Automated Single-Cell Analysis in the Liquid Biopsy of Breast Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Patient Information
2.2. LBx Acquisition, Processing, and Cryobanking
2.3. Staining, Scanning, and Pre-Processing
- Incubated for 4 h with a conjugate containing the following:
- ○
- 2.5 μg/mL of a mouse IgG1 anti-human CD31:Alexa Fluor 647 mAb (clone: WM59, MCA1738A647, BioRad, Hercules, CA, USA);
- ○
- 100 μg/mL of a goat antimouse IgG monoclonal Fab fragments (115–007–003, Jackson ImmunoResearch, West Grove, PA, USA).
- Cold methanol used for 5 min to permeabilize the cells.
- Incubated for 2 h with an antibody cocktail consisting of the following:
- ○
- mouse IgG1/IgG2a anti-human CK 1, 4, 5, 6, 8, 10, 13, 18, and 19 (clones: C-11, PCK-26, CY-90, KS-1A3, M20, A53-B/A2, C2562, Sigma, St. Louis, MO, USA);
- ○
- mouse IgG1 anti-human CK 19 (clone: RCK108, GA61561–2, Dako, Carpinteria, CA, USA);
- ○
- mouse antihuman CD45:Alexa Fluor 647 (clone: F10–89–4, MCA87A647, AbD Serotec, Raleigh, NC, USA);
- ○
- rabbit IgG antihuman V: Alexa Fluor 488 (clone: D21H3, 9854BC, Cell Signaling Technology, Danvers, MA, USA).
- Incubated for 1 h with Alexa Fluor 555 goat anti-mouse IgG1 antibody (A21127, Invitrogen, Carlsbad, CA, USA) and 4′,6-diamidino-2-phenylindole (DAPI; D1306, Thermo Fisher Scientific, Waltham, MA, USA).
- Mounted with a glycerol-based aqueous mounting media.
- Coverslipped to maintain cell integrity.
2.4. Rare Event Detection, Identification, Classification, and Enumeration
2.5. Cellular Morphometric Comparison and Statistical Analysis
3. Results
3.1. Development of Automated Rare Cell Stratification Model
3.2. Morphometric Analysis
3.3. Cohort Level Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BC | Breast cancer |
CTC | Circulating tumor cell |
PB | Peripheral blood |
IF | Immunofluorescence |
AUC | Area under the curve |
DAPI | 4′,6-diamidino-2-phenylindole |
D | DAPI |
CK | Cytokeratin |
V | Vimentin |
CD | CD45/CD31 |
OCULAR | Outlier Clustering Unsupervised Learning Automated Report |
PCA | Principal component analysis |
ND | Normal donor |
UMAP | Uniform Manifold Approximation and Projection |
BSA | Bovine Serum Albumin |
fWSI | Fluorescent Whole Slide Images |
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7. [Google Scholar] [CrossRef]
- Society, A.C. Cancer Facts & Figures 2021. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html (accessed on 1 January 2023).
- Society, A.C. Breast Cancer Facts & Figures 2019–2020. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2019-2020.pdf (accessed on 1 January 2023).
- AJCC Cancer Staging Manual, 8th ed.; Springer: Cham, Switzerland, 2017.
- Mariotto, A.B.; Etzioni, R.; Hurlbert, M.; Penberthy, L.; Mayer, M. Estimation of the Number of Women Living with Metastatic Breast Cancer in the United States. Cancer Epidemiol. Biomarkers Prev. 2017, 26, 809. [Google Scholar] [CrossRef]
- Pan, H.; Gray, R.; Braybrooke, J.; Davies, C.; Taylor, C.; McGale, P.; Peto, R.; Pritchard, K.I.; Bergh, J.; Dowsett, M.; et al. 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. N. Engl. J. Med. 2017, 377, 1836. [Google Scholar] [CrossRef]
- Colleoni, M.; Sun, Z.; Price, K.N.; Karlsson, P.; Forbes, J.F.; Thürlimann, B.; Gianni, L.; Castiglione, M.; Gelber, R.D.; Coates, A.S.; et al. Annual Hazard Rates of Recurrence for Breast Cancer During 24 Years of Follow-Up: Results From the International Breast Cancer Study Group Trials I to V. J. Clin. Oncol. 2016, 34, 927. [Google Scholar] [CrossRef]
- Sestak, I.; Dowsett, M.; Zabaglo, L.; Lopez-Knowles, E.; Ferree, S.; Cowens, J.W.; Cuzick, J. Factors predicting late recurrence for estrogen receptor-positive breast cancer. J. Natl. Cancer Inst. 2013, 105, 1504. [Google Scholar] [CrossRef]
- Nishimura, R.; Osako, T.; Nishiyama, Y.; Tashima, R.; Nakano, M.; Fujisue, M.; Toyozumi, Y.; Arima, N. Evaluation of factors related to late recurrence--later than 10 years after the initial treatment--in primary breast cancer. Oncology 2013, 85, 100. [Google Scholar] [CrossRef]
- Davis, M. Nearly 4 in 5 Women Getting Recommended Routine Mammograms, Though Rates Rise in Some States, Fall in Others. Available online: https://www.valuepenguin.com/mammogram-rates-study (accessed on 10 March 2022).
- Sabatino, S.A.; Thompson, T.D.; White, M.C.; Shapiro, J.A.; de Moor, J.; Doria-Rose, V.P.; Clarke, T.; Richardson, L.C. Cancer Screening Test Receipt—United States, 2018. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 29. [Google Scholar] [CrossRef]
- Berkowitz, Z.; Zhang, X.; Richards, T.B.; Sabatino, S.A.; Peipins, L.A.; Smith, J.L. Multilevel Small Area Estimation for County-Level Prevalence of Mammography Use in the United States Using 2018 Data. J. Womens Health 2022, 32, 216–223. [Google Scholar] [CrossRef]
- Sabatino, S.A.; Thompson, T.D.; White, M.C.; Shapiro, J.A.; Clarke, T.C.; Croswell, J.M.; Richardson, L.C. Cancer Screening Test Use-U.S., 2019. Am. J. Prev. Med. 2022, 63, 431. [Google Scholar] [CrossRef]
- Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012, 366, 883. [Google Scholar] [CrossRef]
- Hinohara, K.; Polyak, K. Intratumoral Heterogeneity: More Than Just Mutations. Trends Cell Biol. 2019, 29, 569. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81. [Google Scholar] [CrossRef]
- Polyak, K. Heterogeneity in breast cancer. J. Clin. Investig. 2011, 121, 3786. [Google Scholar] [CrossRef]
- Zardavas, D.; Irrthum, A.; Swanton, C.; Piccart, M. Clinical management of breast cancer heterogeneity. Nat. Rev. Clin. Oncol. 2015, 12, 381. [Google Scholar] [CrossRef]
- Welter, L.; Xu, L.; McKinley, D.; Dago, A.E.; Prabakar, R.K.; Restrepo-Vassalli, S.; Xu, K.; Rodriguez-Lee, M.; Kolatkar, A.; Nevarez, R.; et al. Treatment response and tumor evolution: Lessons from an extended series of multianalyte liquid biopsies in a metastatic breast cancer patient. Cold Spring Harb. Mol. Case Stud. 2020, 6, a005819. [Google Scholar] [CrossRef]
- Fehm, T.; Müller, V.; Aktas, B.; Janni, W.; Schneeweiss, A.; Stickeler, E.; Lattrich, C.; Löhberg, C.R.; Solomayer, E.; Rack, B.; et al. HER2 status of circulating tumor cells in patients with metastatic breast cancer: A prospective, multicenter trial. Breast Cancer Res. Treat. 2010, 124, 403. [Google Scholar] [CrossRef]
- Babayan, A.; Hannemann, J.; Spötter, J.; Müller, V.; Pantel, K.; Joosse, S.A. Heterogeneity of estrogen receptor expression in circulating tumor cells from metastatic breast cancer patients. PLoS ONE 2013, 8, e75038. [Google Scholar] [CrossRef]
- Miyamoto, D.T.; Lee, R.J.; Stott, S.L.; Ting, D.T.; Wittner, B.S.; Ulman, M.; Smas, M.E.; Lord, J.B.; Brannigan, B.W.; Trautwein, J.; et al. Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discov. 2012, 2, 995. [Google Scholar] [CrossRef]
- Miyamoto, D.T.; Zheng, Y.; Wittner, B.S.; Lee, R.J.; Zhu, H.; Broderick, K.T.; Desai, R.; Fox, D.B.; Brannigan, B.W.; Trautwein, J.; et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 2015, 349, 1351. [Google Scholar] [CrossRef]
- Scher, H.I.; Lu, D.; Schreiber, N.A.; Louw, J.; Graf, R.P.; Vargas, H.A.; Johnson, A.; Jendrisak, A.; Bambury, R.; Danila, D.; et al. Association of AR-V7 on Circulating Tumor Cells as a Treatment-Specific Biomarker With Outcomes and Survival in Castration-Resistant Prostate Cancer. JAMA Oncol. 2016, 2, 1441. [Google Scholar] [CrossRef]
- Guibert, N.; Delaunay, M.; Lusque, A.; Boubekeur, N.; Rouquette, I.; Clermont, E.; Mourlanette, J.; Gouin, S.; Dormoy, I.; Favre, G.; et al. PD-L1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumab. Lung Cancer 2018, 120, 108–112. [Google Scholar] [CrossRef]
- Alieva, M.; van Rheenen, J.; Broekman, M.L.D. Potential impact of invasive surgical procedures on primary tumor growth and metastasis. Clin. Exp. Metastasis 2018, 35, 319. [Google Scholar] [CrossRef]
- Griffiths, J.I.; Chen, J.; Cosgrove, P.A.; O’Dea, A.; Sharma, P.; Ma, C.; Trivedi, M.; Kalinsky, K.; Wisinski, K.B.; O’Regan, R.; et al. Serial single-cell genomics reveals convergent subclonal evolution of resistance as early-stage breast cancer patients progress on endocrine plus CDK4/6 therapy. Nat. Cancer 2021, 2, 658. [Google Scholar] [CrossRef]
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers 2019, 5, 66. [Google Scholar] [CrossRef]
- Almendro, V.; Marusyk, A.; Polyak, K. Cellular heterogeneity and molecular evolution in cancer. Annu. Rev. Pathol. 2013, 8, 277–302. [Google Scholar] [CrossRef]
- Fazel, R.; Krumholz, H.M.; Wang, Y.; Ross, J.S.; Chen, J.; Ting, H.H.; Shah, N.D.; Nasir, K.; Einstein, A.J.; Nallamothu, B.K. Exposure to low-dose ionizing radiation from medical imaging procedures. N. Engl. J. Med. 2009, 361, 849. [Google Scholar] [CrossRef]
- Setayesh, S.M.; Hart, O.; Naghdloo, A.; Higa, N.; Nieva, J.; Lu, J.; Hwang, S.; Wilkinson, K.; Kidd, M.; Anderson, A.; et al. Multianalyte liquid biopsy to aid the diagnostic workup of breast cancer. NPJ Breast Cancer 2022, 8, 112. [Google Scholar] [CrossRef]
- Shishido, S.N.; Welter, L.; Rodriguez-Lee, M.; Kolatkar, A.; Xu, L.; Ruiz, C.; Gerdtsson, A.S.; Restrepo-Vassalli, S.; Carlsson, A.; Larsen, J.; et al. Preanalytical Variables for the Genomic Assessment of the Cellular and Acellular Fractions of the Liquid Biopsy in a Cohort of Breast Cancer Patients. J. Mol. Diagn. 2020, 22, 319. [Google Scholar] [CrossRef]
- Shishido, S.N.; Lin, E.; Nissen, N.; Courcoubetis, G.; Suresh, D.; Mason, J.; Osipov, A.; Hendifar, A.E.; Lewis, M.; Gaddam, S.; et al. Cancer-related cells and oncosomes in the liquid biopsy of pancreatic cancer patients undergoing surgery. NPJ Precis. Oncol. 2024, 8, 36. [Google Scholar] [CrossRef]
- Ghoreifi, A.; Shishido, S.N.; Sayeed, S.; Courcoubetis, G.; Huang, A.; Schuckman, A.; Aron, M.; Desai, M.; Daneshmand, S.; Gill, I.S.; et al. Blood-based liquid biopsy: A promising noninvasive test in diagnosis, surveillance, and prognosis of patients with upper tract urothelial carcinoma. Urol. Oncol. 2024, 42, 118.e9. [Google Scholar] [CrossRef]
- Shishido, S.N.; Ghoreifi, A.; Sayeed, S.; Courcoubetis, G.; Huang, A.; Ye, B.; Mrutyunjaya, S.; Gill, I.S.; Kuhn, P.; Mason, J.; et al. Liquid Biopsy Landscape in Patients with Primary Upper Tract Urothelial Carcinoma. Cancers 2022, 14, 3007. [Google Scholar] [CrossRef]
- Shishido, S.N.; Sayeed, S.; Courcoubetis, G.; Djaladat, H.; Miranda, G.; Pienta, K.J.; Nieva, J.; Hansel, D.E.; Desai, M.; Gill, I.S.; et al. Characterization of Cellular and Acellular Analytes from Pre-Cystectomy Liquid Biopsies in Patients Newly Diagnosed with Primary Bladder Cancer. Cancers 2022, 14, 758. [Google Scholar] [CrossRef]
- Bai, L.; Courcoubetis, G.; Mason, J.; Hicks, J.B.; Nieva, J.; Kuhn, P.; Shishido, S.N. Longitudinal tracking of circulating rare events in the liquid biopsy of stage III-IV non-small cell lung cancer patients. Discov. Oncol. 2024, 15, 142. [Google Scholar] [CrossRef]
- Narayan, S.; Courcoubetis, G.; Mason, J.; Naghdloo, A.; Kolenčík, D.; Patterson, S.D.; Kuhn, P.; Shishido, S.N. Defining A Liquid Biopsy Profile of Circulating Tumor Cells and Oncosomes in Metastatic Colorectal Cancer for Clinical Utility. Cancers 2022, 14, 4891. [Google Scholar] [CrossRef]
- Resnick, K.; Shah, A.; Mason, J.; Kuhn, P.; Nieva, J.; Shishido, S.N. Circulation of rare events in the liquid biopsy for early detection of lung mass lesions. Thorac. Cancer 2024, 15, 2100. [Google Scholar] [CrossRef]
- Chai, S.; Matsumoto, N.; Storgard, R.; Peng, C.C.; Aparicio, A.; Ormseth, B.; Rappard, K.; Cunningham, K.; Kolatkar, A.; Nevarez, R.; et al. Platelet-Coated Circulating Tumor Cells Are a Predictive Biomarker in Patients with Metastatic Castrate-Resistant Prostate Cancer. Mol. Cancer Res. 2021, 19, 2036. [Google Scholar] [CrossRef]
- Marrinucci, D.; Bethel, K.; Kolatkar, A.; Luttgen, M.S.; Malchiodi, M.; Baehring, F.; Voigt, K.; Lazar, D.; Nieva, J.; Bazhenova, L.; et al. Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys. Biol. 2012, 9, 016003. [Google Scholar] [CrossRef]
- Singh, P.; Gupta, S.; Gupta, V. Multi-objective hyperparameter optimization on gradient-boosting for breast cancer detection. Int. J. Syst. Assur. Eng. Manag. 2024, 15, 1676. [Google Scholar] [CrossRef]
- Nematzadeh, Z.; Ibrahim, R.; Selamat, A. Comparative studies on breast cancer classifications with k-fold cross validations using machine learning techniques. In Proceedings of the 2015 10th Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, 31 May–3 June 2015. [Google Scholar]
- Prusty, S.; Patnaik, S.; Dash, S.K. SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer. Front. Nanotechnol. 2022, 4, 972421. [Google Scholar] [CrossRef]
- Shekar, B.H.; Dagnew, G. Grid Search-Based Hyperparameter Tuning and Classification of Microarray Cancer Data. In Proceedings of the 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), Gangtok, India, 25–28 February 2019. [Google Scholar]
- Dasgupta, A.; Lim, A.R.; Ghajar, C.M. Circulating and disseminated tumor cells: Harbingers or initiators of metastasis? Mol. Oncol. 2017, 11, 40. [Google Scholar] [CrossRef]
- Chai, S.; Ruiz-Velasco, C.; Naghdloo, A.; Pore, M.; Singh, M.; Matsumoto, N.; Kolatkar, A.; Xu, L.; Shishido, S.; Aparicio, A.; et al. Identification of epithelial and mesenchymal circulating tumor cells in clonal lineage of an aggressive prostate cancer case. NPJ Precis. Oncol. 2022, 6, 41. [Google Scholar] [CrossRef]
- Welter, L.; Zheng, S.; Setayesh, S.M.; Morikado, M.; Agrawal, A.; Nevarez, R.; Naghdloo, A.; Pore, M.; Higa, N.; Kolatkar, A.; et al. Cell State and Cell Type: Deconvoluting Circulating Tumor Cell Populations in Liquid Biopsies by Multi-Omics. Cancers 2023, 15, 3949. [Google Scholar] [CrossRef]
- Seo, J.; Kumar, M.; Mason, J.; Blackhall, F.; Matsumoto, N.; Dive, C.; Hicks, J.; Kuhn, P.; Shishido, S.N. Plasticity of circulating tumor cells in small cell lung cancer. Sci. Rep. 2023, 13, 11775. [Google Scholar] [CrossRef]
- Ramirez, A.B.; Bhat, R.; Sahay, D.; De Angelis, C.; Thangavel, H.; Hedayatpour, S.; Dobrolecki, L.E.; Nardone, A.; Giuliano, M.; Nagi, C.; et al. Circulating tumor cell investigation in breast cancer patient-derived xenograft models by automated immunofluorescence staining, image acquisition, and single cell retrieval and analysis. BMC Cancer 2019, 19, 220. [Google Scholar] [CrossRef]
- Ianevski, A.; Giri, A.K.; Aittokallio, T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data. Nat. Commun. 2022, 13, 1246. [Google Scholar] [CrossRef]
- Mousavikhamene, Z.; Sykora, D.J.; Mrksich, M.; Bagheri, N. Morphological features of single cells enable accurate automated classification of cancer from non-cancer cell lines. Sci. Rep. 2021, 11, 24375. [Google Scholar] [CrossRef]
- Alhammad, L.A.; Ainosah, T.K.; Ahmad, A.M.; Samarkandi, M.S.; Jawi, N.H.; Alharthi, M.A.; Alsharif, A.M.; Anazi, E.A.A.; Aldugeshem, S.A.; Johali, F.Y. The impact of laboratory automation on efficiency and accuracy in healthcare settings. Int. J. Community Med. Public Health 2023, 11, 459. [Google Scholar] [CrossRef]
- Holland, I.; Davies, J.A. Automation in the Life Science Research Laboratory. Front. Bioeng. Biotechnol. 2020, 8, 571777. [Google Scholar] [CrossRef]
- Mrazek, C.; Lippi, G.; Keppel, M.H.; Felder, T.K.; Oberkofler, H.; Haschke-Becher, E.; Cadamuro, J. Errors within the total laboratory testing process, from test selection to medical decision-making—A review of causes, consequences, surveillance and solutions. Biochem. Med. 2020, 30, 020502. [Google Scholar] [CrossRef]
- Al-Antari, M.A. Artificial Intelligence for Medical Diagnostics-Existing and Future AI Technology! Diagnostics 2023, 13, 688. [Google Scholar] [CrossRef]
Confidence Thresholds | 50% | 60% | 70% | 80% | 90% |
---|---|---|---|---|---|
Accuracy (%) | 96.5 | 97.1 | 97.7 | 98.3 | 98.9 |
Precision (%) | 37.1 | 42.0 | 47.7 | 55.7 | 68.4 |
Sensitivity (%) | 97.6 | 96.6 | 95.4 | 92.8 | 85.5 |
Specificity (%) | 96.4 | 97.1 | 97.7 | 98.4 | 99.1 |
Average False Negative (Rare Events Missed) | 1.4 | 2.0 | 2.7 | 4.2 | 8.6 |
Average False Positive (Common Predicted Rare) | 97.6 | 78.9 | 61.7 | 43.6 | 23.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shishido, S.N.; Courcoubetis, G.; Kuhn, P.; Mason, J. Automated Single-Cell Analysis in the Liquid Biopsy of Breast Cancer. Cancers 2025, 17, 2779. https://doi.org/10.3390/cancers17172779
Shishido SN, Courcoubetis G, Kuhn P, Mason J. Automated Single-Cell Analysis in the Liquid Biopsy of Breast Cancer. Cancers. 2025; 17(17):2779. https://doi.org/10.3390/cancers17172779
Chicago/Turabian StyleShishido, Stephanie N., George Courcoubetis, Peter Kuhn, and Jeremy Mason. 2025. "Automated Single-Cell Analysis in the Liquid Biopsy of Breast Cancer" Cancers 17, no. 17: 2779. https://doi.org/10.3390/cancers17172779
APA StyleShishido, S. N., Courcoubetis, G., Kuhn, P., & Mason, J. (2025). Automated Single-Cell Analysis in the Liquid Biopsy of Breast Cancer. Cancers, 17(17), 2779. https://doi.org/10.3390/cancers17172779