Advancements in Targeted Therapies for Colorectal Cancer: Overcoming Challenges and Exploring Future Directions
Simple Summary
Abstract
1. Introduction
2. Advancements in Targeting CRC
2.1. Discovery of the Type I Growth Factor Receptor and Its Ligands
2.2. Development of Anti-HER Inhibitors
2.2.1. EGFR Targeted Therapy
Cetuximab (Erbitux®)
Agents | Properties | Status | Reference/Clinical Trial |
---|---|---|---|
Antibodies | |||
Cetuximab | Chimeric anti-EGFR (IgG1) | Approved for CRC, head and neck cancer | [29] |
Panitumumab | Fully human anti-EGFR (IgG2) | Approved in 2006 for CRC | [43] |
Nimotuzumab/ h-R3 | Humanised anti-EGFR (IgG1) | Phase II in CRC | NCT00972465 |
Necitumumab/ IMC-11F8 | Fully human anti-EGFR (IgG1) | Phase II in CRC | NCT00835185 |
ICR62 | Rat anti- EGFR (IgG2b) | Preclinical/phase I in solid tumours | [44,45,46] |
Trastuzumab/ Herceptin | Humanised anti-HER2 (IgG1) | Approved for breast cancer Phase II in mCRC | ref. [47], NCT04744831, NCT03457896, NCT05193292 |
Pertuzumab/ 2C4 | Humanised anti-EGFR and HER2 | Phase I/II in CRC | NCT00551421 |
Seribantumab/ MM-121 | Fully human anti-HER3 | Phase I in advanced/solid tumours | NCT01451632, NCT01451632, NCT01447225, NCT04383210 |
MM-111 | Bispecific anti-HER2 and HER3 | Phase I in solid tumours | NCT00911898 |
MCLA-158 | Bispecific anti-EGFR and LGR5 | Phase I in advanced tumours and CRC | NCT03526835 |
Sym-004 | Anti-EGFR mAb Mixture | Phase II in mCRC/solid tumours | NCT02083653, NCT01117428 |
MEHD7945A | Humanised anti-HER3 (IgG1) | Phase I/II in metastatic or advanced cancers and CRC | NCT01986166, NCT01652482 |
MM-151 | Anti-EGFR mAb Mixture | Phase I in solid tumours | NCT01520389 |
Small Molecules | |||
Gefitinib | Reversible anti-EGFR | Phase II/III in CRC Approved for NSCL cancer | ref. [25], CT00234429 |
Erlotinib | Reversible anti-EGFR | Phase II/III in CRC Approved for NSCL cancer and pancreatic cancer | ref. [28], NCT00598156, NCT01229813 |
Afatinib/ Gilotrif | Irreversible ErbB family blocker | Phase II in CRC; Approved for NSCLC in 2013 | ref. [48], NCT01152437, NCT02020577 |
Canertinib | Pan HER inhibitor | Preclinical in CRC | [49] |
HM781-36B | Pan HER inhibitor | Phase I solid tumours | NCT01455584, NCT01455571 |
Lapatinib | Reversible anti-EGFR and anti-HER2 | Approved for Breast Cancer Phase II in CRC | [50] |
BMS-599626 | Pan HER inhibitor | Phase I in solid tumours | ref. [51], NCT00095537 |
EKB-569 | Irreversible anti-EGFR | Phase I/II in CRC | NCT00072748 |
Neratinib/ Nerlynx | Pan HER inhibitor | Phase I in solid tumours, approved in HER2-positive metastatic breast cancer in 2020 | NCT03919292 |
Tucatinib/ Tuksya | Anti-HER2 inhibitor | Approved in CRC | [52] |
Vandetanib | Pan VEGFR/EGFR/RET inhibitor | Phase I/II in CRC | NCT00532909, NCT00500292, NCT00507091 |
Panitumumab (Vectibix®)
Other Anti-EGFR mAbs
EGFR TKIs
Gefitinib (Iressa)
Erlotinib (Tarceva™)
2.2.2. HER2 and HER3 Targeted Therapy
Trastuzumab (Herceptin)
Tucatinib
Seribantumab (MM-121)
Patritumab (U3-1287)
GSK2849330
Lumretuzumab
2.2.3. Dual- and Pan-HER Inhibitors of EGFR Family Members
Lapatinib
Afatinib
Neratinib
2.3. Development of Other Targeted Therapies Against CRC
New Generation of Targeted Therapies Currently in Clinical Development
3. Challenges in Targeting CRC
3.1. Patient Selection for a Better Response to Anti-EGFR Therapy
3.2. Variable Expression of the HER Family in CRC
3.2.1. Expression of EGFR
Study | Number of Patients | Tumour Type | Percentage Expression (%) |
---|---|---|---|
[168] | 92 | Dukes’ A–D | 16.3 |
[169] | 32 | Dukes’ A–D | 44 |
[170] | 82 | Dukes’ A–D | 97.6 |
[171] | 102 | Stage IV | 75.5 |
[172] | 249 | Dukes’ C and D | 72.7 |
[173] | 125 | Dukes’ A–D | 53 |
[174] | 99 | Primary/met | 53 |
[162] | 244 | Stage 0–IV | 8 |
[175] | 80 | Stage IV | 80 |
[176] | 150 | Primary/met | 97 |
[177] | 158 | Primary/met | 85 (primary) 79 (met) |
[178] | 87 | Dukes’ C | 76 |
[179] | 32 | Stage IV | 84 |
[180] | 154 | Dukes’ A–D | 35.6 |
[32] | 27 | Metastatic | 100 |
[181] | 130 | Stage I–IIB | 73 |
[182] | 106 | Primary/met | 12.3/54.7 |
[183] | 124 | Stage I–IV | 60 |
[184] | 164 | Stage I–IV | 43.9 |
[185] | 109 | Stage IIA–IIIC | 57.8 |
[165] | 755 | Metastatic | 61.7 |
[186] | 101 | Metastatic | 89 |
[187] | 205 | Stage III | 80.5 |
[188] | 147 | Stage I–IV | 35.7 |
[189] | 54 | Stage I–IV | 58 |
[163] | 86 | Dukes’ A–D | 43 |
[190] | 158 | Grades G1–G4 | 38 |
[191] | 70 | Stage I–IV | 64 |
[192] | 173 | Stage III | 62.4 |
[193] | 331 | Stage I–IV | 39 |
3.2.2. Expression of HER2
Study | No. of Patients | Tumour Type | Method of Assessment | HER2 Expression (%) |
---|---|---|---|---|
[173] | 125 | Dukes’ A–D | IHC | 35 |
[197] | 169 | Stage I–IV | IHC | 3.6 |
FISH | 2.4 | |||
[198] | 170 | Dukes’ B–C | IHC | 87 (cyto) |
54 (mem) | ||||
[162] | 244 | Stage 0–IV | IHC | 3 |
[95] | 138 | Metastatic | IHC | 8 |
[199] | 87 | Dukes’ C | IHC | 89 |
[200] | 77 | Dukes’ A–D | IHC | 30 |
[201] | 137 | Stage I–IV | IHC | 47.4 |
FISH | 1.45 | |||
[183] | 124 | Stage I–IV | IHC | 27.4 |
[196] | 132 | Dukes’ A–D | IHC | 13.6 |
[202] | 186 | Dukes’ A–D | FISH | 26.3 |
[165] | 755 | Metastatic | FISH | 11.5 |
[195] | 202 | Primary | IHC | 66 (cyto) 27 (mem) |
[203] | 60 | Primary node positive | IHC | 1.8 |
[204] | 365 174 | Stage I–IV | IHC | 6 |
IHC | 5.8 | |||
SISH | 6.3 | |||
[205] | 208 | Stage I–IV | IHC | 8.2 |
[93] | 144 | Metastatic | IHC | 97 |
3.2.3. Expression of HER3 and HER4
Study | No. of Patients | Tumour Type | Markers Assessed | Percentage Expression (%) |
---|---|---|---|---|
[209] | 55 | Dukes’ A–C | HER3 | 78 |
[173] | 125 | Dukes’ A–D | EGFR | 52 |
HER2 | 35 | |||
HER3 | 36 | |||
HER4 | 22 | |||
[211] | 106 | Dukes’ B–D | HER3 | 17 (mem), 28.3 (cyto) |
HER4 | 18.9 (mem), 30.2 (cyto) | |||
[213] | 64 | Stage I–III | EGFR | 76 |
HER2 | 54 | |||
HER3 | 67 | |||
HER4 | 81 | |||
[185] | 109 | Stage IIA–IIIC | EGFR | 57.8 |
HER2 | 8.3 | |||
HER3 | 69.7 | |||
HER4 | 11 (mem), 19.3 (cyto) | |||
[203] | 60 | Primary/met | EGFR | 29 |
HER2 | 1.8 | |||
HER3 | 16 | |||
[163] | 86 | Primary | EGFR | 43 |
HER2 | 77 | |||
HER3 | 52 | |||
HER4 | 92 | |||
[205] | 208 | Liver met | HER3 | 75 |
[193] | 331 | Stage I–IV | HER3 | 69 |
[93] | 144 | Metastatic | EGFR | 25 |
HER2 | 97 | |||
HER3 | 79 | |||
HER4 | 48 |
3.2.4. Co-Expression of All HER Family Members
3.3. Acquired Drug Resistance to Therapies in CRC
4. Future Directions and Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Filho, A.M.; Laversanne, M.; Ferlay, J.; Colombet, M.; Pineros, M.; Znaor, A.; Parkin, D.M.; Soerjomataram, I.; Bray, F. The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide. Int. J. Cancer 2025, 156, 1336–1346. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA A Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Walker, J.; Quirke, P. Prognosis and response to therapy in colorectal cancer. Eur. J. Cancer 2002, 38, 880–886. [Google Scholar] [CrossRef]
- Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer Statistics, 2010. CA A Cancer J. Clin. 2010, 60, 277–300. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, A.; Adam, R.; Rosello, S.; Arnold, D.; Normanno, N.; Taieb, J.; Seligmann, J.; De Baere, T.; Osterlund, P.; Yoshino, T.; et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 10–32. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Lenz, H.-J. Integration of novel agents in the treatment of colorectal cancer. Cancer Chemother. Pharmacol. 2004, 54, S32–S39. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.R. Targeted therapy of cancer: New roles for pathologists in colorectal cancer. Mod. Pathol. 2008, 21, S23–S30. [Google Scholar] [CrossRef]
- Mason, P. Colorectal cancer: The disease and its management. Hosp. Pharm. 2004, 11, 175–177. [Google Scholar]
- Han, C.J.; Ning, X.; Burd, C.E.; Spakowicz, D.J.; Tounkara, F.; Kalady, M.F.; Noonan, A.M.; McCabe, S.; Von Ah, D. Chemotoxicity and Associated Risk Factors in Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 2597. [Google Scholar] [CrossRef]
- Khelwatty, S.A.; Essapen, S.; Seddon, A.M.; Modjtahedi, H. Prognostic significance and targeting of HER family in colorectal cancer. Front. Biosci. 2013, 18, 394–421. [Google Scholar] [CrossRef]
- Gullick, W.G. Prevalence of aberant expression of the epidermal growth factor receptor in human cancers. Br. Med. Bull. 1991, 47, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Yarden, Y. The EGFR family and its ligands in human cancer: Signalling mechanisms and therapeutic opportunities. Eur. J. Cancer 2001, 37, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141, 1117–1134. [Google Scholar] [CrossRef] [PubMed]
- Gullick, W. The Type 1 growth factor receptors and their ligands considered as a complex system. Endocr. Relat. Cancer 2001, 8, 75–82. [Google Scholar] [CrossRef]
- Singh, A.B.; Harris, R.C. Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell. Signal. 2005, 17, 1183–1193. [Google Scholar] [CrossRef]
- Modjtahedi, H.; Cho, B.C.; Michel, M.C.; Solca, F. A comprehensive review of the preclinical efficacy profile of the ErbB family blocker afatinib in cancer. Naunyn Schmiedebergs Arch. Pharmacol. 2014, 387, 505–521. [Google Scholar] [CrossRef]
- Anklesaria, P.; Teixidó, J.; Laiho, M.; Pierce, J.H.; Greenberger, J.S.; Massagué, J. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor alpha to epidermal growth factor receptors promotes cell proliferation. Proc. Natl. Acad. Sci. USA 1990, 87, 3289–3293. [Google Scholar] [CrossRef]
- Dent, P.; Reardon, D.B.; Park, J.S.; Bowers, G.; Logsdon, C.; Valerie, K.; Schmidt-Ullrich, R. Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol. Biol. Cell 1999, 10, 2493–2506. [Google Scholar]
- Giralt, J.; Eraso, A.; Armengol, M.; Rossello, J.; Majo, J.; Ares, C.; Espin, E.; Benavente, S.; de Torres, I. Epidermal growth factor receptor is a predictor of tumor response in locally advanced rectal cancer patients treated with preoperative radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 1460–1465. [Google Scholar] [CrossRef]
- Mendelsohn, J.; Baselga, J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol. 2003, 21, 2787–2799. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Zhang, H.; Berezov, A.; Wang, Q.; Zhang, G.; Drebin, J.; Murali, R.; Greene, M.I. ErbB receptors: From oncogenes to targeted cancer therapies. J. Clin. Investig. 2007, 117, 2051–2058. [Google Scholar] [CrossRef]
- Cohen, M.H.; Williams, G.A.; Sridhara, R.; Chen, G.; Pazer, R. FDA drug approval summary: Gefitinib (ZD1839) (Iressa) tablet. Oncologist 2003, 8, 303–306. [Google Scholar] [CrossRef]
- Giusti, R.M.; Shastri, K.A.; Cohen, M.H.; Keegan, P.; Pazdur, R. FDA drug approval summary: Panitumumab (Vectibix). Oncologist 2007, 12, 577–583. [Google Scholar] [CrossRef]
- Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; et al. Cetuximab Monotherapy and Cetuximab plus Irinotecan in Irinotecan-Refractory Metastatic Colorectal Cancer. N. Engl. J. Med. 2004, 351, 337–345. [Google Scholar] [CrossRef]
- Cohen, M.H.; Johnson, J.R.; Chen, Y.-F.; Sridhara, R.; Pazdur, R. FDA Drug Approval Summary: Erlotinib (Tarceva®) Tablets. Oncologist 2005, 10, 461–466. [Google Scholar] [CrossRef]
- Wong, S. Cetuximab: An Epidermal Growth Factor Receptor Monoclonal Antibody for the Treatment of colorectal cancer. Clin. Ther. 2005, 27, 684–694. [Google Scholar] [CrossRef]
- Chung, K.Y.; Shia, J.; Kemeny, N.E. Cetuximab shows activity in colorectal cancer patients with tumours that do not express the epidermal growth factor receptor by immunohistochemistry. J. Clin. Oncol. 2005, 23, 1803–1810. [Google Scholar] [CrossRef]
- Lenz, H.J.; Van Cutsem, E.; Khambata-Ford, S. Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J. Clin. Oncol. 2006, 24, 4914–4921. [Google Scholar] [CrossRef]
- Frattini, M.; Saletti, P.; Romagnani, E.; Martin, V.; Molinari, F.; Ghisletta, M.; Camponovo, A.; Etienne, L.L.; Cavalli, F.; Mazzucchelli, L. PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients. Br. J. Cancer 2007, 97, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Khambata-Ford, S.; Garrett, C.R.; Meropol, N.J.; Basik, M.; Harbison, C.T.; Wu, S.; Wong, T.W.; Huang, X.; Takimoto, C.H.; Godwin, A.K.; et al. Expression of Epiregulin and Amphiregulin and K-ras Mutation Status Predict Disease Control in Metastatic Colorectal Cancer Patients Treated With Cetuximab. J. Clin. Oncol. 2007, 25, 3230–3237. [Google Scholar] [CrossRef] [PubMed]
- Cappuzzo, F.; Varella-Garcia, M.; Finocchiaro, G.; Skokan, M.; Gajapathy, S.; Carnaghi, C.; Rimassa, L.; Rossi, E.; Ligorio, C.; Di Tommaso, L.; et al. Primary resistance to cetuximab therapy in EGFR FISH-positive colorectal cancer patients. Br. J. Cancer 2008, 99, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Hebbar, M.; Ychou, M.; Ducreux, M. Current place of high-dose irinotecan chemotherapy in patients with metastatic colorectal cancer. J. Cancer Res. Clin. Oncol. 2009, 135, 749–752. [Google Scholar] [CrossRef]
- Moroni, M.; Veronese, S.; Benvenuti, S.; Marrapese, G.; Sartore-Bianchi, A.; Di Nicolantonio, F.; Gambacorta, M.; Siena, S.; Bardelli, A. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: A cohort study. Lancet Oncol. 2005, 6, 279–286. [Google Scholar] [CrossRef]
- Sartore-Bianchi, A.; Moroni, M.; Veronese, S.; Carnaghi, C.; Bajetta, E.; Luppi, G.; Sobrero, A.; Barone, C.; Cascinu, S.; Colucci, G.; et al. Epidermal Growth Factor Receptor Gene Copy Number and Clinical Outcome of Metastatic Colorectal Cancer Treated With Panitumumab. J. Clin. Oncol. 2007, 25, 3238–3245. [Google Scholar] [CrossRef]
- Wu, M.; Rivkin, A.; Pham, T. Panitumumab:Human monoclonal antibody against epidermal growth factor receptor for the treatment of metastatic colorectal cancer. Clin. Ther. 2008, 30, 14–29. [Google Scholar] [CrossRef]
- Messersmith, W.A.; Laheru, D.A.; Senzer, N.N.; Donehower, R.C.; Grouleff, P.; Rogers, T.; Kelley, S.K.; Ramies, D.A.; Lum, B.L.; Hidalgo, M. Phase I Trial of Irinotecan, Infusional 5-Fluorouracil, and Leucovorin (FOLFIRI) with Erlotinib (OSI-774). Clin. Cancer Res. 2004, 10, 6522–6527. [Google Scholar] [CrossRef]
- Townsley, C.A.; Major, P.; Siu, L.L.; Dancey, J.; Chen, E.; Pond, G.R.; Nicklee, T.; Ho, J.; Hedley, D.; Tsao, M.; et al. Phase II study of erlotinib (OSI-774) in patients with metastatic colorectal cancer. Br. J. Cancer 2006, 94, 1136–1143. [Google Scholar] [CrossRef]
- Meyerhardt, J.; Stuart, K.; Fuchs, C.; Zhu, A.; Earle, C.; Bhargava, P.; Blaszkowsky, L.; Enzinger, P.; Mayer, R.; Battu, S.; et al. Phase II study of FOLFOX, bevacizumab and erlotinib as first-line therapy for patients with metastastic colorectal cancer. Ann. Oncol. 2007, 18, 1185–1189. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Masui, H.; Altas, I.; Mendelsohn, J. Blockade of epidermal growth factor receptor function by bivalent and monovalent fragments of 225 anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res. 1993, 53, 4322–4328. [Google Scholar] [PubMed]
- Van Cutsem, E.; Peeters, M.; Siena, S.; Humblet, Y.; Hendlisz, A.; Neyns, B.; Canon, J.-L.; Van Laethem, J.-L.; Maurel, J.; Richardson, G.; et al. Open-Label Phase III Trial of Panitumumab Plus Best Supportive Care Compared With Best Supportive Care Alone in Patients With Chemotherapy-Refractory Metastatic Colorectal Cancer. J. Clin. Oncol. 2007, 25, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, N.; Dalgleish, A.G.; Seddon, A.M.; Mackintosh, D.; Guertler, U.; Solca, F.; Modjtahedi, H. Anti-tumour activity of afatinib, an irreversible ErbB family blocker, in human pancreatic tumour cells. Br. J. Cancer 2011, 105, 1554–1562. [Google Scholar] [CrossRef]
- Modjtahedi, H.; Hickish, T.; Nicolson, M.; Moore, J.; Styles, J.; Eccles, S.; Jackson, E.; Salter, J.; Sloane, J.; Spencer, L.; et al. Phase I trial and tumour localisation of the anti-EGFR monoclonal antibody ICR62 in head and neck or lung cancer. Br. J. Cancer 1996, 73, 228–235. [Google Scholar] [CrossRef]
- Khelwatty, S.A.; Essapen, S.; Seddon, A.M.; Modjtahedi, H. Growth response of human colorectal tumour cell lines to treatment with afatinib (BIBW2992), an irreversible erbB family blocker, and its association with expression of HER family members. Int. J. Oncol. 2011, 39, 483–491. [Google Scholar] [CrossRef]
- Sorscher, S.M. Marked response to single agent trastuzumab in a patient with metastatic HER-2 gene amplified rectal cancer. Cancer Investig. 2011, 29, 456–459. [Google Scholar] [CrossRef]
- Solca, F. Pharmacology and molecular mechanisms of BIBW2992 a potent irreversible dual EGFR/HER-2 kinase inhibitor of cancer therapy. Target. Oncol. 2007, 2, S15. [Google Scholar]
- Slichenmyer, W.J.; Elliott, W.L.; Fry, D.W. CI-1033, a pan-erbB tyrosine kinase inhibitor. Semin. Oncol. 2001, 28, 80–85. [Google Scholar] [CrossRef]
- Geyer, C.E.; Forster, J.; Lindquist, D.; Chan, S.; Romieu, C.G.; Pienkowski, T.; Jagiello-Gruszfeld, A.; Crown, J.; Chan, A.; Kaufman, B.; et al. Lapatinib plus Capecitabine for HER2-Positive Advanced Breast Cancer. N. Engl. J. Med. 2006, 355, 2733–2743. [Google Scholar] [CrossRef]
- Wong, T.W.; Lee, F.Y.; Yu, C.; Luo, F.R.; Oppenheimer, S.; Zhang, H.; Smykla, R.A.; Mastalerz, H.; Fink, B.E.; Hunt, J.T.; et al. Preclinical antitumor activity of BMS-599626, a pan-HER kinase inhibitor that inhibits HER1/HER2 homodimer and heterodimer signaling. Clin. Cancer Res. 2006, 12, 6186–6193. [Google Scholar] [CrossRef] [PubMed]
- Casak, S.J.; Horiba, M.N.; Yuan, M.; Cheng, J.; Lemery, S.J.; Shen, Y.L.; Fu, W.; Moore, J.N.; Li, Y.; Bi, Y.; et al. FDA Approval Summary: Tucatinib with Trastuzumab for Advanced Unresectable or Metastatic, Chemotherapy Refractory, HER2-Positive RAS Wild-Type Colorectal Cancer. Clin. Cancer Res. 2023, 29, 4326–4330. [Google Scholar] [CrossRef] [PubMed]
- Richman, S.D.; Seymour, M.T.; Chambers, P.; Elliott, F.; Daly, C.L.; Meade, A.M.; Taylor, G.; Barrett, J.H.; Quirke, P. KRAS and BRAF Mutations in Advanced Colorectal Cancer Are Associated With Poor Prognosis but Do Not Preclude Benefit From Oxaliplatin or Irinotecan: Results From the MRC FOCUS Trial. J. Clin. Oncol. 2009, 27, 5931–5937. [Google Scholar] [CrossRef] [PubMed]
- Folprecht, G.; Gruenberger, T.; Bechstein, W.O.; Raab, H.R.; Lordick, F.; Hartmann, J.T.; Lang, H.; Frilling, A.; Stoehlmacher, J.; Weitz, J.; et al. Tumour response and secondary resectability of colorectal liver metastases following neoadjuvant chemotherapy with cetuximab: The CELIM randomised phase 2 trial. Lancet Oncol. 2010, 11, 38–47. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Nowacki, M.; Lang, I.; Cascinu, S.; Shchepotin, I.; Maurel, J.; Rougier, P.; Cunningham, D.; Nippgen, J.; Kohne, C. Randomized phase III study of irinotecan and 5-FU/FA with or without cetuximab in the first-line treatment of patients with metastatic colorectal cancer (mCRC): The CRYSTAL trial. J. Clin. Oncol. (Meeting Abstracts) 2007, 25, 4000. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Lenz, H.J.; Kohne, C.H.; Heinemann, V.; Tejpar, S.; Melezinek, I.; Beier, F.; Stroh, C.; Rougier, P.; van Krieken, J.H.; et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol. 2015, 33, 692–700. [Google Scholar] [CrossRef]
- Sobrero, A.F.; Maurel, J.; Fehrenbacher, L.; Scheithauer, W.; Abubakr, Y.A.; Lutz, M.P.; Vega-Villegas, M.E.; Eng, C.; Steinhauer, E.U.; Prausova, J.; et al. EPIC: Phase III Trial of Cetuximab Plus Irinotecan After Fluoropyrimidine and Oxaliplatin Failure in Patients With Metastatic Colorectal Cancer. J. Clin. Oncol. 2008, 26, 2311–2319. [Google Scholar] [CrossRef]
- Heinemann, V.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Vehling-Kaiser, U.; Al-Batran, S.E.; Heintges, T.; Lerchenmuller, C.; Kahl, C.; Seipelt, G.; et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A randomised, open-label, phase 3 trial. Lancet Oncol. 2014, 15, 1065–1075. [Google Scholar] [CrossRef]
- Heinemann, V.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Kaiser, F.; Al-Batran, S.E.; Heintges, T.; Lerchenmuller, C.; Kahl, C.; Seipelt, G.; et al. FOLFIRI plus cetuximab or bevacizumab for advanced colorectal cancer: Final survival and per-protocol analysis of FIRE-3, a randomised clinical trial. Br. J. Cancer 2021, 124, 587–594. [Google Scholar] [CrossRef]
- Fischer, L.E.; Stintzing, S.; von Weikersthal, L.F.; Modest, D.P.; Decker, T.; Kiani, A.; Kaiser, F.; Al-Batran, S.E.; Heintges, T.; Lerchenmuller, C.; et al. Efficacy of FOLFIRI plus cetuximab vs FOLFIRI plus bevacizumab in 1st-line treatment of older patients with RAS wild-type metastatic colorectal cancer: An analysis of the randomised trial FIRE-3. Br. J. Cancer 2022, 127, 836–843. [Google Scholar] [CrossRef]
- Venook, A.P. Right-sided vs left-sided colorectal cancer. Clin. Adv. Hematol. Oncol. 2017, 15, 22–24. [Google Scholar] [PubMed]
- Shiozawa, M.; Sunakawa, Y.; Watanabe, T.; Ota, H.; Yasui, H.; Yabuno, T.; Tei, M.; Kochi, M.; Manaka, D.; Ohori, H.; et al. Modified FOLFOXIRI plus cetuximab versus bevacizumab in RAS wild-type metastatic colorectal cancer: A randomized phase II DEEPER trial. Nat. Commun. 2024, 15, 10217. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Ba, Y.; Wang, J.; Xiong, J.; Gu, K.; Chen, Y.; Zheng, Z.; Wang, Z.; Guo, W.; Cheng, Y.; et al. First-line treatment of anti-EGFR monoclonal antibody cetuximab beta plus FOLFIRI versus FOLFIRI alone in Chinese patients with RAS/BRAF wild-type metastatic colorectal cancer: A randomized, phase 3 trial. Signal Transduct. Target. Ther. 2025, 10, 147. [Google Scholar] [CrossRef] [PubMed]
- Abdel Hamid, M.; Pammer, L.M.; Oberparleiter, S.; Gunther, M.; Amann, A.; Gruber, R.A.; Mair, A.; Nocera, F.I.; Ormanns, S.; Zimmer, K.; et al. Multidimensional differences of right- and left-sided colorectal cancer and their impact on targeted therapies. NPJ Precis. Oncol. 2025, 9, 116. [Google Scholar] [CrossRef]
- Arnold, D.; Lueza, B.; Douillard, J.Y.; Peeters, M.; Lenz, H.J.; Venook, A.; Heinemann, V.; Van Cutsem, E.; Pignon, J.P.; Tabernero, J.; et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann. Oncol. 2017, 28, 1713–1729. [Google Scholar] [CrossRef]
- Gravalos, C.; Cassinello, J.; Garcia-Alfonso, P.; Jimeno, A. Integration of panitumumab into the treatment of colorectal cancer. Crit. Rev. Oncol. Hematol. 2010, 74, 16–26. [Google Scholar] [CrossRef]
- Keating, G.M. Panitumumab: A review of its use in metastatic colorectal cancer. Drugs 2010, 70, 1059–1078. [Google Scholar] [CrossRef]
- Hecht, J.R.; Patnaik, A.; Berlin, J.; Venook, A.; Malik, I.; Tchekmedyian, S.; Navale, L.; Amado, R.G.; Meropol, N.J. Panitumumab monotherapy in patients with previously treated metastatic colorectal cancer. Cancer 2007, 110, 980–988. [Google Scholar] [CrossRef]
- Siena, S.; Tabernero, J.; Burkes, R.L.; Cassidy, J.; Cunningham, D.; Barugel, M.E.; Humblet, Y.; McPhie, C.; Shing, M.; Douillard, J. Phase III study (PRIME/20050203) of panitumumab (pmab) with FOLFOX compared with FOLFOX alone in patients (pts) with previously untreated metastatic colorectal cancer (mCRC): Pooled safety data. J. Clin. Oncol. (Meeting Abstracts) 2008, 26, 4034. [Google Scholar] [CrossRef]
- Peeters, M.; Wilson, G.; Ducreux, M.; Cervantes, A.; Andre, T.; Hotko, Y.; Lordick, F.; Collins, S.; Shing, M.; Price, T.J. Phase III study (20050181) of panitumumab (pmab) with FOLFIRI versus FOLFIRI alone as second-line treatment (tx) in patients (pts) with metastatic colorectal cancer (mCRC): Pooled safety results. J. Clin. Oncol. (Meeting Abstracts) 2008, 26, 4064. [Google Scholar] [CrossRef]
- Morris, V.K.; Kennedy, E.B.; Baxter, N.N.; Benson, A.B., 3rd; Cercek, A.; Cho, M.; Ciombor, K.K.; Cremolini, C.; Davis, A.; Deming, D.A.; et al. Treatment of Metastatic Colorectal Cancer: ASCO Guideline. J. Clin. Oncol. 2023, 41, 678–700. [Google Scholar] [CrossRef]
- Cunningham, M.P.; Thomas, H.; Fan, Z.; Modjtahedi, H. Responses of Human Colorectal Tumor Cells to Treatment with the Anti–Epidermal Growth Factor Receptor Monoclonal Antibody ICR62 Used Alone and in Combination with the EGFR Tyrosine Kinase Inhibitor Gefitinib. Cancer Res. 2006, 66, 7708–7715. [Google Scholar] [CrossRef]
- Vieitez, J.M.; Valladares, M.; Pelaez, I.; de Sande Gonzalez, L.; Garcia-Foncillas, J.; Garcia-Lopez, J.L.; Garcia-Giron, C.; Reboredo, M.; Bovio, H.; Lacave, A.J. A randomized phase II study of raltitrexed and gefitinib versus raltitrexed alone as second line chemotherapy in patients with colorectal cancer. (1839IL/0143). Investig. New Drugs 2011, 29, 1038–1044. [Google Scholar] [CrossRef]
- Hartmann, J.T.; Pintoffl, J.P.; Kröning, H.; Bokemeyer, C.; Holtmann, M.; Höhler, T. Gefitinib in Combination with Oxaliplatin and 5-Fluorouracil in Irinotecan-Refractory Patients with Colorectal Cancer: A Phase I Study of the Arbeits gemeinschaft Internistische Onkologie (AIO). Onkologie 2008, 31, 237–241. [Google Scholar] [CrossRef]
- Fisher, G.A.; Kuo, T.; Ramsey, M.; Schwartz, E.; Rouse, R.V.; Cho, C.D.; Halsey, J.; Sikic, B.I. A phase II study of gefitinib, 5-fluorouracil, leucovorin, and oxaliplatin in previously untreated patients with metastatic colorectal cancer. Clin. Cancer Res. 2008, 14, 7074–7079. [Google Scholar] [CrossRef] [PubMed]
- Gelibter, A.J.; Gamucci, T.; Pollera, C.F.; Di Costanzo, F.; Nuzzo, C.; Gabriele, A.; Signorelli, C.; Gasperoni, S.; Ferraresi, V.; Giannarelli, D.; et al. A phase II trial of gefitinib in combination with capecitabine and oxaliplatin as first-line chemotherapy in patients with advanced colorectal cancer. Curr. Med. Res. Opin. 2007, 23, 2117–2123. [Google Scholar] [CrossRef] [PubMed]
- Meyerhardt, J.A.; Clark, J.W.; Supko, J.G.; Eder, J.P.; Ogino, S.; Stewart, C.F.; D’Amato, F.; Dancey, J.; Enzinger, P.C.; Zhu, A.X.; et al. Phase I study of gefitinib, irinotecan, 5-fluorouracil and leucovorin in patients with metastatic colorectal cancer. Cancer Chemother. Pharmacol. 2007, 60, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Chau, I.; Cunningham, D.; Hickish, T.; Massey, A.; Higgins, L.; Osborne, R.; Botwood, N.; Swaisland, A. Gefitinib and irinotecan in patients with fluoropyrimidine-refractory, irinotecan-naive advanced colorectal cancer: A phase I-II study. Ann. Oncol. 2007, 18, 730–737. [Google Scholar] [CrossRef]
- Hofheinz, R.D.; Kubicka, S.; Wollert, J.; Arnold, D.; Hochhaus, A. Gefitinib in combination with 5-fluorouracil (5-FU)/folinic acid and irinotecan in patients with 5-FU/oxaliplatin-refractory colorectal cancer: A phase I/II study of the Arbeitsgemeinschaft fur Internistische Onkologie (AIO). Onkologie 2006, 29, 563–567. [Google Scholar] [CrossRef]
- Wolpin, B.M.; Clark, J.W.; Meyerhardt, J.A.; Earle, C.C.; Ryan, D.P.; Enzinger, P.C.; Zhu, A.X.; Blaszkowsky, L.; Battu, S.; Fuchs, C.S. Phase I study of gefitinib plus FOLFIRI in previously untreated patients with metastatic colorectal cancer. Clin. Color. Cancer 2006, 6, 208–213. [Google Scholar] [CrossRef]
- Kuo, T.; Cho, C.D.; Halsey, J.; Wakelee, H.A.; Advani, R.H.; Ford, J.M.; Fisher, G.A.; Sikic, B.I. Phase II study of gefitinib, fluorouracil, leucovorin, and oxaliplatin therapy in previously treated patients with metastatic colorectal cancer. J. Clin. Oncol. 2005, 23, 5613–5619. [Google Scholar] [CrossRef]
- Kindler, H.L.; Friberg, G.; Skoog, L.; Wade-Oliver, K.; Vokes, E.E. Phase I/II trial of gefitinib and oxaliplatin in patients with advanced colorectal cancer. Am. J. Clin. Oncol. 2005, 28, 340–344. [Google Scholar] [CrossRef]
- Rothenberg, M.L.; LaFleur, B.; Levy, D.E.; Washington, M.K.; Morgan-Meadows, S.L.; Ramanathan, R.K.; Berlin, J.D.; Benson, A.B., III; Coffey, R.J. Randomized Phase II Trial of the Clinical and Biological Effects of Two Dose Levels of Gefitinib in Patients With Recurrent Colorectal Adenocarcinoma. J. Clin. Oncol. 2005, 23, 9265–9274. [Google Scholar] [CrossRef] [PubMed]
- Kelley, R.K.; Ko, A.H. Erlotinib in the treatment of advanced pancreatic cancer. Biol. Targets Ther. 2008, 2, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Keilholz, U.; Arnold, D.; Niederle, N.; Freier, W.; Porschen, R.; Hoehler, T.; Lordick, F.; Kubicka, S.; Kettner, E.; Schmoll, H.-J. Erlotinib as 2nd and 3rd line monotherapy in patients with metastatic colorectal cancer. Results of a multicenter two-cohort phase II trial. J. Clin. Oncol. (Meeting Abstracts) 2005, 23, 3575. [Google Scholar] [CrossRef]
- Meyerhardt, J.A.; Zhu, A.X.; Enzinger, P.C.; Ryan, D.P.; Clark, J.W.; Kulke, M.H.; Earle, C.C.; Vincitore, M.; Michelini, A.; Sheehan, S.; et al. Phase II study of capecitabine, oxaliplatin, and erlotinib in previously treated patients with metastastic colorectal cancer. J. Clin. Oncol. 2006, 24, 1892–1897. [Google Scholar] [CrossRef] [PubMed]
- Messersmith, W.A.; Jimeno, A.; Jacene, H.; Zhao, M.; Kulesza, P.; Laheru, D.A.; Kahn, Y.; Spira, A.; Dancey, J.; Iacobuzio-Donahue, C.; et al. Phase I trial of oxaliplatin, infusional 5-fluorouracil, and leucovorin (FOLFOX4) with erlotinib and bevacizumab in colorectal cancer. Clin. Color. Cancer 2010, 9, 297–304. [Google Scholar] [CrossRef]
- Weickhardt, A.J.; Price, T.J.; Chong, G.; Gebski, V.; Pavlakis, N.; Johns, T.G.; Azad, A.; Skrinos, E.; Fluck, K.; Dobrovic, A.; et al. Dual targeting of the epidermal growth factor receptor using the combination of cetuximab and erlotinib: Preclinical evaluation and results of the phase II DUX study in chemotherapy-refractory, advanced colorectal cancer. J. Clin. Oncol. 2012, 30, 1505–1512. [Google Scholar] [CrossRef]
- Shi, S.; Lu, K.; Gao, H.; Sun, H.; Li, S. Erlotinib in combination with bevacizumab and FOLFOX4 as second-line chemotherapy for patients with metastatic colorectal cancer. Am. J. Cancer Res. 2017, 7, 1971–1977. [Google Scholar]
- Mesange, P.; Bouygues, A.; Ferrand, N.; Sabbah, M.; Escargueil, A.E.; Savina, A.; Chibaudel, B.; Tournigand, C.; Andre, T.; de Gramont, A.; et al. Combinations of Bevacizumab and Erlotinib Show Activity in Colorectal Cancer Independent of RAS Status. Clin. Cancer Res. 2018, 24, 2548–2558. [Google Scholar] [CrossRef]
- Siegman, A.; Shaykevich, A.; Chae, D.; Silverman, I.; Goel, S.; Maitra, R. Erlotinib Treatment in Colorectal Cancer Suppresses Autophagy Based on KRAS Mutation. Curr. Issues Mol. Biol. 2024, 46, 7530–7547. [Google Scholar] [CrossRef]
- Robinson, H.R.; Messersmith, W.A.; Lentz, R.W. HER2-Positive Metastatic Colorectal Cancer. Curr. Treat. Options Oncol. 2024, 25, 585–604. [Google Scholar] [CrossRef]
- Khelwatty, S.A.; Puvanenthiran, S.; Essapen, S.; Bagwan, I.; Seddon, A.M.; Modjtahedi, H. HER2 Expression Is Predictive of Survival in Cetuximab Treated Patients with RAS Wild Type Metastatic Colorectal Cancer. Cancers 2021, 13, 638. [Google Scholar] [CrossRef]
- Mukai, H. Targeted Therapy in Breast Cancer: Current Status and Future Directions. Jpn. J. Clin. Oncol. 2010, 40, 711–716. [Google Scholar] [CrossRef]
- Ramanathan, R.K.; Hwang, J.J.; Zamboni, W.C.; Sinicrope, F.A.; Safran, H.; Wong, M.K.; Earle, M.; Brufsky, A.; Evans, T.; Troetschel, M.; et al. Low Overexpression of HER-2/Neu in Advanced Colorectal Cancer Limits the Usefulness of Trastuzumab (Herceptin®) and Irinotecan as Therapy. A Phase II Trial. Cancer Investig. 2004, 22, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Kuwada, S.K.; Scaife, C.L.; Kuang, J.; Li, X.; Wong, R.F.; Florell, S.R.; Coffey, R.J.; Gray, P.D. Effects of trastuzumab on epidermal growth factor receptor-dependent and -independent human colon cancer cells. Int. J. Cancer 2004, 109, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Sartore-Bianchi, A.; Trusolino, L.; Martino, C.; Bencardino, K.; Lonardi, S.; Bergamo, F.; Zagonel, V.; Leone, F.; Depetris, I.; Martinelli, E.; et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): A proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016, 17, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Sartore-Bianchi, A.; Lonardi, S.; Martino, C.; Fenocchio, E.; Tosi, F.; Ghezzi, S.; Leone, F.; Bergamo, F.; Zagonel, V.; Ciardiello, F.; et al. Pertuzumab and trastuzumab emtansine in patients with HER2-amplified metastatic colorectal cancer: The phase II HERACLES-B trial. ESMO Open 2020, 5, e000911. [Google Scholar] [CrossRef]
- Siena, S.; Di Bartolomeo, M.; Raghav, K.; Masuishi, T.; Loupakis, F.; Kawakami, H.; Yamaguchi, K.; Nishina, T.; Fakih, M.; Elez, E.; et al. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): A multicentre, open-label, phase 2 trial. Lancet Oncol. 2021, 22, 779–789. [Google Scholar] [CrossRef]
- Strickler, J.H.; Cercek, A.; Siena, S.; Andre, T.; Ng, K.; Van Cutsem, E.; Wu, C.; Paulson, A.S.; Hubbard, J.M.; Coveler, A.L.; et al. Tucatinib plus trastuzumab for chemotherapy-refractory, HER2-positive, RAS wild-type unresectable or metastatic colorectal cancer (MOUNTAINEER): A multicentre, open-label, phase 2 study. Lancet Oncol. 2023, 24, 496–508. [Google Scholar] [CrossRef]
- Strickler, J.H.; Bekaii-Saab, T.S. A study to learn how well tucatinib plus trastuzumab works for treating participants with metastatic colorectal cancer, and how safe it is: A plain language summary of the MOUNTAINEER study. Future Oncol. 2024, 20, 409–421. [Google Scholar] [CrossRef]
- Strickler, J.H.; Bekaii-Saab, T.; Cercek, A.; Heinemann, V.; Nakamura, Y.; Raghav, K.; Siena, S.; Tabernero, J.; Van Cutsem, E.; Yoshino, T.; et al. MOUNTAINEER-03 phase III study design: First-line mFOLFOX6+ tucatinib+ trastuzumab for HER2+ metastatic colorectal cancer. Future Oncol. 2025, 21, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Scartozzi, M.; Mandolesi, A.; Giampieri, R.; Bittoni, A.; Pierantoni, C.; Zaniboni, A.; Galizia, E.; Giustini, L.; Silva, R.R.; Bisonni, R.; et al. The Role of HER-3 Expression in the Prediction of Clinical Outcome for Advanced Colorectal Cancer Patients Receiving Irinotecan and Cetuximab. Oncologist 2011, 16, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Engelman, J.A.; Janne, P.A.; Mermel, C.; Pearlberg, J.; Mukohara, T.; Fleet, C.; Cichowski, K.; Johnson, B.E.; Cantley, L.C. ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc. Natl. Acad. Sci. USA 2005, 102, 3788–3793. [Google Scholar] [CrossRef] [PubMed]
- Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.M.; Zhao, X.; Christensen, J.; et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007, 316, 1039–1043. [Google Scholar] [CrossRef]
- Khelwatty, S.A.; Essapen, S.; Seddon, A.M.; Fan, Z.; Modjtahedi, H. Acquired resistance to anti-EGFR mAb ICR62 in cancer cells is accompanied by an increased EGFR expression, HER-2/HER-3 signalling and sensitivity to pan HER blockers. Br. J. Cancer 2015, 113, 1010–1019. [Google Scholar] [CrossRef]
- Ruiz-Saenz, A.; Dreyer, C.; Campbell, M.R.; Steri, V.; Gulizia, N.; Moasser, M.M. HER2 Amplification in Tumors Activates PI3K/Akt Signaling Independent of HER3. Cancer Res. 2018, 78, 3645–3658. [Google Scholar] [CrossRef]
- Temraz, S.; Mukherji, D.; Shamseddine, A. Dual targeting of HER3 and EGFR in colorectal tumors might overcome anti-EGFR resistance. Crit. Rev. Oncol. Hematol. 2016, 101, 151–157. [Google Scholar] [CrossRef]
- Schoeberl, B.; Pace, E.A.; Fitzgerald, J.B.; Harms, B.D.; Xu, L.; Nie, L.; Linggi, B.; Kalra, A.; Paragas, V.; Bukhalid, R.; et al. Therapeutically Targeting ErbB3: A Key Node in Ligand-Induced Activation of the ErbB Receptor-PI3K Axis. Sci. Signal. 2009, 2, ra31. [Google Scholar] [CrossRef]
- Cleary, J.M.; McRee, A.J.; Shapiro, G.I.; Tolaney, S.M.; O’Neil, B.H.; Kearns, J.D.; Mathews, S.; Nering, R.; MacBeath, G.; Czibere, A.; et al. A phase 1 study combining the HER3 antibody seribantumab (MM-121) and cetuximab with and without irinotecan. Investig. New Drugs 2017, 35, 68–78. [Google Scholar] [CrossRef]
- Denlinger, C.S.; Keedy, V.L.; Moyo, V.; MacBeath, G.; Shapiro, G.I. Phase 1 dose escalation study of seribantumab (MM-121), an anti-HER3 monoclonal antibody, in patients with advanced solid tumors. Investig. New Drugs 2021, 39, 1604–1612. [Google Scholar] [CrossRef]
- Wakui, H.; Yamamoto, N.; Nakamichi, S.; Tamura, Y.; Nokihara, H.; Yamada, Y.; Tamura, T. Phase 1 and dose-finding study of patritumab (U3-1287), a human monoclonal antibody targeting HER3, in Japanese patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2014, 73, 511–516. [Google Scholar] [CrossRef] [PubMed]
- LoRusso, P.; Janne, P.A.; Oliveira, M.; Rizvi, N.; Malburg, L.; Keedy, V.; Yee, L.; Copigneaux, C.; Hettmann, T.; Wu, C.Y.; et al. Phase I study of U3-1287, a fully human anti-HER3 monoclonal antibody, in patients with advanced solid tumors. Clin. Cancer Res. 2013, 19, 3078–3087. [Google Scholar] [CrossRef] [PubMed]
- Koganemaru, S.; Kuboki, Y.; Koga, Y.; Kojima, T.; Yamauchi, M.; Maeda, N.; Kagari, T.; Hirotani, K.; Yasunaga, M.; Matsumura, Y.; et al. U3-1402, a Novel HER3-Targeting Antibody-Drug Conjugate, for the Treatment of Colorectal Cancer. Mol. Cancer Ther. 2019, 18, 2043–2050. [Google Scholar] [CrossRef]
- Arter, Z.L.; Nagasaka, M. Spotlight on Patritumab Deruxtecan (HER3-DXd) from HERTHENA Lung01. Is a Median PFS of 5.5 Months Enough in Light of FLAURA-2 and MARIPOSA? Lung Cancer 2024, 15, 115–121. [Google Scholar] [CrossRef]
- Braso-Maristany, F.; Ferrero-Cafiero, J.M.; Falato, C.; Martinez-Saez, O.; Cejalvo, J.M.; Margeli, M.; Tolosa, P.; Salvador-Bofill, F.J.; Cruz, J.; Gonzalez-Farre, B.; et al. Patritumab deruxtecan in HER2-negative breast cancer: Part B results of the window-of-opportunity SOLTI-1805 TOT-HER3 trial and biological determinants of early response. Nat. Commun. 2024, 15, 5826. [Google Scholar] [CrossRef]
- Yu, H.A.; Baik, C.; Kim, D.W.; Johnson, M.L.; Hayashi, H.; Nishio, M.; Yang, J.C.; Su, W.C.; Gold, K.A.; Koczywas, M.; et al. Translational insights and overall survival in the U31402-A-U102 study of patritumab deruxtecan (HER3-DXd) in EGFR-mutated NSCLC. Ann. Oncol. 2024, 35, 437–447. [Google Scholar] [CrossRef]
- Mok, T.; Janne, P.A.; Nishio, M.; Novello, S.; Reck, M.; Steuer, C.; Wu, Y.L.; Fougeray, R.; Fan, P.D.; Meng, J.; et al. HERTHENA-Lung02: Phase III study of patritumab deruxtecan in advanced EGFR-mutated NSCLC after a third-generation EGFR TKI. Future Oncol. 2024, 20, 969–980. [Google Scholar] [CrossRef]
- Krop, I.E.; Masuda, N.; Mukohara, T.; Takahashi, S.; Nakayama, T.; Inoue, K.; Iwata, H.; Yamamoto, Y.; Alvarez, R.H.; Toyama, T.; et al. Patritumab Deruxtecan (HER3-DXd), a Human Epidermal Growth Factor Receptor 3-Directed Antibody-Drug Conjugate, in Patients With Previously Treated Human Epidermal Growth Factor Receptor 3-Expressing Metastatic Breast Cancer: A Multicenter, Phase I/II Trial. J. Clin. Oncol. 2023, 41, 5550–5560. [Google Scholar] [CrossRef]
- Sidaway, P. Patritumab deruxtecan shows activity in EGFR-mutant NSCLC. Nat. Rev. Clin. Oncol. 2023, 20, 817. [Google Scholar] [CrossRef]
- Yu, H.A.; Goto, Y.; Hayashi, H.; Felip, E.; Chih-Hsin Yang, J.; Reck, M.; Yoh, K.; Lee, S.H.; Paz-Ares, L.; Besse, B.; et al. HERTHENA-Lung01, a Phase II Trial of Patritumab Deruxtecan (HER3-DXd) in Epidermal Growth Factor Receptor-Mutated Non-Small-Cell Lung Cancer After Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Therapy and Platinum-Based Chemotherapy. J. Clin. Oncol. 2023, 41, 5363–5375. [Google Scholar] [CrossRef]
- Yu, H.A.; Yang, J.C.; Hayashi, H.; Goto, Y.; Felip, E.; Reck, M.; Vigliotti, M.; Dong, Q.; Cantero, F.; Fan, P.D.; et al. HERTHENA-Lung01: A phase II study of patritumab deruxtecan (HER3-DXd) in previously treated metastatic EGFR-mutated NSCLC. Future Oncol. 2023, 19, 1319–1329. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Falato, C.; Cejalvo, J.M.; Vila, M.M.; Tolosa, P.; Salvador-Bofill, F.J.; Cruz, J.; Arumi, M.; Luna, A.M.; Guerra, J.A.; et al. Patritumab deruxtecan in untreated hormone receptor-positive/HER2-negative early breast cancer: Final results from part A of the window-of-opportunity SOLTI TOT-HER3 pre-operative study. Ann. Oncol. 2023, 34, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Shimizu, S.; Sawamura, R.; Tajima, N.; He, L.; Lee, M.; Abutarif, M.; Shi, R. Population Pharmacokinetics of Patritumab Deruxtecan in Patients With Solid Tumors. J. Clin. Pharmacol. 2023, 63, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Koyama, K.; Ishikawa, H.; Abe, M.; Shiose, Y.; Ueno, S.; Qiu, Y.; Nakamaru, K.; Murakami, M. Patritumab deruxtecan (HER3-DXd), a novel HER3 directed antibody drug conjugate, exhibits in vitro activity against breast cancer cells expressing HER3 mutations with and without HER2 overexpression. PLoS ONE 2022, 17, e0267027. [Google Scholar] [CrossRef]
- Yonesaka, K.; Tanizaki, J.; Maenishi, O.; Haratani, K.; Kawakami, H.; Tanaka, K.; Hayashi, H.; Sakai, K.; Chiba, Y.; Tsuya, A.; et al. HER3 Augmentation via Blockade of EGFR/AKT Signaling Enhances Anticancer Activity of HER3-Targeting Patritumab Deruxtecan in EGFR-Mutated Non-Small Cell Lung Cancer. Clin. Cancer Res. 2022, 28, 390–403. [Google Scholar] [CrossRef]
- Conradi, L.C.; Spitzner, M.; Metzger, A.L.; Kisly, M.; Middel, P.; Bohnenberger, H.; Gaedcke, J.; Ghadimi, M.B.; Liersch, T.; Ruschoff, J.; et al. Combined targeting of HER-2 and HER-3 represents a promising therapeutic strategy in colorectal cancer. BMC Cancer 2019, 19, 880. [Google Scholar] [CrossRef]
- Kim, D.W.; Schram, A.M.; Hollebecque, A.; Nishino, K.; Macarulla, T.; Rha, S.Y.; Duruisseaux, M.; Liu, S.V.; Al Hallak, M.N.; Umemoto, K.; et al. The phase I/II eNRGy trial: Zenocutuzumab in patients with cancers harboring NRG1 gene fusions. Future Oncol. 2024, 20, 1057–1067. [Google Scholar] [CrossRef]
- Blair, H.A. Zenocutuzumab: First Approval. Drugs 2025, 85, 591–597. [Google Scholar] [CrossRef]
- Cejalvo, J.M.; Jacob, W.; Fleitas Kanonnikoff, T.; Felip, E.; Navarro Mendivil, A.; Martinez Garcia, M.; Taus Garcia, A.; Leighl, N.; Lassen, U.; Mau-Soerensen, M.; et al. A phase Ib/II study of HER3-targeting lumretuzumab in combination with carboplatin and paclitaxel as first-line treatment in patients with advanced or metastatic squamous non-small cell lung cancer. ESMO Open 2019, 4, e000532. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, D.; Yuan, C.; Lang, X.; Fu, S. Lapatinib: A Potential Therapeutic Agent for Colon Cancer Targeting Ferroptosis. Anticancer. Agents Med. Chem. 2025, 25, 114–123. [Google Scholar] [CrossRef]
- Harvey, R.D.; Adams, V.R.; Beardslee, T.; Medina, P. Afatinib for the treatment of EGFR mutation-positive NSCLC: A review of clinical findings. J. Oncol. Pharm. Pract. 2020, 26, 1461–1474. [Google Scholar] [CrossRef]
- Eskens, F.A.L.M.; Mom, C.H.; Planting, A.S.T.; Gietema, J.A.; Amelsberg, A.; Huisman, H.; van Doorn, L.; Burger, H.; Stopfer, P.; Verweij, J.; et al. A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumours. Br. J. Cancer 2007, 98, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Hickish, T.; Cassidy, J.; Propper, D.; Chau, I.; Falk, S.; Ford, H.; Iveson, T.; Braun, M.; Potter, V.; Macpherson, I.R.; et al. A randomised, open-label phase II trial of afatinib versus cetuximab in patients with metastatic colorectal cancer. Eur. J. Cancer 2014, 50, 3136–3144. [Google Scholar] [CrossRef] [PubMed]
- van Brummelen, E.M.J.; Huijberts, S.; van Herpen, C.; Desar, I.; Opdam, F.; van Geel, R.; Marchetti, S.; Steeghs, N.; Monkhorst, K.; Thijssen, B.; et al. Phase I Study of Afatinib and Selumetinib in Patients with KRAS-Mutated Colorectal, Non-Small Cell Lung, and Pancreatic Cancer. Oncologist 2021, 26, 290-e545. [Google Scholar] [CrossRef] [PubMed]
- Al-Janaby, T.; Nahi, N.; Seddon, A.; Bagwan, I.; Khelwatty, S.; Modjtahedi, H. The Combination of Afatinib With Dasatinib or Miransertib Results in Synergistic Growth Inhibition of Stomach Cancer Cells. World J. Oncol. 2024, 15, 192–208. [Google Scholar] [CrossRef]
- Deeks, E.D. Neratinib: First Global Approval. Drugs 2017, 77, 1695–1704. [Google Scholar] [CrossRef]
- Jacobs, S.A.; Lee, J.J.; George, T.J.; Wade, J.L., 3rd; Stella, P.J.; Wang, D.; Sama, A.R.; Piette, F.; Pogue-Geile, K.L.; Kim, R.S.; et al. Neratinib-Plus-Cetuximab in Quadruple-WT (KRAS, NRAS, BRAF, PIK3CA) Metastatic Colorectal Cancer Resistant to Cetuximab or Panitumumab: NSABP FC-7, A Phase Ib Study. Clin. Cancer Res. 2021, 27, 1612–1622. [Google Scholar] [CrossRef]
- Mulliqi, E.; Khelwatty, S.; Morgan, A.; Ashkan, K.; Modjtahedi, H. Synergistic Effects of Neratinib in Combination With Palbociclib or Miransertib in Brain Cancer Cells. World J. Oncol. 2024, 15, 492–505. [Google Scholar] [CrossRef]
- Tiwari, S.R.; Mishra, P.; Abraham, J. Neratinib, a Novel HER2-Targeted Tyrosine Kinase Inhibitor. Clin. Breast Cancer 2016, 16, 344–348. [Google Scholar] [CrossRef]
- Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer. N. Engl. J. Med. 2019, 381, 1632–1643. [Google Scholar] [CrossRef]
- Elez, E.; Yoshino, T.; Shen, L.; Lonardi, S.; Van Cutsem, E.; Eng, C.; Kim, T.W.; Wasan, H.S.; Desai, J.; Ciardiello, F.; et al. Encorafenib, Cetuximab, and mFOLFOX6 in BRAF-Mutated Colorectal Cancer. N. Engl. J. Med. 2025, 392, 2425–2437. [Google Scholar] [CrossRef]
- Kopetz, S.; Yoshino, T.; Van Cutsem, E.; Eng, C.; Kim, T.W.; Wasan, H.S.; Desai, J.; Ciardiello, F.; Yaeger, R.; Maughan, T.S.; et al. Encorafenib, cetuximab and chemotherapy in BRAF-mutant colorectal cancer: A randomized phase 3 trial. Nat. Med. 2025, 31, 901–908. [Google Scholar] [CrossRef]
- Kuboki, Y.; Fakih, M.; Strickler, J.; Yaeger, R.; Masuishi, T.; Kim, E.J.; Bestvina, C.M.; Kopetz, S.; Falchook, G.S.; Langer, C.; et al. Sotorasib with panitumumab in chemotherapy-refractory KRAS(G12C)-mutated colorectal cancer: A phase 1b trial. Nat. Med. 2024, 30, 265–270. [Google Scholar] [CrossRef]
- Fakih, M.G.; Salvatore, L.; Esaki, T.; Modest, D.P.; Lopez-Bravo, D.P.; Taieb, J.; Karamouzis, M.V.; Ruiz-Garcia, E.; Kim, T.W.; Kuboki, Y.; et al. Sotorasib plus Panitumumab in Refractory Colorectal Cancer with Mutated KRAS G12C. N. Engl. J. Med. 2023, 389, 2125–2139. [Google Scholar] [CrossRef]
- Yaeger, R.; Langer, C.J.; Ruffinelli, J.C.; Fakih, M.; Furqan, M.; Machiels, J.-P.H.; Saportas, Y.; Nolte-Hippenmeyer, J.; Chan, E.; Xia, C.; et al. A phase 1b study of sotorasib combined with panitumumab as second-line treatment of KRAS G12C-mutated colorectal cancer. J. Clin. Oncol. 2024, 42, 128. [Google Scholar] [CrossRef]
- Hecht, J.R.; Mitchell, E.; Neubauer, M.A.; Burris, H.A., 3rd; Swanson, P.; Lopez, T.; Buchanan, G.; Reiner, M.; Gansert, J.; Berlin, J. Lack of correlation between epidermal growth factor receptor status and response to Panitumumab monotherapy in metastatic colorectal cancer. Clin. Cancer Res. 2010, 16, 2205–2213. [Google Scholar] [CrossRef] [PubMed]
- Lievre, A.; Bachet, J.-B.; Le Corre, D.; Boige, V.; Landi, B.; Emile, J.-F.; Cote, J.-F.; Tomasic, G.; Penna, C.; Ducreux, M.; et al. KRAS Mutation Status Is Predictive of Response to Cetuximab Therapy in Colorectal Cancer. Cancer Res. 2006, 66, 3992–3995. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.J.; Juan, T.; Reiner, M.; Hecht, J.R.; Meropol, N.J.; Berlin, J.; Mitchell, E.; Sarosi, I.; Radinsky, R.; Amado, R.G. Association of K-ras mutational status and clinical outcomes in patients with metastatic colorectal cancer receiving panitumumab alone. Clin. Color. Cancer 2008, 7, 184–190. [Google Scholar] [CrossRef]
- Roock, W.D.; Vriendt, V.D.; Normanno, N.; Ciardiello, F.; Tejpar, S. KRAS, BRAF, PIK3CA, and PTEN mutations: Implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol. 2011, 12, 594–603. [Google Scholar] [CrossRef]
- Peeters, M.; Douillard, J.Y.; Van Cutsem, E.; Siena, S.; Zhang, K.; Williams, R.; Wiezorek, J. Mutant KRAS codon 12 and 13 alleles in patients with metastatic colorectal cancer: Assessment as prognostic and predictive biomarkers of response to panitumumab. J. Clin. Oncol. 2013, 31, 759–765. [Google Scholar] [CrossRef]
- Tran, B.; Kopetz, S.; Tie, J.; Gibbs, P.; Jiang, Z.Q.; Lieu, C.H.; Agarwal, A.; Maru, D.M.; Sieber, O.; Desai, J. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer 2011, 117, 4623–4632. [Google Scholar] [CrossRef] [PubMed]
- Loupakis, F.; Cremolini, C.; Masi, G.; Lonardi, S.; Zagonel, V.; Salvatore, L.; Cortesi, E.; Tomasello, G.; Ronzoni, M.; Spadi, R.; et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N. Engl. J. Med. 2014, 371, 1609–1618. [Google Scholar] [CrossRef] [PubMed]
- Pietrantonio, F.; Cremolini, C.; Petrelli, F.; Di Bartolomeo, M.; Loupakis, F.; Maggi, C.; Antoniotti, C.; de Braud, F.; Falcone, A.; Iacovelli, R. First-line anti-EGFR monoclonal antibodies in panRAS wild-type metastatic colorectal cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2015, 96, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Perrone, F.; Lampis, A.; Orsenigo, M.; Di Bartolomeo, M.; Gevorgyan, A.; Losa, M.; Frattini, M.; Riva, C.; Andreola, S.; Bajetta, E.; et al. PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol./ESMO 2009, 20, 84–90. [Google Scholar] [CrossRef]
- Moretto, R.; Cremolini, C.; Rossini, D.; Pietrantonio, F.; Battaglin, F.; Mennitto, A.; Bergamo, F.; Loupakis, F.; Marmorino, F.; Berenato, R.; et al. Location of Primary Tumor and Benefit From Anti-Epidermal Growth Factor Receptor Monoclonal Antibodies in Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer. Oncologist 2016, 21, 988–994. [Google Scholar] [CrossRef]
- Benson, A.B.; Venook, A.P.; Adam, M.; Chang, G.; Chen, Y.J.; Ciombor, K.K.; Cohen, S.A.; Cooper, H.S.; Deming, D.; Garrido-Laguna, I.; et al. Colon Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2024, 22, e240029. [Google Scholar] [CrossRef]
- Bardelli, A.; Corso, S.; Bertotti, A.; Hobor, S.; Valtorta, E.; Siravegna, G.; Sartore-Bianchi, A.; Scala, E.; Cassingena, A.; Zecchin, D.; et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 2013, 3, 658–673. [Google Scholar] [CrossRef]
- Nam, S.K.; Yun, S.; Koh, J.; Kwak, Y.; Seo, A.N.; Park, K.U.; Kim, D.W.; Kang, S.B.; Kim, W.H.; Lee, H.S. BRAF, PIK3CA, and HER2 Oncogenic Alterations According to KRAS Mutation Status in Advanced Colorectal Cancers with Distant Metastasis. PLoS ONE 2016, 11, e0151865. [Google Scholar] [CrossRef]
- Potocki, P.M.; Wisniowski, R.; Haus, D.; Chowaniec, Z.; Kozaczka, M.; Kustra, M.; Samborska-Plewicka, M.; Szweda, M.; Starzyczny-Slota, D.; Michalik, M.; et al. The Impact of Sidedness on the Efficacy of Anti-EGFR-Based First-Line Chemotherapy in Advanced Colorectal Cancer Patients in Real-Life Setting-A Nation-Wide Retrospective Analysis (RACER). Cancers 2023, 15, 4361. [Google Scholar] [CrossRef]
- Stintzing, S.; Fischer von Weikersthal, L.; Decker, T.; Vehling-Kaiser, U.; Jager, E.; Heintges, T.; Stoll, C.; Giessen, C.; Modest, D.P.; Neumann, J.; et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer-subgroup analysis of patients with KRAS: Mutated tumours in the randomised German AIO study KRK-0306. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol./ESMO 2012, 23, 1693–1699. [Google Scholar] [CrossRef]
- Ooi, A.; Takehana, T.; Li, X.; Suzuki, S.; Kunitomo, K.; Iino, H.; Fujii, H.; Takeda, Y.; Dobashi, Y. Protein overexpression and gene amplification of HER-2 and EGFR in colorectal cancers: An immunohistochemical and fluorescent in situ hybridization study. Mod. Pathol. 2004, 17, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Khelwatty, S.A.; Essapen, S.; Bagwan, I.; Green, M.; Seddon, A.M.; Modjtahedi, H. Co-expression of HER family members in patients with Dukes’ C and D colon cancer and their impacts on patient prognosis and survival. PLoS ONE 2014, 9, e91139. [Google Scholar] [CrossRef] [PubMed]
- Modjtahedi, H.; Khelwatty, S.A.; Kirk, R.S.; Seddon, A.M.; Essapen, S.; Del Vecchio, C.A.; Wong, A.J.; Eccles, S. Immunohistochemical discrimination of wild-type EGFR from EGFRvIII in fixed tumour specimens using anti-EGFR mAbs ICR9 and ICR10. Br. J. Cancer 2012, 106, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Jolien, T.; Jeroen, R.D.; Marjolein, K.; Steven, T.; Martin, D.; Vink-Börger, M.E.; Patricia, H.v.C.; Krieken, J.H.v.; Cornelis, J.A.P.; Iris, D.N. Markers for EGFR pathway activation as predictor of outcome in metastatic colorectal cancer patients treated with or without cetuximab. Eur. J. Cancer 2010, 46, 1997–2009. [Google Scholar] [CrossRef]
- Khelwatty, S.; Essapen, S.; Bagwan, I.; Green, M.; Seddon, A.; Modjtahedi, H. The impact of co-expression of wild-type EGFR and its ligands determined by immunohistochemistry for response to treatment with cetuximab in patients with metastatic colorectal cancer. Oncotarget 2017, 8, 7666–7677. [Google Scholar] [CrossRef]
- Li, Z.; Jin, K.; Lan, H.; Teng, L. Heterogeneity in primary colorectal cancer and its corresponding metastases: A potential reason of EGFR-targeted therapy failure? Hepato Gastroenterol.-Curr. Med. Surg. Trends 2011, 58, 411–416. [Google Scholar]
- Takemura, K.; Obara, T.; Okano, S.; Yokota, K.; Ura, H.; Saitoh, Y.; Koike, Y.; Okamura, K.; Namiki, M. Immunohistochemical study on the expression of epidermal growth factor receptor (EGFR) in human colorectal carcinomas. Nihon Shokakibyo Gakkai Zasshi = Jpn. J. Gastro-Enterol. 1991, 88, 1177–1183. [Google Scholar]
- Kluftinger, A.M.; Robinson, B.W.; Quenville, N.F.; Finley, R.J.; Davis, N.L. Correlation of epidermal growth factor receptor and c-erbB2 oncogene product to known prognostic indicators of colorectal cancer. Surg. Oncol. 1992, 1, 97–105. [Google Scholar] [CrossRef]
- Mayer, A.; Takimoto, M.; Fritz, E.; Schellander, G.; Kofler, K.; Ludwig, H. The prognostic significance of proliferating cell nuclear antigen, epidermal growth factor receptor, and mdr gene expression in colorectal cancer. Cancer 1993, 71, 2454–2460. [Google Scholar] [CrossRef]
- Goldstein, N.S.; Armin, M. Epidermal growth factor receptor immunohistochemical reactivity in patients with American Joint Committee on Cancer Stage IV colon adenocarcinoma: Implications for a standardized scoring system. Cancer 2001, 92, 1331–1346. [Google Scholar] [CrossRef]
- McKay, J.A.; Murray, L.J.; Curran, S.; Ross, V.G.; Clark, C.; Murray, G.I.; Cassidy, J.; McLeod, H.L. Evaluation of the epidermal growth factor receptor (EGFR) in colorectal tumours and lymph node metastases. Eur. J. Cancer 2002, 38, 2258–2264. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Wang, S.T.; Chow, N.H.; Yang, H.B. Investigation of the prognostic value of coexpressed erbB family members for the survival of colorectal cancer patients after curative surgery. Eur. J. Cancer 2002, 38, 1065–1071. [Google Scholar] [CrossRef]
- Scartozzi, M.; Bearzi, I.; Berardi, R.; Mandolesi, A.; Fabris, G.; Cascinu, S. Epidermal growth factor receptor (EGFR) status in primary colorectal tumors does not correlate with EGFR expression in related metastatic sites: Implications for treatment with EGFR-Targeted Monocolonal Antibodies. J. Clin. Oncol. 2004, 22, 4772–4778. [Google Scholar] [CrossRef]
- Italiano, A.; Saint-Paul, M.C.; Caroli-Bosc, F.X.; Francois, E.; Bourgeon, A.; Benchimol, D.; Gugenheim, J.; Michiels, J.F. Epidermal growth factor receptor (EGFR) status in primary colorectal tumors correlates with EGFR expression in related metastatic sites: Biological and clinical implications. Ann. Oncol. 2005, 16, 1503–1507. [Google Scholar] [CrossRef]
- Spano, J.-P.; Lagorce, C.; Atlan, D.; Milano, G.; Domont, J.; Benamouzig, R.; Attar, A.; Benichou, J.; Martin, A.; Morere, J.-F.; et al. Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann. Oncol. 2005, 16, 102–108. [Google Scholar] [CrossRef]
- Shia, J.; Klimstra, D.S.; Li, A.R.; Qin, J.; Saltz, L.; Teruya-Feldstein, J.; Akram, M.; Chung, K.Y.; Yao, D.; Paty, P.B.; et al. Epidermal growth factor receptor expression and gene amplification in colorectal carcinoma: An immunohistochemical and chromogenic in situ hybridization study. Mod. Pathol. 2005, 18, 1350–1356. [Google Scholar] [CrossRef]
- Cunningham, M.P.; Essapen, S.; Thomas, H.; Green, M.; Lovell, D.P.; Topham, C.; Marks, C.; Modjtahedi, H. Coexpression, prognostic significance and predictive value of EGFR, EGFRvIII and phosphorylated EGFR in colorectal cancer. Int. J. Oncol. 2005, 27, 317–325. [Google Scholar] [CrossRef]
- Bibeau, F.; Boissiere-Michot, F.; Sabourin, J.C.; Gourgou-Bourgade, S.; Radal, M.; Penault-Llorca, F.; Rochaix, P.; Arnould, L.; Bralet, M.P.; Azria, D.; et al. Assessment of epidermal growth factor receptor (EGFR) expression in primary colorectal carcinomas and their related metastases on tissue sections and tissue microarray. Virchows Arch. 2006, 449, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Galizia, G.; Lieto, E.; Ferraraccio, F.; De Vita, F.; Castellano, P.; Orditura, M.; Imperatore, V.; Mura, A.; Manna, G.; Pinto, M.; et al. Prognostic Significance of Epidermal Growth Factor Receptor Expression in Colon Cancer Patients Undergoing Curative Surgery. Ann. Surg. Oncol. 2006, 13, 823–835. [Google Scholar] [CrossRef]
- Bralet, M.P.; Paule, B.; Falissard, B.; Adam, R.; Guettier, C. Immunohistochemical variability of epidermal growth factor receptor (EGFR) in liver metastases from clonic carcinomas. Histopathology 2007, 50, 210–216. [Google Scholar] [CrossRef]
- Yamada, M.; Ichikawa, Y.; Yamagishi, S.; Momiyama, N.; Ota, M.; Fujii, S.; Tanaka, K.; Togo, S.; Ohki, S.; Shimada, H. Amphiregulin Is a Promising Prognostic Marker for Liver Metastases of Colorectal Cancer. Clin. Cancer Res. 2008, 14, 2351–2356. [Google Scholar] [CrossRef] [PubMed]
- Antonacopoulou, A.G.; Tsamandas, A.C.; Petsas, T.; Liava, A.; Scopa, C.D.; Papavassiliou, A.G.; Kalofonos, H.P. EGFR, HER-2 and COX-2 levels in colorectal cancer. Histopathology 2008, 53, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Theodorpoulos, G.E.; Karafoka, E.; Papailiou, J.G.; Stamopoulos, P.; Zambirinis, C.P.; Bramis, K.; Panoussopoulos, S.-G.; Leandros, E.; Bramis, J. p53 and EGFR Expression in Colorectal Cancer: A Reappraisal of ‘Old’ Tissue Markers in Patients with Long Follow-up. Anticancer. Res. 2009, 29, 785–791. [Google Scholar]
- Baiocchi, G.; Lopes, A.; Coudry, R.; Rossi, B.; Soares, F.; Aguiar, S.; Guimarães, G.; Ferreira, F.; Nakagawa, W. ErbB family immunohistochemical expression in colorectal cancer patients with higher risk of recurrence after radical surgery. Int. J. Colorectal Dis. 2009, 24, 1059–1068. [Google Scholar] [CrossRef]
- Campanella, C.; Mottolese, M.; Cianciulli, A.; Torsello, A.; Merola, R.; Sperduti, I.; Melucci, E.; Conti, S.; Diodoro, M.G.; Zeuli, M.; et al. Epidermal growth factor receptor gene copy number in 101 advanced colorectal cancer patients treated with chemotherapy plus cetuximab. J. Transl. Med. 2010, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.W.; Tsai, H.L.; Chen, Y.T.; Huang, C.M.; Ma, C.J.; Lu, C.Y.; Kuo, C.H.; Wu, D.C.; Chai, C.Y.; Wang, J.Y. The prognostic values of EGFR expression and KRAS mutation in patients with synchronous or metachronous metastatic colorectal cancer. BMC Cancer 2013, 13, 599. [Google Scholar] [CrossRef]
- Razis, E.; Pentheroudakis, G.; Rigakos, G.; Bobos, M.; Kouvatseas, G.; Tzaida, O.; Makatsoris, T.; Papakostas, P.; Bai, M.; Goussia, A.; et al. EGFR gene gain and PTEN protein expression are favorable prognostic factors in patients with KRAS wild-type metastatic colorectal cancer treated with cetuximab. J. Cancer Res. Clin. Oncol. 2014, 140, 737–748. [Google Scholar] [CrossRef]
- Algars, A.; Avoranta, T.; Osterlund, P.; Lintunen, M.; Sundstrom, J.; Jokilehto, T.; Ristimaki, A.; Ristamaki, R.; Carpen, O. Heterogeneous EGFR gene copy number increase is common in colorectal cancer and defines response to anti-EGFR therapy. PLoS ONE 2014, 9, e99590. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, Y.; Lin, J.; Ye, Y.B.; Wang, X.J.; Chen, G.; Guo, Z.Q. Combined Analysis of EGFR and PTEN Status in Patients With KRAS Wild-Type Metastatic Colorectal Cancer. Medicine 2015, 94, e1698. [Google Scholar] [CrossRef]
- Liu, J.; Hu, J.; Cheng, L.; Ren, W.; Yang, M.; Liu, B.; Xie, L.; Qian, X. Biomarkers predicting resistance to epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer with wild-type KRAS. OncoTargets Ther. 2016, 9, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.W.; Chen, Y.T.; Tsai, H.L.; Yeh, Y.S.; Su, W.C.; Ma, C.J.; Tsai, T.N.; Wang, J.Y. EGFR expression in patients with stage III colorectal cancer after adjuvant chemotherapy and on cancer cell function. Oncotarget 2017, 8, 114663–114676. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Kwak, Y.; Nam, S.K.; Seo, A.N.; Oh, H.K.; Kim, D.W.; Kang, S.B.; Lee, H.S. Ligand-Independent Epidermal Growth Factor Receptor Overexpression Correlates with Poor Prognosis in Colorectal Cancer. Cancer Res. Treat. 2018, 50, 1351–1361. [Google Scholar] [CrossRef]
- Osako, T.; Miyahara, M.; Uchino, S.; Inomata, M.; Kitano, S.; Kobayashi, M. Immunohistochemical Study of c-erbB-2 Protein in Colorectal Cancer and the Correlation with Patient Survival. Oncology 1998, 55, 548–555. [Google Scholar] [CrossRef]
- Kruszewski, W.J.; Rzepko, R.; Ciesielski, M.; Szefel, J.; Zielinski, J.; Szajewski, M.; Jasinski, W.; Kawecki, K.; Wojtacki, J. Expression of HER2 in colorectal cancer does not correlate with prognosis. Dis. Markers 2010, 29, 207–212. [Google Scholar] [CrossRef]
- Kavanagh, D.; Chambers, G.; O’Grady, L.; Barry, K.; Waldron, R.; Bennani, F.; Eustace, P.; Tobbia, I. Is overexpression of HER-2 a predictor of prognosis in colorectal cancer? BMC Cancer 2009, 9, 1. [Google Scholar] [CrossRef]
- Nathanson, D.; Culliford, A.; Shia, J.; Chen, B.; D’Alessio, M.; Zeng, Z.; Nash, G.; Gerald, W.; Barany, F.; Paty, P. Her-2/neu expression and gene amplification in colon cancer. Int. J. Cancer 2003, 105, 796–802. [Google Scholar] [CrossRef]
- Essapen, S.; Thomas, H.; Green, M.; De Vries, C.; Cook, M.; Marks, C.; Topham, C.; Modjtahedi, H. The expression and prognostic significance of HER-2 in CRC. Int. J. Oncol. 2004, 24, 241–248. [Google Scholar]
- Cunningham, M.P.; Essapen, S.; Thomas, H.; Green, M.; Lovell, D.P.; Topham, C.; Marks, C.; Modjtahedi, H. Coexpression of the IGF-IR, EGFR and HER-2 is common in colorectal cancer patients. Int. J. Oncol. 2006, 28, 329–335. [Google Scholar] [CrossRef]
- Schuell, B.; Gruenberger, T.; Scheithauer, W.; Zielinski, C.; Wrba, F. Her-2/neu protein expression in colorectal cancer. BMC Cancer 2006, 6, 123. [Google Scholar] [CrossRef]
- Park, D.; Kang, M.; Oh, S.; Kim, H.; Cho, Y.; Sohn, C.; Jeon, W.; Kim, B.; Han, W.; Kim, H.; et al. HER-2/neu overexpression is an independent prognostic factor in colorectal cancer. Int. J. Color. Dis. 2007, 22, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Herreros-Villanueva, M.; Rodrigo, M.; Claver, M.; Muñiz, P.; Lastra, E.; García-Girón, C.; Coma del Corral, M.J. KRAS, BRAF, EGFR and HER2 gene status in a Spanish population of colorectal cancer. Mol. Biol. Rep. 2011, 38, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Shui, Y.; Zheng, S.; Wester, K.; Nordgren, H.; Nygren, P.; Glimelius, B.; Carlsson, J. EGFR, HER2 and HER3 expression in primary colorectal carcinomas and corresponding metastases: Implications for targeted radionuclide therapy. Oncol. Rep. 2011, 25, 3–11. [Google Scholar] [PubMed]
- Seo, Y.; Ishii, Y.; Ochiai, H.; Fukuda, K.; Akimoto, S.; Hayashida, T.; Okabayashi, K.; Tsuruta, M.; Hasegawa, H.; Kitagawa, Y. Cetuximab-mediated ADCC activity is correlated with the cell surface expression level of EGFR but not with the KRAS/BRAF mutational status in colorectal cancer. Oncol. Rep. 2014, 31, 2115–2122. [Google Scholar] [CrossRef]
- Styczen, H.; Nagelmeier, I.; Beissbarth, T.; Nietert, M.; Homayounfar, K.; Sprenger, T.; Boczek, U.; Stanek, K.; Kitz, J.; Wolff, H.A.; et al. HER-2 and HER-3 expression in liver metastases of patients with colorectal cancer. Oncotarget 2015, 6, 15065–15076. [Google Scholar] [CrossRef]
- Yan, Q.; Guo, K.; Feng, G.; Shan, F.; Sun, L.; Zhang, K.; Shen, F.; Shen, M.; Ruan, S. Association between the overexpression of Her3 and clinical pathology and prognosis of colorectal cancer: A meta-analysis. Medicine 2018, 97, e12317. [Google Scholar] [CrossRef]
- Seo, A.N.; Kwak, Y.; Kim, W.H.; Kim, D.W.; Kang, S.B.; Choe, G.; Lee, H.S. HER3 protein expression in relation to HER2 positivity in patients with primary colorectal cancer: Clinical relevance and prognostic value. Virchows Arch. 2015, 466, 645–654. [Google Scholar] [CrossRef]
- Maurer, C.A.; Friess, H.; Kretschmann, B.; Zimmermann, A.; Stauffer, A.; Baer, H.U.; Korc, M.; Buchler, M.W. Increased expression of erbB3 in colorectal cancer is associated with concomitant increase in the level of erbB2. Hum. Pathol. 1998, 29, 771–777. [Google Scholar] [CrossRef]
- Kapitanović, S.; Radošević, S.; Slade, N.; Kapitanović, M.; Anđelinović, Š.; Ferenčić, Ž.; Tavassoli, M.; Spaventi, Š.; Pavelić, K.; Spaventi, R. Expression of erbB-3 protein in colorectal adenocarcinoma: Correlation with poor survival. J. Cancer Res. Clin. Oncol. 2000, 126, 205–211. [Google Scholar] [CrossRef]
- Schram, A.M.; Goto, K.; Kim, D.W.; Macarulla, T.; Hollebecque, A.; O’Reilly, E.M.; Ou, S.I.; Rodon, J.; Rha, S.Y.; Nishino, K.; et al. Efficacy of Zenocutuzumab in NRG1 Fusion-Positive Cancer. N. Engl. J. Med. 2025, 392, 566–576. [Google Scholar] [CrossRef]
- Kountourakis, P.; Pavlakis, K.; Psyrri, A.; Rontogianni, D.; Xiros, N.; Patsouris, E.; Pectasides, D.; Economopoulos, T. Prognostic significance of HER3 and HER4 protein expression in colorectal adenocarcinomas. BMC Cancer 2006, 6, 46. [Google Scholar] [CrossRef]
- Ye, P.; Wang, Y.; Li, R.; Chen, W.; Wan, L.; Cai, P. The HER family as therapeutic targets in colorectal cancer. Crit. Rev. Oncol. Hematol. 2022, 174, 103681. [Google Scholar] [CrossRef]
- Ljuslinder, I.; Malmer, B.; Isaksson-Mettävainio, M.; Öberg, Å.; Henriksson, R.; Stenling, R.; Palmqvist, R. ErbB 1-4 expression alterations in primary colorectal cancers and their corresponding metastases. Anticancer. Res. 2009, 29, 1489–1494. [Google Scholar] [PubMed]
- Desai, M.D.; Saroya, B.S.; Lockhart, A.C. Investigational therapies targeting the ErbB (EGFR, HER2, HER3, HER4) family in GI cancers. Expert. Opin. Investig. Drugs 2013, 22, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.D.; Chen, K.; Xiong, M.M.; Chen, B. HER3, but Not HER4, Plays an Essential Role in the Clinicopathology and Prognosis of Gastric Cancer: A Meta-Analysis. PLoS ONE 2016, 11, e0161219. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Wang, H.; Li, Z.; Yan, J.; Guo, Y.; Zhao, W.; Gao, L.; Wang, B.; Jia, Y. HER4 promotes the progression of colorectal cancer by promoting epithelialmesenchymal transition. Mol. Med. Rep. 2020, 21, 1779–1788. [Google Scholar] [CrossRef]
- Ahcene Djaballah, S.; Daniel, F.; Milani, A.; Ricagno, G.; Lonardi, S. HER2 in Colorectal Cancer: The Long and Winding Road From Negative Predictive Factor to Positive Actionable Target. Am. Soc. Clin. Oncol. Educ. Book. 2022, 42, 219–232. [Google Scholar] [CrossRef]
- Kruser, T.J.; Wheeler, D.L. Mechanisms of resistance to HER family targeting antibodies. Exp. Cell Res. 2010, 316, 1083–1100. [Google Scholar] [CrossRef]
- Allegra, C.J.; Rumble, R.B.; Hamilton, S.R.; Mangu, P.B.; Roach, N.; Hantel, A.; Schilsky, R.L. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016, 34, 179–185. [Google Scholar] [CrossRef]
- Irahara, N.; Baba, Y.; Nosho, K.; Shima, K.; Yan, L.; Dias-Santagata, D.; Iafrate, A.J.; Fuchs, C.S.; Haigis, K.M.; Ogino, S. NRAS mutations are rare in colorectal cancer. Diagn. Mol. Pathol. 2010, 19, 157–163. [Google Scholar] [CrossRef]
- Hobor, S.; Van Emburgh, B.O.; Crowley, E.; Misale, S.; Di Nicolantonio, F.; Bardelli, A. TGFalpha and Amphiregulin Paracrine Network Promotes Resistance to EGFR Blockade in Colorectal Cancer Cells. Clin. Cancer Res. 2014, 20, 6429–6438. [Google Scholar] [CrossRef] [PubMed]
- Troiani, T.; Martinelli, E.; Napolitano, S.; Vitagliano, D.; Ciuffreda, L.P.; Costantino, S.; Morgillo, F.; Capasso, A.; Sforza, V.; Nappi, A.; et al. Increased TGF-alpha as a Mechanism of Acquired Resistance to the Anti-EGFR Inhibitor Cetuximab through EGFR-MET Interaction and Activation of MET Signaling in Colon Cancer Cells. Clin. Cancer Res. 2013, 19, 6751–6765. [Google Scholar] [CrossRef] [PubMed]
- Guernsey-Biddle, C.; High, P.; Carmon, K.S. Exploring the Potential of Epiregulin and Amphiregulin as Prognostic, Predictive, and Therapeutic Targets in Colorectal Cancer. Onco 2024, 4, 257–274. [Google Scholar] [CrossRef] [PubMed]
- Yonesaka, K.; Zejnullahu, K.; Okamoto, I.; Satoh, T.; Cappuzzo, F.; Souglakos, J.; Ercan, D.; Rogers, A.; Roncalli, M.; Takeda, M.; et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci. Transl. Med. 2011, 3, 99ra86. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, M.; Huang, H.; Jin, W.L. Drug repurposing for cancer therapy. Signal Transduct. Target. Ther. 2024, 9, 92. [Google Scholar] [CrossRef]
- Wen, X.; Pu, H.; Liu, Q.; Guo, Z.; Luo, D. Circulating Tumor DNA-A Novel Biomarker of Tumor Progression and Its Favorable Detection Techniques. Cancers 2022, 14, 6025. [Google Scholar] [CrossRef]
- Xiong, F.; Zhou, Y.W.; Hao, Y.T.; Wei, G.X.; Chen, X.R.; Qiu, M. Combining Anti-epidermal Growth Factor Receptor (EGFR) Therapy with Immunotherapy in Metastatic Colorectal Cancer (mCRC). Expert. Rev. Gastroenterol. Hepatol. 2024, 18, 185–192. [Google Scholar] [CrossRef]
- Jacob, J.; Anami, Y.; High, P.C.; Liang, Z.; Subramanian, S.; Ghosh, S.C.; AghaAmiri, S.; Guernsey-Biddle, C.; Tran, H.; Rowe, J.; et al. Antibody-Drug Conjugates Targeting the EGFR Ligand Epiregulin Elicit Robust Antitumor Activity in Colorectal Cancer. Cancer Res. 2025, 85, 973–986. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, D.; Liu, D.; Xu, X.; Zhang, K.; Hu, R.; Xiong, P.; Wang, C.; Zeng, X.; Wang, L.; et al. Synergistic antitumor activity between HER2 antibody-drug conjugate and chemotherapy for treating advanced colorectal cancer. Cell Death Dis. 2024, 15, 187. [Google Scholar] [CrossRef]
- Miyashita, H.; Hong, D.S. Combining EGFR and KRAS G12C Inhibitors for KRAS G12C Mutated Advanced Colorectal Cancer. J. Cancer Immunol. 2024, 6, 62–69. [Google Scholar] [CrossRef]
- Zhou, J.; Ji, Q.; Li, Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: Underlying mechanisms and reversal strategies. J. Exp. Clin. Cancer Res. 2021, 40, 328. [Google Scholar] [CrossRef]
- Dosset, M.; Vargas, T.R.; Lagrange, A.; Boidot, R.; Vegran, F.; Roussey, A.; Chalmin, F.; Dondaine, L.; Paul, C.; Lauret Marie-Joseph, E.; et al. PD-1/PD-L1 pathway: An adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer. Oncoimmunology 2018, 7, e1433981. [Google Scholar] [CrossRef]
- Shan, H.; Wang, M.; Huang, S.; Liu, H.; Liu, J.; Du, Q. Efficacy and Safety of Bevacizumab Biosimilar (Encoda) Compared With Reference Bevacizumab (Avastin) in Patients With Metastatic Colorectal Cancer: A Multicenter, Real-World Study. Clin. Med. Insights Oncol. 2024, 18, 11795549241303726. [Google Scholar] [CrossRef] [PubMed]
- Melosky, B.; Reardon, D.A.; Nixon, A.B.; Subramanian, J.; Bair, A.H.; Jacobs, I. Bevacizumab Biosimilars: Scientific Justification for Extrapolation of Indications. Future Oncol. 2018, 14, 2507–2520. [Google Scholar] [CrossRef] [PubMed]
- Chai, M.; Wang, S.; Chen, Y.; Pei, X.; Zhen, X. Targeted and intelligent nano-drug delivery systems for colorectal cancer treatment. Front. Bioeng. Biotechnol. 2025, 13, 1582659. [Google Scholar] [CrossRef] [PubMed]
- de SL Oliveira, A.L.C.; Schomann, T.; de Geus-Oei, L.F.; Kapiteijn, E.; Cruz, L.J.; de Araújo Junior, R.F. Nanocarriers as a Tool for the Treatment of Colorectal Cancer. Pharmaceutics 2021, 13, 1321. [Google Scholar] [CrossRef]
- Djermane, R.; Nieto, C.; Vega, M.A.; Del Valle, E.M.M. Antibody-Loaded Nanoplatforms for Colorectal Cancer Diagnosis and Treatment: An Update. Pharmaceutics 2023, 15, 1514. [Google Scholar] [CrossRef]
Drug/Combination | Target | FDA Approval Date | Reference |
---|---|---|---|
Bevacizumab (Avastin) | VEGF-A antibody | 2004 | Standard use; included in NCI list |
Ziv-aflibercept (Zaltrap) | VEGF-trap fusion | 3 August 2012 | VELOUR Phase III |
Regorafenib (Stivarga) | Multi-kinase TKI | 27 September 2012 | CORRECT Phase III |
Ramucirumab (Cyramza) | VEGFR-2 antibody | 24 April 2015 | RAISE trial Phase III |
Pembrolizumab (Keytruda) | PD-1 inhibitor | June 2020 (adult) | KEYNOTE-177 (1st-line) standard |
Fruquintinib (Fruzaqla) | VEGFR1-3 TKI | 8 November 2023 | FRESCO-2 Phase III |
Adagrasib (Krazati) | KRAS G12C inhibitor | January 2024 (colorectal) | KRYSTAL-1 (NCT03785249) |
Encorafenib (Braftovi) + Cetuximab ± binimetinib | BRAF V600E + EGFR ± MEK | 1 October 2024 (with FOLFOX) | BEACON-CRC Phase III |
Sotorasib (Lumakras) + Panitumumab | KRAS G12C + EGFR | Jan 16, 2025 | CodeBreaK-300 Phase III |
Nivolumab (Opdivo) ± Ipilimumab (Yervoy) | PD-1 ± CTLA-4 inhibitors | 2 May 2025 (combo); Monotherapy since 2017 | CheckMate-8HW Phase III |
NCT Number | Drug/Title | Status | Target(s) |
---|---|---|---|
Bispecific Antibodies | |||
NCT06493760 | SSGJ-707 | Recruiting | PD-1/VEGF |
NCT06959550 | Ivonescimab (PD-1/VEGF) | Not yet recruiting | PD-1/VEGF |
NCT06838546 | B1962 Injection | Not yet recruiting | PDL-1/VEGF |
NCT04868877 | MCLA-129 | Recruiting | EGFR/c-MET |
NCT06663839 | NILK-2301 | Recruiting | CEACAM5/CD3 |
NCT05985109 | KN 046 + Regorafenib | Recruiting | PD-L1/CTLA-4 |
NCT04606472 | SI-B003 | Recruiting | PD-1/CTLA-4 |
NCT03526835 | MCLA-158 | Recruiting | EGFR/LGR5 |
NCT05780307 | IMM2520 | Recruiting | PD-L1/CD47 |
NCT04603287 | SI-B001 | Recruiting | EGFR/HER3 |
NCT04930432 | MCLA-129 | Recruiting | EGFR/c-MET |
NCT05985707 | KN026 ± KN-046 + Chemo | Not yet recruiting | HER2 |
NCT06621563 | HS-20117 combo | Recruiting | EGFR/cMET |
NCT06943820 | AK129 combo | Recruiting | PD-1/LAG-3 |
NCT05411133 | Cabotamig (ARB202) | Recruiting | CDH17/CD3 |
NCT07044908 | TQB2922 + TAS-102 ± Bev | Not yet recruiting | EGFR/cMET |
NCT06724263 | B1962 (anti-PD-L1/VEGF) | Not yet recruiting | PD-L1/VEGF |
NCT06790212 | Ivonescimab + CAPOX | Not yet recruiting | PD-1/VEGF |
NCT05426005 | Cadonilimab | Recruiting | PD-1/PD-L1 |
NCT06147037 | [225Ac]-FPI-2068 | Recruiting | EGFR/cMET |
Antibody/Drug Conjugates (ADCs) | |||
NCT06806046 | M9140 (Anti-CEACAM5) | Recruiting | CEACAM5 |
NCT06825624 | HS-20093 combinations | Recruiting | B7-H3 (CD276) |
NCT05350917 | Tislelizumab + DisitamabVedotin + Pyrotinib | Not yet recruiting | HER2 |
NCT05464030 | M9140 (Anti-CEACAM5) | Recruiting | CEACAM5 |
NCT06242470 | MGC026 | Recruiting | B7-H3 |
NCT06781983 | IPH4502 | Recruiting | Nectin-4 |
NCT05489211 | Dato-Dxd (TROPION-PanTumor03) | Recruiting | Trop-2 |
CAR-T cell Therapies | |||
NCT06946615 | Claudin18.2 CAR-DC/CAR-T | Recruiting | Claudin18.2 |
NCT06718738 | IM96 CAR-T | Recruiting | GUCY2C |
NCT05415475 | CEA-CAR-T | Recruiting | CEA |
NCT06055439 | CHM-2101 (Cadherin 17) | Recruiting | CDH17 |
NCT06653010 | Universal CAR-T (REVO-UWD-01) | Recruiting | GUCY2C |
NCT06821048 | CEA-CAR-T | Recruiting | CEA |
NCT05240950 | CEA-CAR-T for Liver Metastases | Recruiting | CEA |
NCT06043466 | CEA-CAR-T | Recruiting | CEA |
NCT06675513 | WD-01 Autologous CAR-T | Recruiting | GUCY2C |
NCT06885697 | Anti-Mesothelin CAR-T (TNhYP218) | Recruiting | Mesothelin |
NCT05028933 | IMC001 | Recruiting | EpCAM |
NCT06051695 | A2B694 (Logic-gated CAR-T) | Recruiting | MSLN, HLA-A*02- |
NCT06682793 | A2B395 (Allogeneic, EGFR) | Recruiting | EGFR, HLA-A*02- |
NCT03740256 | Oncolytic Virus + HER2-CAR-T | Recruiting | HER2 |
NCT06937567 | CDH17 CAR-T | Recruiting | CDH17 |
NCT06256055 | UCMYM802 (Mesothelin+) | Recruiting | Mesothelin |
NCT05759728 | CNA3103 (LGR5-CAR-T) | Recruiting | LGR5 |
NCT05639972 | E7 TCR-T | Recruiting | HPV E7 |
NCT06885424 | A2 Bio Gene Therapy Follow-up | Not yet recruiting | CEA/MSLN |
NCT03692429 | alloSHRINK (CYAD-101) | Recruiting | NKG2D |
NCT04991948 | CYAD-101 + Pembrolizumab + FOLFOX | Recruiting | NKG2D |
NCT05736731 | A2B530 | Active, not recruiting * | CEA/-HLA-A*02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khelwatty, S.A.; Puvanenthiran, S.; Seddon, A.M.; Bagwan, I.; Essapen, S.; Modjtahedi, H. Advancements in Targeted Therapies for Colorectal Cancer: Overcoming Challenges and Exploring Future Directions. Cancers 2025, 17, 2810. https://doi.org/10.3390/cancers17172810
Khelwatty SA, Puvanenthiran S, Seddon AM, Bagwan I, Essapen S, Modjtahedi H. Advancements in Targeted Therapies for Colorectal Cancer: Overcoming Challenges and Exploring Future Directions. Cancers. 2025; 17(17):2810. https://doi.org/10.3390/cancers17172810
Chicago/Turabian StyleKhelwatty, Said A., Soozana Puvanenthiran, Alan M. Seddon, Izhar Bagwan, Sharadah Essapen, and Helmout Modjtahedi. 2025. "Advancements in Targeted Therapies for Colorectal Cancer: Overcoming Challenges and Exploring Future Directions" Cancers 17, no. 17: 2810. https://doi.org/10.3390/cancers17172810
APA StyleKhelwatty, S. A., Puvanenthiran, S., Seddon, A. M., Bagwan, I., Essapen, S., & Modjtahedi, H. (2025). Advancements in Targeted Therapies for Colorectal Cancer: Overcoming Challenges and Exploring Future Directions. Cancers, 17(17), 2810. https://doi.org/10.3390/cancers17172810