cancer: A Systematic Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Selection Process
2.5. Data Extraction and Synthesis
2.5.1. Outcomes
2.5.2. Other Variables
2.5.3. Study Risk of Bias Assessment
2.5.4. Synthesis Methods
2.5.5. Reporting Bias Assessment
2.5.6. Certainty Assessment
2.6. Protocol and Registration
3. Results
3.1. Study Selection
3.2. Reporting Results
3.3. Neoadjuvant Setting
3.4. Adjuvant Setting
3.5. Risk of Bias Assessment
4. Discussion
4.1. Summary of Findings
4.2. Clinical Implications
4.3. Limitations
4.4. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huppert, L.A.; Gumusay, O.; Idossa, D.; Rugo, H.S. Systemic therapy for hormone receptor-positive/human epidermal growth factor receptor 2-negative early stage and metastatic breast cancer. CA Cancer J. Clin. 2023, 73, 480–515. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Giaquinto, A.N.; Sung, H.; Newman, L.A.; Freedman, R.A.; Smith, R.A.; Star, J.; Jemal, A.; Siegel, R.L. Breast cancer statistics 2024. CA Cancer J. Clin. 2024, 74, 477–495. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Harper, A.; McCormack, V.; Sung, H.; Houssami, N.; Morgan, E.; Mutebi, M.; Garvey, G.; Soerjomataram, I.; Fidler-Benaoudia, M.M. Global patterns and trends in breast cancer incidence and mortality across 185 countries. Nat. Med. 2025; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Marczyk, M.; Kahn, A.; Silber, A.; Rosenblit, M.; Digiovanna, M.P.; Lustberg, M.; Pusztai, L. Trends in breast cancer specific death by clinical stage at diagnoses between 2000–2017. J. Natl. Cancer Inst. 2024, 117, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Gray, R.; Braybrooke, J.; Davies, C.; Taylor, C.; McGale, P.; Peto, R.; Pritchard, K.I.; Bergh, J.; Dowsett, M.; et al. EBCTCG 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. N. Engl. J. Med. 2017, 377, 1836–1846. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Poole, R.; Paridaens, R. The use of third-generation aromatase inhibitors and tamoxifen in the adjuvant treatment of postmenopausal patients with hormone-dependent breast cancer: Evidence based review. Curr. Opin. Oncol. 2007, 19, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.; Chua, S. Medical treatment of early breast cancer. II: Endocrine therapy. BMJ 2006, 332, 101–103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carpenter, R. Choosing early adjuvant therapy for postmenopausal women with hormone-sensitive breast cancer: Aromatase inhibitors versus tamoxifen. Eur. J. Surg. Oncol. 2008, 34, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Buzdar, A.U. Aromatase inhibitors in breast cancer therapy. Clin. Breast Cancer 2003, 4 (Suppl. S2), S84–S88. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.G. The Role of CDK4/6 Inhibitors in Breast Cancer. Curr. Treat Options Oncol. 2019, 20, 52. [Google Scholar] [CrossRef] [PubMed]
- Nabieva, N.; Fasching, P.A. CDK4/6 Inhibitors-Overcoming Endocrine Resistance Is the Standard in Patients with Hormone Receptor-Positive Breast Cancer. Cancers 2023, 15, 1763. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- O’Sullivan, C.C.; Clarke, R.; Goetz, M.P.; Robertson, J. Cyclin-Dependent Kinase 4/6 Inhibitors for Treatment of Hormone Receptor-Positive, ERBB2-Negative Breast Cancer: A Review. JAMA Oncol. 2023, 9, 1273–1282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Owsley, J.; Jimeno, A.; Diamond, J.R. Palbociclib:CDK4/6 inhibition in the treatment of ER-positive breast cancer. Drugs Today 2016, 52, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Spring, L.; Bardia, A.; Modi, S. Targeting the cyclin D-cyclin-dependent kinase (CDK) 4/6-retinoblastoma pathway with selective CDK 4/6 inhibitors in hormone receptor-positive breast cancer: Rationale, current status, and future directions. Discov. Med. 2016, 21, 65–74. [Google Scholar] [PubMed] [PubMed Central]
- Witzel, I.; Müller, V. The Role of CDK 4/6 Inhibitors in Breast Cancer Treatment. Breast Care 2016, 11, 165–166. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murray, J.; Miller, W.R.; Dixon, J.M. Neoadjuvant endocrine therapy models. Methods Mol. Med. 2006, 120, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Haddad, T.C.; Goetz, M.P. Landscape of neoadjuvant therapy for breast cancer. Ann. Surg. Oncol. 2015, 22, 1408–1415. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Korde, L.A.; Somerfield, M.R.; Carey, L.A.; Crews, J.R.; Denduluri, N.; Hwang, E.S.; Khan, S.A.; Loibl, S.; Morris, E.A.; Perez, A.; et al. Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. J. Clin. Oncol. 2021, 39, 1485–1505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hyder, T.; Bhattacharya, S.; Gade, K.; Nasrazadani, A.; Brufsky, A.M. Approaching Neoadjuvant Therapy in the Management of Early-Stage Breast Cancer. Breast Cancer 2021, 13, 199–211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zardavas, D.; Piccart, M. Neoadjuvant therapy for breast cancer. Annu. Rev. Med. 2015, 66, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.V.; Melstrom, L.; Yao, K.; Russell, C.A.; Sener, S.F. Neoadjuvant therapy for breast cancer. J. Surg. Oncol. 2010, 101, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Minckwitz Gv Fontanella, C. State of the art in neoadjuvant therapy of breast cancer. EJC Suppl. 2013, 11, 284–285. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teshome, M.; Hunt, K.K. Neoadjuvant therapy in the treatment of breast cancer. Surg. Oncol. Clin. N. Am. 2014, 23, 505–523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eisen, A.; Trudeau, M.; Shelley, W.; Messersmith, H.; Pritchard, K.I. Aromatase inhibitors in adjuvant therapy for hormone receptor positive breast cancer: A systematic review. In Database of Abstracts of Reviews of Effects (DARE): Quality-Assessed Reviews; Centre for Reviews and Dissemination (UK): York, UK, 1995. Available online: https://www.ncbi.nlm.nih.gov/books/NBK75885/ (accessed on 24 June 2024).
- Carlson, R.W.; Hudis, C.A.; Pritchard, K.I.; National Comprehensive Cancer Network Breast Cancer Clinical Practice Guidelines in Oncology; American Society of Clinical Oncology Technology Assessment on the Use of Aromatase Inhibitors; St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer. Adjuvant endocrine therapy in hormone receptor-positive postmenopausal breast cancer: Evolution of NCCN, ASCO, and St Gallen recommendations. J. Natl. Compr. Canc. Netw. 2006, 4, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Andre, F.; Ismaila, N.; Allison, K.H.; Barlow, W.E.; Collyar, D.E.; Damodaran, S.; Henry, N.L.; Jhaveri, K.; Kalinsky, K.; Kuderer, N.M.; et al. Biomarkers for Adjuvant Endocrine and Chemotherapy in Early-Stage Breast Cancer: ASCO Guideline Update. J. Clin. Oncol. 2022, 40, 1816–1837, Erratum in J. Clin. Oncol. 2022, 40, 2514. https://doi.org/10.1200/JCO.22.01388. [Google Scholar] [CrossRef] [PubMed]
- Gradishar, W.J.; Moran, M.S.; Abraham, J.; Abramson, V.; Aft, R.; Agnese, D.; Allison, K.H.; Anderson, B.; Bailey, J.; Burstein, H.J.; et al. Breast Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2024, 22, 331–357. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, P.; Viale, G.; Press, M.F.; Hu, X.; Penault-Llorca, F.; Bardia, A.; Batistatou, A.; Burstein, H.J.; Carey, L.A.; Cortes, J.; et al. ESMO expert consensus statements (ECS) on the definition, diagnosis, and management of HER2-low breast cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2023, 34, 645–659. [Google Scholar] [CrossRef]
- Oliveira, K.C.S.; Ramos, I.B.; Silva, J.M.C.; Barra, W.F.; Riggins, G.J.; Palande, V.; Pinho, C.T.; Frenkel-Morgenstern, M.; Santos, S.E.B.; Assumpcao, P.P.; et al. Current Perspectives on Circulating Tumor DNA, Precision Medicine, and Personalized Clinical Management of Cancer. Mol. Cancer Res. 2020, 18, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Turabi, K.; Klute, K.; Radhakrishnan, P. Decoding the Dynamics of Circulating Tumor DNA in Liquid Biopsies. Cancers 2024, 16, 2432. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kunnath, A.P.; Priyashini, T. Potential Applications of Circulating Tumor DNA Technology as a Cancer Diagnostic Tool. Cureus 2019, 11, e4907. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, L.; Bi, J.; Bao, L. Genetic profiling of cancer with circulating tumor DNA analysis. J. Genet. Genom. 2018, 45, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Su, L.; Qian, C. Circulating tumor DNA: A promising biomarker in the liquid biopsy of cancer. Oncotarget 2016, 7, 48832–48841. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, P. Medical genetics: Towards precision medicine. J. Genet. Genom. 2018, 45, 55–56. [Google Scholar] [CrossRef] [PubMed]
- de Melo Gagliato, D.; Fontes Jardim, D.L. Noninvasive cancer biomarkers in solid malignancies: Circulating tumor DNA-clinical utility, current limitations and future perspectives. Ann. Transl. Med. 2018, 6, 233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gerratana, L.; Movarek, M.; Wehbe, F.; Katam, N.; Mahalingam, D.; Donahue, J.; Shah, A.; Chae, Y.K.; Mulcahy, M.; Tsarwhas, D.; et al. Genomic Landscape of Advanced Solid Tumors in Circulating Tumor DNA and Correlation with Tissue Sequencing: A Single Institution’s Experience. JCO Precis. Oncol. 2022, 6, e2100289. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, B.J.; Córdoba, G.D.; Aranda, A.G.; Álvarez, M.; Vicioso, L.; Pérez, C.L.; Hernando, C.; Bermejo, B.; Parreño, A.J.; Lluch, A.; et al. Detection of TP53 and PIK3CA Mutations in Circulating Tumor DNA Using Next-Generation Sequencing in the Screening Process for Early Breast Cancer Diagnosis. J. Clin. Med. 2019, 8, 1183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schwaederle, M.; Chattopadhyay, R.; Kato, S.; Fanta, P.T.; Banks, K.C.; Choi, I.S.; Piccioni, D.E.; Ikeda, S.; Talasaz, A.; Lanman, R.B.; et al. Genomic Alterations in Circulating Tumor DNA from Diverse Cancer Patients Identified by Next-Generation Sequencing. Cancer Res. 2017, 77, 5419–5427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Savli, H.; Sertdemir, N.; Aydin, D.; Dursun, B.; Kurtas, O.; Reka, S.; Sunnetci-Akkoyunlu, D.; Eren-Keskin, S.; Uygun, K.; Ozden, E.; et al. TP53, EGFR and PIK3CA gene variations observed as prominent biomarkers in breast and lung cancer by plasma cell-free DNA genomic testing. J. Biotechnol. 2019, 300, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.L.; Fornace, A.J., Jr. Genomic instability and the role of p53 mutations in cancer cells. Curr. Opin. Oncol. 1995, 7, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Arsenic, R.; Lehmann, A.; Budczies, J.; Koch, I.; Prinzler, J.; Kleine-Tebbe, A.; Schewe, C.; Loibl, S.; Dietel, M.; Denkert, C. Analysis of PIK3CA mutations in breast cancer subtypes. Appl. Immunohistochem. Mol. Morphol. 2014, 22, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Osborne, C.K.; Schiff, R. Biology and therapeutic potential of PI3K signaling in ER+/HER2-negative breast cancer. Breast 2013, 22 (Suppl. S2), S12–S18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Isakoff, S.J.; Engelman, J.A.; Irie, H.Y.; Luo, J.; Brachmann, S.M.; Pearline, R.V.; Cantley, L.C.; Brugge, J.S. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 2005, 65, 10992–11000. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Gonzalez, A. Plasma PIK3CA Mutation Testing in Advanced Breast Cancer Patients for Personalized Medicine: A Value Proposition. J. Appl. Lab. Med. 2020, 5, 1076–1089. [Google Scholar] [CrossRef] [PubMed]
- Dumbrava, E.E.; Call, S.G.; Huang, H.J.; Stuckett, A.L.; Madwani, K.; Adat, A.; Hong, D.S.; Piha-Paul, S.A.; Subbiah, V.; Karp, D.D.; et al. PIK3CA mutations in plasma circulating tumor DNA predict survival and treatment outcomes in patients with advanced cancers. ESMO Open. 2021, 6, 100230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lampignano, R.; Neumann, M.H.D.; Weber, S.; Kloten, V.; Herdean, A.; Voss, T.; Groelz, D.; Babayan, A.; Tibbesma, M.; Schlumpberger, M.; et al. Multicenter Evaluation of Circulating Cell-Free DNA Extraction and Downstream Analyses for the Development of Standardized (Pre)analytical Work Flows. Clin. Chem. 2020, 66, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Magbanua, M.J.M.; Brown Swigart, L.; Ahmed, Z.; Sayaman, R.W.; Renner, D.; Kalashnikova, E.; Hirst, G.L.; Yau, C.; Wolf, D.M.; Li, W.; et al. Clinical significance and biology of circulating tumor DNA in high-risk early-stage HER2-negative breast cancer receiving neoadjuvant chemotherapy. Cancer Cell 2023, 41, 1091–1102.e4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, P.H.; Wang, M.Y.; Lo, C.; Tsai, L.W.; Yen, T.C.; Huang, T.Y.; Huang, W.C.; Yang, K.; Chen, C.K.; Fan, S.C.; et al. Circulating Tumor DNA as a Predictive Marker of Recurrence for Patients with Stage II-III Breast Cancer Treated with Neoadjuvant Therapy. Front. Oncol. 2021, 11, 736769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.; Lai, H.; Liu, J.; Liu, Y.; Jin, L.; Li, Y.; Liu, F.; Gong, Y.; Guan, Y.; Yi, X.; et al. Circulating Tumor DNA Predicts the Response and Prognosis in Patients with Early Breast Cancer Receiving Neoadjuvant Chemotherapy. JCO Precis. Oncol. 2020, 4, PO.19.00292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.; Huawei, Q. Effect of exemestane endocrine therapy for hormone-receptor-positive breast cancer patients with varying levels of ctDNA. Trop. J. Pharm. Res. 2021, 20, 2611–2617. [Google Scholar]
- Turner, N.C.; Marmé, F.; Kim, S.-B.; Bonnefoi, H.R.; García-Sáenz, J.A.; Torres, A.A.; Bear, H.D.; Tesch, H.; Olivé, M.M.; Mc Carthy, N.; et al. Detection of circulating tumor DNA following neoadjuvant chemotherapy and surgery to anticipate early relapse in ER positive and HER2 negative breast cancer: Analysis from the PENELOPE-B trial. J. Clin. Oncol. 2023, 41, 502. [Google Scholar] [CrossRef]
- Garcia-Murillas, I.; Chopra, N.; Comino-Méndez, I.; Beaney, M.; Tovey, H.; Cutts, R.J.; Swift, C.; Kriplani, D.; Afentakis, M.; Hrebien, S.; et al. Assessment of Molecular Relapse Detection in Early-Stage Breast Cancer. JAMA Oncol. 2019, 5, 1473–1478, Erratum in JAMA Oncol. 2020, 6, 162. https://doi.org/10.1001/jamaoncol.2019.6325. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fiegl, H.; Millinger, S.; Mueller-Holzner, E.; Marth, C.; Ensinger, C.; Berger, A.; Klocker, H.; Goebel, G.; Widschwendter, M. Circulating tumor-specific DNA: A marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Res. 2005, 65, 1141–1145. [Google Scholar] [CrossRef] [PubMed]
- Lipsyc-Sharf, M.; de Bruin, E.C.; Santos, K.; McEwen, R.; Stetson, D.; Patel, A.; Kirkner, G.J.; Hughes, M.E.; Tolaney, S.M.; Partridge, A.H.; et al. Circulating Tumor DNA and Late Recurrence in High-Risk Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer. J. Clin. Oncol. 2022, 40, 2408–2419. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Olsson, E.; Winter, C.; George, A.; Chen, Y.; Howlin, J.; Tang, M.H.; Dahlgren, M.; Schulz, R.; Grabau, D.; van Westen, D.; et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol. Med. 2015, 7, 1034–1047. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kujala, J.; Hartikainen, J.M.; Tengström, M.; Sironen, R.; Kosma, V.M.; Mannermaa, A. High mutation burden of circulating cell-free DNA in early-stage breast cancer patients is associated with a poor relapse-free survival. Cancer Med. 2020, 9, 5922–5931. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loi, S.; Johnston, S.R.D.; Arteaga, C.L.; Graff, S.L.; Chandarlapaty, S.; Goetz, M.P.; Desmedt, C.; Sasano, H.; Liu, D.; Rodrik-Outmezguine, V.; et al. Prognostic utility of ctDNA detection in the monarchE trial of adjuvant abemaciclib plus endocrine therapy (ET) in HR+, HER2-, node-positive, high-risk early breast cancer (EBC). J. Clin. Oncol. 2024, 42, LBA507. [Google Scholar] [CrossRef]
- Guo, N.; Zhou, Q.; Chen, X.; Zeng, B.; Wu, S.; Zeng, H.; Sun, F. Circulating tumor DNA as prognostic markers of relapsed breast cancer: A systematic review and meta-analysis. J. Natl. Cancer Cent. 2024, 4, 63–73. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papakonstantinou, A.; Gonzalez, N.S.; Pimentel, I.; Suñol, A.; Zamora, E.; Ortiz, C.; Espinosa-Bravo, M.; Peg, V.; Vivancos, A.; Saura, C.; et al. Prognostic value of ctDNA detection in patients with early breast cancer undergoing neoadjuvant therapy: A systematic review and meta-analysis. Cancer Treat Rev. 2022, 104, 102362. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Gampenrieder, S.P.; Frantal, S.; Rinnerthaler, G.; Singer, C.F.; Egle, D.; Pfeiler, G.; Bartsch, R.; Wette, V.; Pichler, A.; et al. Persistence of ctDNA in Patients with Breast Cancer During Neoadjuvant Treatment Is a Significant Predictor of Poor Tumor Response. Clin. Cancer Res. 2022, 28, 697–707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vlataki, K.; Antonouli, S.; Kalyvioti, C.; Lampri, E.; Kamina, S.; Mauri, D.; Harissis, H.V.; Magklara, A. Circulating Tumor DNA in the Management of Early-Stage Breast Cancer. Cells 2023, 12, 1573. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mesquita, A.; Costa, J.L.; Schmitt, F. Utility of Circulating Tumor DNA in Different Clinical Scenarios of Breast Cancer. Cancers 2020, 12, 3797. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Yang, L.; Bao, H.; Fan, X.; Xia, F.; Wan, J.; Shen, L.; Guan, Y.; Bao, H.; Wu, X.; et al. Utility of ctDNA in predicting response to neoadjuvant chemoradiotherapy and prognosis assessment in locally advanced rectal cancer: A prospective cohort study. PLoS Med. 2021, 18, e1003741. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guven, D.C.; Sahin, T.K.; Yildirim, H.C.; Aktepe, O.H.; Dizdar, O.; Yalcin, S. A systematic review and meta-analysis of the association between circulating tumor DNA (ctDNA) and prognosis in pancreatic cancer. Crit. Rev. Oncol. Hematol. 2021, 168, 103528. [Google Scholar] [CrossRef] [PubMed]
- Tie, J.; Cohen, J.D.; Wang, Y.; Christie, M.; Simons, K.; Lee, M.; Wong, R.; Kosmider, S.; Ananda, S.; McKendrick, J.; et al. Circulating Tumor DNA Analyses as Markers of Recurrence Risk and Benefit of Adjuvant Therapy for Stage III Colon Cancer. JAMA Oncol. 2019, 5, 1710–1717, Erratum in JAMA Oncol. 2019, 5, 1811. https://doi.org/10.1001/jamaoncol.2019.5667. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Linder, M.W.; Huggett, J.F.; Baluchova, K.; Capoluongo, E.D.; Payne, D.A.; Salinas, A.V.; Haselmann, V.; Ashavaid, T.; Pan, S.; Ahmad-Nejad, P.; et al. Results from an IFCC global survey on laboratory practices for the analysis of circulating tumor DNA. Clin. Chim. Acta 2023, 547, 117398. [Google Scholar] [CrossRef] [PubMed]
- van Dessel, L.F.; Beije, N.; Helmijr, J.C.; Vitale, S.R.; Kraan, J.; Look, M.P.; de Wit, R.; Sleijfer, S.; Jansen, M.P.; Martens, J.W.; et al. Application of circulating tumor DNA in prospective clinical oncology trials-standardization of preanalytical conditions. Mol. Oncol. 2017, 11, 295–304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gilson, P. Enrichment and Analysis of ctDNA. Recent Results Cancer Res. 2020, 215, 181–211. [Google Scholar] [CrossRef] [PubMed]
- Cavallone, L.; Aldamry, M.; Lafleur, J.; Lan, C.; Gonzalez Ginestet, P.; Alirezaie, N.; Ferrario, C.; Aguilar-Mahecha, A.; Basik, M. A Study of Pre-Analytical Variables and Optimization of Extraction Method for Circulating Tumor DNA Measurements by Digital Droplet PCR. Cancer Epidemiol. Biomark. Prev. 2019, 28, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Henry, N.L.; Somerfield, M.R.; Dayao, Z.; Elias, A.; Kalinsky, K.; McShane, L.M.; Moy, B.; Park, B.H.; Shanahan, K.M.; Sharma, P.; et al. Biomarkers for Systemic Therapy in Metastatic Breast Cancer: ASCO Guideline Update. J. Clin. Oncol. 2022, 40, 3205–3221. [Google Scholar] [CrossRef] [PubMed]
- Merker, J.D.; Oxnard, G.R.; Compton, C.; Diehn, M.; Hurley, P.; Lazar, A.J.; Lindeman, N.; Lockwood, C.M.; Rai, A.J.; Schilsky, R.L.; et al. Circulating Tumor DNA Analysis in Patients with Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J. Clin. Oncol. 2018, 36, 1631–1641. [Google Scholar] [CrossRef] [PubMed]
- Isseroff, D.; Wiesendanger, N.; Kahn, A.; O’Neil, D.; Cohenuram, M.; Bulgaru, A. Patient Reported Anxiety Levels During ctDNA Surveillance in Early-Stage Triple Negative and Hormone Receptor Positive Breast Cancer. In Proceedings of the San Antonio Breast Cancer Symposium 2024, San Antonio, TX, USA, 10–14 December 2024. [Google Scholar]
Study | Number of Patients (n) | ctDNA Methods | Outcome Metrics | Findings | HR (95% CI) If Reported |
---|---|---|---|---|---|
Li et al. (2020) [50] | 48 | Deep targeted sequencing of 1021 cancer-related genes using a next-generation sequencing panel | DFS and OS | No correlation between ctDNA detection after neoadjuvant chemotherapy and survival outcomes | 1.75 (95% CI 0.23–13.39) for DFS and 1.66 (95% CI 0.095–28.94) for OS |
Lin et al. (2021) [49] | 47 | Deep targeted sequencing of fourteen frequently mutated genes in breast cancer using a next-generation sequencing panel | RFS | ctDNA detection after neoadjuvant chemotherapy was associated with worse outcomes | No HRs reported |
Chen et al. (2021) [51] | 49 | ctDNA was amplified using PCR followed by sequencing to obtain the whole genome length and to determine ctDNA content percentages in plasma. Classification was set as positive or negative (<0.1% or ≥0.1% for ctDNA content) | OS | ctDNA detection after neoadjuvant therapy (endocrine therapy with exemestane) was associated with worse outcomes | 4.4 (95% CI 1.1–4.3) |
Magbanua et al. (2023) [48] | 46 | ctDNA was detected in plasma using a personalized and tumor-informed test (STAR Methods) | DRFS | ctDNA detection after neoadjuvant chemotherapy was associated with worse outcomes | 5.89 (95% CI 2.68–12.98) |
Study | Number of Patients (n) | ctDNA Method of Detection | Outcomes | Findings | HR (95% CI) If Reported |
---|---|---|---|---|---|
Fiegl et al. (2005) [54] | 148 | Personalized dPCR assays were used for analyzing RASSF1A methylation levels in plasma | RFS | ctDNA detection after adjuvant therapy (tamoxifen) is associated with worse survival outcomes | 6.9 (95% CI 1.9–25.9) |
Lipsyc-Sharf et al. (2022) [55] | 83 | Whole-exome sequencing on primary tumors was conducted to identify somatic mutations that could be tracked via ctDNA | RFS | ctDNA detection after adjuvant therapy (radiation, endocrine therapy, or chemotherapy) is associated with worse survival outcomes | No HRs reported |
Olsson et al. (2015) [56] | 20 | A personalized panel for ctDNA level quantification was used | DFS and OS | ctDNA levels after adjuvant therapy are associated with worse survival outcomes | 2.1 per doubling of ctDNA (95% CI 1.3–∞) for DFS; 1.3 per doubling of ctDNA (95% CI 1.03–1.9) for OS |
Garcia-Murillas et al. (2019) [53] | 51 | The primary tumor was sequenced to detect somatic mutations, and personalized tumor-specific digital PCR assays were employed to track these mutations in sequential plasma samples | RFS | ctDNA detection during adjuvant therapy (after surgery, before chemotherapy) is associated with worse survival outcomes | No HRs reported |
Kujala et al. (2020) [57] | 79 | Primary tumor sequencing was used to detect somatic mutations, which were then followed in ctDNA | RFS | ctDNA detection after adjuvant therapy (surgery followed by radiotherapy) is associated with worse survival outcomes | 2.23 (95% CI 1.16–4.27) |
Turner et al. (2023) [52] | 78 | Exome sequencing of plasma using the personalized RaDaR assay | iDFS | ctDNA detection after adjuvant therapy (endocrine therapy) is associated with worse survival outcomes | 25.5 (95% CI 6.5–99.6) |
Loi et al. (2024) [58] | 910 | ctDNA detection was performed using the personalized, tumor-informed Signatera ctDNA assay (Natera, Inc.) | iDFS | Among patients who had a ctDNA+ test at any timepoint (before treatment and 3, 6, and 24 months following adjuvant treatment with abemaciclib + ET), 87% had an IDFS event compared to 15% with persistent ctDNA-negative (−) status | No HRs reported |
Trial Name | Population | NCT Number | Phase | Estimated Completion | Primary Outcome | Potential Impact on Evidence Base |
---|---|---|---|---|---|---|
MiRaDoR | HR+/HER2− early-stage BC | NCT05708235 | II | 2028 | Molecular relapse-free survival | May provide evidence for ctDNA-guided early intervention |
DARE | HR+/HER2− early-stage BC | NCT04567420 | II | 2027 | Efficacy of ctDNA-guided palbociclib + fulvestrant | Could support ctDNA-guided second-line therapy |
TBCRC-068 | HR+/HER2− early-stage BC | NCT06923527 | II | 2027 | Efficacy of elacestrant in ctDNA-detected relapse | May inform post-relapse treatment strategies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajjawi, I.; Rozenblit, M.; Rios-Hoyo, A.; Lustberg, M.B. Prognostic Value of Circulating Tumor DNA in HR+/HER2− Stage I–III Breast Cancer: A Systematic Review. Cancers 2025, 17, 2831. https://doi.org/10.3390/cancers17172831
Ajjawi I, Rozenblit M, Rios-Hoyo A, Lustberg MB. Prognostic Value of Circulating Tumor DNA in HR+/HER2− Stage I–III Breast Cancer: A Systematic Review. Cancers. 2025; 17(17):2831. https://doi.org/10.3390/cancers17172831
Chicago/Turabian StyleAjjawi, Ismail, Mariya Rozenblit, Alejandro Rios-Hoyo, and Maryam B. Lustberg. 2025. "Prognostic Value of Circulating Tumor DNA in HR+/HER2− Stage I–III Breast Cancer: A Systematic Review" Cancers 17, no. 17: 2831. https://doi.org/10.3390/cancers17172831
APA StyleAjjawi, I., Rozenblit, M., Rios-Hoyo, A., & Lustberg, M. B. (2025). Prognostic Value of Circulating Tumor DNA in HR+/HER2− Stage I–III Breast Cancer: A Systematic Review. Cancers, 17(17), 2831. https://doi.org/10.3390/cancers17172831