Glioblastoma Cells Induce Neuron Loss In Vivo and In Vitro
Simple Summary
Abstract
1. Introduction
- i.
- GSC-initiated orthotopic xenografts: In this model, human GSCs were implanted into the right striatum of mouse brains, and tumors were allowed to develop for 35 days. These tumor-bearing mice were irradiated at a dose of 10 Gy, and tumor regrowth was monitored for up to 21 days post-irradiation. It was observed that the non-irradiated tumors diffusively spanned the RH and the olfactory bulb (OB), where tumor cells interacted with the neurons. Conversely, the irradiated tumor-bearing mice exhibited subsequent tumor mass regrowth with concomitant depletion of the neurons. This study highlights the regrowth of GBM following irradiation, which causes substantial damage to the neurons.
- ii.
- An in vitro direct coculture model of GSCs and human neurons: To further understand the crosstalk between the GSCs and neurons, we established an in vitro direct coculture model using GSCs and human neurons differentiated from iPSC-derived NPCs. This approach, using both cell types derived from humans, provides an advantage for studying the interaction of GBM tumor cells and neurons in GBM, thereby replicating the actual interaction between these two cell types in GBM patients. Moreover, this model is easy to use for cellular assays in scrutinizing the effects of GSCs on neuronal death. Of note, the in vitro studies demonstrate that GSCs have detrimental effects on the neurons. We identified IL-8 as a potential cytokine secreted as a result of the GSC and neuron coculture, which could be a potential candidate for further investigations into GBM’s development and recurrence.
2. Materials and Methods
2.1. Cells
2.1.1. Glioblastoma Stem Cells
2.1.2. Neural Progenitor Cells
2.1.3. The MRC9 Fibroblast Cell Line
2.2. The Orthotopic Xenograft Mouse Model
2.3. Neuron Differentiation
2.4. Establishment of the GSC–Neuron Coculture
2.5. The Cell Count Assay
2.6. Immunohistochemistry
2.7. Immunocytochemistry
2.8. The Western Blot Analysis
2.9. The Human Cytokine Array
2.10. The IL-8 Cytokine Treatment
2.11. The IL-8-Neutralizing Antibody Treatment
2.12. The Statistical Analysis
3. Results
3.1. Tumors That Regrow Post-Irradiation Are Devoid of Neurons
3.2. The Effect of Radiation on the Neuron Distribution in Mice Without Tumors
3.3. GSCs Lead to the Loss of Neurons in the Direct Coculture
3.4. Cell–Cell Contact Is Required for GSC-Mediated Neurotoxicity
3.5. GSC–Neuron Direct Coculture Secretes Cytokines That Influence Neuronal Death
3.6. The Effect of IL-8 on Neuronal Death
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GBM | Glioblastoma |
GSCs | Glioblastoma stem cells |
IL | Interleukin |
IHC | Immunohistochemistry |
USA | United States of America |
CM | Conditioned media |
h | Hour |
NPCs | Neural progenitor cells |
OB | Olfactory bulb |
RH | Right hemisphere |
CTX | Cerebral cortex |
TH | Thalamus |
FGF | Fibroblast growth factor |
AF | Alexa Fluor |
RT | Room temperature |
r | Recombinant |
MCP | Monocyte chemoattractant protein |
References
- Brown, N.F.; Ottaviani, D.; Tazare, J.; Gregson, J.; Kitchen, N.; Brandner, S.; Fersht, N.; Mulholland, P. Survival outcomes and prognostic factors in glioblastoma. Cancers 2022, 14, 3161. [Google Scholar] [CrossRef]
- Mohammed, S.; Dinesan, M.; Ajayakumar, T. Survival and quality of life analysis in glioblastoma multiforme with adjuvant chemoradiotherapy: A retrospective study. Rep. Pract. Oncol. Radiother. 2022, 27, 1026–1036. [Google Scholar] [CrossRef]
- Valenzuela-Fuenzalida, J.J.; Moyano-Valarezo, L.; Silva-Bravo, V.; Milos-Brandenberg, D.; Orellana-Donoso, M.; Nova-Baeza, P.; Suazo-Santibáñez, A.; Rodríguez-Luengo, M.; Oyanedel-Amaro, G.; Sanchis-Gimeno, J. Association between the anatomical location of glioblastoma and its evaluation with clinical considerations: A systematic review and meta-analysis. J. Clin. Med. 2024, 13, 3460. [Google Scholar] [CrossRef] [PubMed]
- Dührsen, L.; Sauvigny, T.; Ricklefs, F.L.; Mende, K.C.; Schaper, M.; Matschke, J.; Goebell, E.; Westphal, M.; Martens, T. Seizures as presenting symptom in patients with glioblastoma. Epilepsia 2019, 60, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Golab, F.; Hajimirzaei, P.; Zarbakhsh, S.; Zolfaghari, S.; Hayat, P.; Joghataei, M.T.; Bakhtiarzadeh, F.; Ahmadirad, N. Interplay of Neuroinflammation and Epilepsy in Glioblastoma Multiforme: Mechanisms and Therapeutic Implications. J. Mol. Neurosci. 2025, 75, 68. [Google Scholar] [CrossRef]
- Meyer, J.; Yu, K.; Luna-Figueroa, E.; Deneen, B.; Noebels, J. Glioblastoma disrupts cortical network activity at multiple spatial and temporal scales. Nat. Commun. 2024, 15, 4503. [Google Scholar] [CrossRef] [PubMed]
- Hua, T.; Shi, H.; Zhu, M.; Chen, C.; Su, Y.; Wen, S.; Zhang, X.; Chen, J.; Huang, Q.; Wang, H. Glioma-neuronal interactions in tumor progression: Mechanism, therapeutic strategies and perspectives. Int. J. Oncol. 2022, 61, 104. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Zhang, Y.; Wang, Y. Co-culture models for investigating cellular crosstalk in the glioma microenvironment. Cancer Pathog. Ther. 2024, 2, 219–230. [Google Scholar] [CrossRef]
- Venkatesh, H.S.; Johung, T.B.; Caretti, V.; Noll, A.; Tang, Y.; Nagaraja, S.; Gibson, E.M.; Mount, C.W.; Polepalli, J.; Mitra, S.S. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 2015, 161, 803–816. [Google Scholar] [CrossRef]
- de Ruiter Swain, J.; Michalopoulou, E.; Noch, E.K.; Lukey, M.J.; Van Aelst, L. Metabolic partitioning in the brain and its hijacking by glioblastoma. Genes Dev. 2023, 37, 681–702. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, H.; Gu, T.; Liu, H.; Deng, P.; Li, B.; Yang, H.; Mao, Y.; Shao, Z. Modeling the precise interaction of glioblastoma with human brain region-specific organoids. iScience 2024, 27, 109111. [Google Scholar] [CrossRef]
- Venkataramani, V.; Tanev, D.I.; Strahle, C.; Studier-Fischer, A.; Fankhauser, L.; Kessler, T.; Körber, C.; Kardorff, M.; Ratliff, M.; Xie, R. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 2019, 573, 532–538. [Google Scholar] [CrossRef]
- Venkatesh, H.S.; Morishita, W.; Geraghty, A.C.; Silverbush, D.; Gillespie, S.M.; Arzt, M.; Tam, L.T.; Espenel, C.; Ponnuswami, A.; Ni, L. Electrical and synaptic integration of glioma into neural circuits. Nature 2019, 573, 539–545. [Google Scholar] [CrossRef]
- Tetzlaff, S.K.; Reyhan, E.; Layer, N.; Bengtson, C.P.; Heuer, A.; Schroers, J.; Faymonville, A.J.; Langeroudi, A.P.; Drewa, N.; Keifert, E. Characterizing and targeting glioblastoma neuron-tumor networks with retrograde tracing. Cell 2025, 188, 390–411.e36. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Zhang, D.Y.; Zhang, Z.; Bhattarai, J.P.; Wang, Y.; Park, K.H.; Dong, W.; Hung, Y.-F.; Yang, Q. Brain-wide neuronal circuit connectome of human glioblastoma. Nature 2025, 641, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Maleszewska, M.; Wojnicki, K.; Mieczkowski, J.; Król, S.K.; Jacek, K.; Śmiech, M.; Kocyk, M.; Ciechomska, I.A.; Bujko, M.; Siedlecki, J. DMRTA2 supports glioma stem-cell mediated neovascularization in glioblastoma. Cell Death Dis. 2024, 15, 228. [Google Scholar] [CrossRef] [PubMed]
- Auffinger, B.; Spencer, D.; Pytel, P.; Ahmed, A.U.; Lesniak, M.S. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev. Neurother. 2015, 15, 741–752. [Google Scholar] [CrossRef]
- Rodriguez, S.M.B.; Staicu, G.-A.; Sevastre, A.-S.; Baloi, C.; Ciubotaru, V.; Dricu, A.; Tataranu, L.G. Glioblastoma stem cells—Useful tools in the battle against cancer. Int. J. Mol. Sci. 2022, 23, 4602. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zuo, C.; Fang, P.; Liu, G.; Qiu, Y.; Huang, Y.; Tang, R. Targeting glioblastoma stem cells: A review on biomarkers, signal pathways and targeted therapy. Front. Oncol. 2021, 11, 701291. [Google Scholar] [CrossRef]
- Al Awabdh, S.; Donneger, F.; Goutierre, M.; Séveno, M.; Vigy, O.; Weinzettl, P.; Russeau, M.; Moutkine, I.; Lévi, S.; Marin, P. Gephyrin interacts with the K-Cl cotransporter KCC2 to regulate its surface expression and function in cortical neurons. J. Neurosci. 2022, 42, 166–182. [Google Scholar] [CrossRef]
- Venkataramani, V.; Yang, Y.; Schubert, M.C.; Reyhan, E.; Tetzlaff, S.K.; Wißmann, N.; Botz, M.; Soyka, S.J.; Beretta, C.A.; Pramatarov, R.L. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell 2022, 185, 2899–2917.e31. [Google Scholar] [CrossRef]
- McCord, A.M.; Jamal, M.; Williams, E.S.; Camphausen, K.; Tofilon, P.J. CD133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines. Clin. Cancer Res. 2009, 15, 5145–5153. [Google Scholar] [CrossRef]
- Degorre, C.; Sutton, I.C.; Lehman, S.L.; Shankavaram, U.T.; Camphausen, K.; Tofilon, P.J. Glioblastoma cells have increased capacity to repair radiation-induced DNA damage after migration to the olfactory bulb. Cancer Cell Int. 2022, 22, 389. [Google Scholar] [CrossRef]
- Chang, C.; Chavarro, V.S.; Gerstl, J.V.; Blitz, S.E.; Spanehl, L.; Dubinski, D.; Valdes, P.A.; Tran, L.N.; Gupta, S.; Esposito, L. Recurrent glioblastoma—Molecular underpinnings and evolving treatment paradigms. Int. J. Mol. Sci. 2024, 25, 6733. [Google Scholar] [CrossRef]
- Kotecha, R.; Odia, Y.; Khosla, A.A.; Ahluwalia, M.S. Key clinical principles in the management of glioblastoma. JCO Oncol. Pract. 2023, 19, 180–189. [Google Scholar] [CrossRef]
- Timme, C.R.; Degorre-Kerbaul, C.; McAbee, J.H.; Rath, B.H.; Wu, X.; Camphausen, K.; Tofilon, P.J. The olfactory bulb provides a radioresistant niche for glioblastoma cells. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 194–201. [Google Scholar] [CrossRef]
- Diaz-Hernandez, J.I.; Moncada, S.; Bolaños, J.P.; Almeida, A. Poly (ADP-ribose) polymerase-1 protects neurons against apoptosis induced by oxidative stress. Cell Death Differ. 2007, 14, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Yi, J.H.; Lee, S.; Park, C.-H.; Ryu, J.H.; Shin, K.S.; Kang, S.J. Defective neurogenesis and schizophrenia-like behavior in PARP-1-deficient mice. Cell Death Dis. 2019, 10, 943. [Google Scholar] [CrossRef]
- Gerstner, E.R.; Eichler, A.F.; Plotkin, S.R.; Drappatz, J.; Doyle, C.L.; Xu, L.; Duda, D.G.; Wen, P.Y.; Jain, R.K.; Batchelor, T.T. Phase I trial with biomarker studies of vatalanib (PTK787) in patients with newly diagnosed glioblastoma treated with enzyme inducing anti-epileptic drugs and standard radiation and temozolomide. J. Neuro-Oncol. 2011, 103, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Vaz-Salgado, M.A.; Villamayor, M.; Albarrán, V.; Alía, V.; Sotoca, P.; Chamorro, J.; Rosero, D.; Barrill, A.M.; Martín, M.; Fernandez, E. Recurrent glioblastoma: A review of the treatment options. Cancers 2023, 15, 4279. [Google Scholar] [CrossRef] [PubMed]
- Kroonen, J.; Nassen, J.; Boulanger, Y.G.; Provenzano, F.; Capraro, V.; Bours, V.; Martin, D.; Deprez, M.; Robe, P.; Rogister, B. Human glioblastoma-initiating cells invade specifically the subventricular zones and olfactory bulbs of mice after striatal injection. Int. J. Cancer 2011, 129, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, Y.; Glastonbury, C.; Cha, S. Involvement of the olfactory apparatus by gliomas. Am. J. Neuroradiol. 2020, 41, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Grossen, A.; Smith, K.; Coulibaly, N.; Arbuckle, B.; Evans, A.; Wilhelm, S.; Jones, K.; Dunn, I.; Towner, R.; Wu, D. Physical forces in glioblastoma migration: A systematic review. Int. J. Mol. Sci. 2022, 23, 4055. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Burns, T.C. Radiation-induced alterations in the recurrent glioblastoma microenvironment: Therapeutic implications. Front. Oncol. 2018, 8, 503. [Google Scholar] [CrossRef]
- Yoo, K.-C.; Suh, Y.; An, Y.; Lee, H.-J.; Jeong, Y.J.; Uddin, N.; Cui, Y.-H.; Roh, T.-H.; Shim, J.-K.; Chang, J.H. Proinvasive extracellular matrix remodeling in tumor microenvironment in response to radiation. Oncogene 2018, 37, 3317–3328. [Google Scholar] [CrossRef]
- Hasan, T.; Caragher, S.P.; Shireman, J.M.; Park, C.H.; Atashi, F.; Baisiwala, S.; Lee, G.; Guo, D.; Wang, J.Y.; Dey, M. Interleukin-8/CXCR2 signaling regulates therapy-induced plasticity and enhances tumorigenicity in glioblastoma. Cell Death Dis. 2019, 10, 292. [Google Scholar] [CrossRef]
- Zhu, V.F.; Yang, J.; LeBrun, D.G.; Li, M. Understanding the role of cytokines in Glioblastoma Multiforme pathogenesis. Cancer Lett. 2012, 316, 139–150. [Google Scholar] [CrossRef]
- Conroy, S.; Kruyt, F.A.; Wagemakers, M.; Bhat, K.P.; den Dunnen, W.F. IL-8 associates with a pro-angiogenic and mesenchymal subtype in glioblastoma. Oncotarget 2018, 9, 15721. [Google Scholar] [CrossRef]
- Infanger, D.W.; Cho, Y.; Lopez, B.S.; Mohanan, S.; Liu, S.C.; Gursel, D.; Boockvar, J.A.; Fischbach, C. Glioblastoma stem cells are regulated by interleukin-8 signaling in a tumoral perivascular niche. Cancer Res. 2013, 73, 7079–7089. [Google Scholar] [CrossRef]
- Campos, B.; Olsen, L.R.; Urup, T.; Poulsen, H. A comprehensive profile of recurrent glioblastoma. Oncogene 2016, 35, 5819–5825. [Google Scholar] [CrossRef]
- De Silva, M.I.; Stringer, B.W.; Bardy, C. Neuronal and tumourigenic boundaries of glioblastoma plasticity. Trends Cancer 2023, 9, 223–236. [Google Scholar] [CrossRef] [PubMed]
Antibody | Target Species | Species | Isotype | Dilution | Product Catalog | Company |
---|---|---|---|---|---|---|
NeuN | Human | Rabbit | IgG | 1:1000 | ABN78 | Sigma |
Tuj1 (β Tubulin III) | Human | Mouse | IgG | 1:500 | MAB1637 | Sigma |
Anti-phospho histone H2.AX, clone JBW301 | Human | Mouse | IgG | 1:1000 | 05-636 | Sigma |
GFP | Human | Goat | IgG | 1:500 | AB6673 | Abcam (Burlington, MA, USA) |
PARP | Human | Rabbit | IgG | 1:1000 | 9542 | Cell Signaling (Danvers, MA, USA) |
Actin, clone C4 | Human | Mouse | IgG | 1:1000 | MAB1501 | Sigma |
AF-488 | Mouse | Donkey | IgG | 1:1000 | A21202 | Invitrogen |
AF-488 | Goat | Donkey | IgG | 1:1000 | A31814 | Invitrogen |
AF-647 | Mouse | Donkey | IgG | 1:1000 | A32787 | Invitrogen |
AF-647 | Rabbit | Donkey | IgG | 1:1000 | A21239 | Invitrogen |
Anti-mouse HRP-linked | Mouse | Donkey | IgG | 1:1000 | 7076S | Invitrogen |
Anti-rabbit HRP-linked | Rabbit | Donkey | IgG | 1:1000 | 7074S | Invitrogen |
IL-8-neutralizing antibody | Human | Mouse | IgG | 0.5 µg/mL | AB18672 (807) | Abcam |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawal, K.N.; Degorre, C.; Tofilon, P.J. Glioblastoma Cells Induce Neuron Loss In Vivo and In Vitro. Cancers 2025, 17, 2817. https://doi.org/10.3390/cancers17172817
Rawal KN, Degorre C, Tofilon PJ. Glioblastoma Cells Induce Neuron Loss In Vivo and In Vitro. Cancers. 2025; 17(17):2817. https://doi.org/10.3390/cancers17172817
Chicago/Turabian StyleRawal, Komal N., Charlotte Degorre, and Philip J. Tofilon. 2025. "Glioblastoma Cells Induce Neuron Loss In Vivo and In Vitro" Cancers 17, no. 17: 2817. https://doi.org/10.3390/cancers17172817
APA StyleRawal, K. N., Degorre, C., & Tofilon, P. J. (2025). Glioblastoma Cells Induce Neuron Loss In Vivo and In Vitro. Cancers, 17(17), 2817. https://doi.org/10.3390/cancers17172817