Dysregulated MicroRNAs in Urinary Non-Muscle-Invasive Bladder Cancer: From Molecular Characterization to Clinical Applicability
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset and miRNA Expression Patterns
2.2. Statistical Approaches for Survival and Metastasis Analysis
2.3. Statistical Approach for the Multivariate Analysis in Patients with NMIBC: Principal Component Analysis (PCA)
2.4. miRNAs Target Gene Prediction and Functional Enrichment Analysis
2.5. miRNAs-mRNAs’ Target Gene Drug Interaction Analysis
3. Results
3.1. Association of the Deregulated miRNAs’s Expression to Overall Survival
3.2. PCA of the Relative Expression of the Studied miRNAs According to the Histological Grade and EORTC Scores of Progression and Recurrence
3.3. Target Gene Prediction and Functional “In Silico” Enrichment Analysis
3.4. miRNA–mRNA–Drug Interaction Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANS | Average Normalized Score |
BCa | Bladder Cancer |
CIS | Carcinoma in situ |
CSmiRTar | Condition-Specific miRNA Targets |
DAVID | The Database for Annotation, Visualization, and Integrated Discovery |
DGIdb | Drug–Gene Interaction Database |
EORTC | The European Organization for Research and Treatment of Cancer |
FDA | Food and Drug Administration |
FFPE | Formalin-Fixed Paraffin-Embedded |
HG | High grade |
KEGG | The Kyoto Encyclopedia of Genes and Genomes |
LG | Low grade |
MFS | Metastasis-Free Survival |
MIBC | Muscle-Invasive Bladder Cancer |
miRNAs | microRNAs |
NMIBC | Non-Muscle-Invasive Bladder Cancer |
OS | Overall Survival |
PCA | Principal Component Analysis |
PFS | Progression-Free Survival |
TURBT | Transurethral Resection Of The Bladder |
References
- Cherif, M.; Chakroun, M.; Bouzouita, A.; Dimassi, H.; Ayed, H.; Derouiche, A.; Ben Slama, M.R.; Chebil, M. Caractéristiques épidémiologiques du cancer de la vessie chez la femme en Tunisie. Afr. J. Urol. 2016, 22, 71–75. [Google Scholar] [CrossRef]
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Padala, S.A.; Barsouk, A. Epidemiology of Bladder Cancer. Med. Sci. 2020, 8, 15. [Google Scholar] [CrossRef]
- Lodewijk, I.; Dueñas, M.; Rubio, C.; Munera-Maravilla, E.; Segovia, C.; Bernardini, A.; Teijeira, A.; Paramio, J.M.; Suárez-Cabrera, C. Liquid Biopsy Biomarkers in Bladder Cancer: A Current Need for Patient Diagnosis and Monitoring. Int. J. Mol. Sci. 2018, 19, 2514. [Google Scholar] [CrossRef] [PubMed]
- Haga, N.; Tsubouchi, K.; Maruta, H.; Koguchi, T.; Hoshi, S.; Ogawa, S.; Akaihata, H.; Hata, J.; Kojima, Y. Increase in Circulating Tumor Cells in Invasive Bladder Cancer After Transurethral Resection of Bladder Tumor. Anticancer. Res. 2020, 40, 4299–4307. [Google Scholar] [CrossRef] [PubMed]
- Pignot, G.; Goux, C.; le Bieche, I. Altérations moléculaires au cours de la carcinogenèse urothéliale vésicale. Bull. Du Cancer 2015, 102, 1020–1035. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014, 507, 315–322. [Google Scholar] [CrossRef]
- Pietzak, E.J.; Bagrodia, A.; Cha, E.K.; Drill, E.N.; Iyer, G.; Isharwal, S.; Ostrovnaya, I.; Baez, P.; Li, Q.; Berger, M.F.; et al. Next-generation Sequencing of Nonmuscle Invasive Bladder Cancer Reveals Potential Biomarkers and Rational Therapeutic Targets. Eur. Urol. 2017, 72, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characte-rization of Muscle-Invasive Bladder Cancer. Cell 2017, 171, 540–556.e25. [Google Scholar] [CrossRef]
- di Martino, E.; Tomlinson, D.C.; Williams, S.V.; A Knowles, M. A Place for Precision Medicine in Bladder Cancer: Targeting the Fgfrs. Futur. Oncol. 2016, 12, 2243–2263. [Google Scholar] [CrossRef]
- Chamie, K.; Litwin, M.S.; Bassett, J.C.; Daskivich, T.J.; Lai, J.; Hanley, J.M.; Konety, B.R.; Saigal, C.S.; Urologic Diseases in America Project. Recurrence of high-risk bladder cancer: A population-based analysis. Cancer 2013, 119, 3219–3227. [Google Scholar] [CrossRef]
- Sylvester, R.J.; van der Meijden, A.P.; Oosterlinck, W.; Witjes, J.A.; Bouffioux, C.; Denis, L.; Newling, D.W.; Kurth, K. Predicting Recurrence and Progression in Individual Patients with Stage Ta T1 Bladder Cancer Using EORTC Risk Tables: A Combined Analysis of 2596 Patients from Seven EORTC Trials. Eur. Urol. 2006, 49, 466–477. [Google Scholar] [CrossRef]
- van den Bosch, S.; Alfred Witjes, J. Long-term cancer-specific survival in patients with high-risk, non-muscle-invasive bladder cancer and tumour progression: A systematic review. Eur. Urol. 2011, 60, 493–500. [Google Scholar] [CrossRef]
- Babjuk, M.; Oosterlinck, W.; Sylvester, R.; Kaasinen, E.; Böhle, A.; Palou-Redorta, J. EAU Guidelines on Non-Muscle-Invasive Urothelial Carcinoma of the Bladder. Eur. Urol. 2008, 54, 303–314. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, C.; Zhao, Y.; Wang, Q.; Guo, J.; Ye, B.; Yu, G. Overview of MicroRNAs as Diagnostic and Prognostic Biomarkers for High-Incidence Cancers in 2021. Int. J. Mol. Sci. 2022, 23, 11389. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.M.; Weiss, G.J. MicroRNAs and cancer: Past, present, and potential future. Mol. Cancer Ther. 2008, 7, 3655–3660. [Google Scholar] [CrossRef] [PubMed]
- Nagata, M.; Muto, S.; Horie, S. Molecular Biomarkers in Bladder Cancer: Novel Potential Indicators of Prognosis and Treatment Outcomes. Dis. Markers 2016, 2016, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Peng, S.-C.; Liao, C.-T.; Peng, C.-H.; Cheng, A.-J.; Chen, S.-J.; Huang, C.-G.; Hsieh, W.-P.; Yen, T.-C.; Guan, X.-Y. MicroRNAs MiR-218, MiR-125b, and Let-7g Predict Prognosis in Patients with Oral Cavity Squamous Cell Carcinoma. PLoS ONE 2014, 9, e102403. [Google Scholar] [CrossRef]
- Stafford, M.C.; Willoughby, C.E.; Walsh, C.P.; McKenna, D.J. Prognostic value of miR-21 for prostate cancer: A systematic review and meta-analysis. Biosci. Rep. 2022, 42, BSR20211972. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, P.; Mantegazza, R.; Bernasconi, P. Pharmacogenetic and pharmaco-miR biomarkers for tailoring and monitoring myasthenia gravis treatments. Expert Rev. Precis. Med. Drug Dev. 2020, 5, 317–329. [Google Scholar] [CrossRef]
- Rukov, J.L.; Wilentzik, R.; Jaffe, I.; Vinther, J.; Shomron, N. Pharmaco-miR: Linking microRNAs and drug effects. Briefings Bioinform. 2013, 15, 648–659. [Google Scholar] [CrossRef]
- Pignot, G.; Cizeron-Clairac, G.; Vacher, S.; Susini, A.; Tozlu, S.; Vieillefond, A.; Zerbib, M.; Lidereau, R.; Debre, B.; Amsellem-Ouazana, D.; et al. microRNA expression profile in a large series of bladder tumors: Identification of a 3-miRNA signature associated with aggressiveness of muscle-invasive bladder cancer. Int. J. Cancer 2013, 132, 2479–2491. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Zuo, Y.; Ding, M.; Ke, C.; Yan, R.; Zhan, H.; Liu, J.; Wang, J. miR-9 promotes cell proliferation and inhibits apoptosis by targeting LASS2 in bladder cancer. Tumor Biol. 2015, 36, 9631–9640. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wu, D.; Xu, Z.; Chen, J.; Zhang, J.; Li, X.; Chen, S.; He, F.; Xu, J.; Su, L.; et al. miR-182-5p affects human bladder cancer cell proliferation, migration and invasion through regulating Cofilin 1. Cancer Cell Int. 2019, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Q.; Niu, X.; Wang, G.; Zheng, S.; Fu, G.; Wang, Z. miR-143 inhibits bladder cancer cell proliferation and enhances their sensitivity to gemcitabine by repressing IGF-1R signaling. Oncol. Lett. 2016, 13, 435–440. [Google Scholar] [CrossRef]
- Wang, B.; Lv, K.; Chen, W.; Zhao, J.; Luo, J.; Wu, J.; Li, Z.; Qin, H.; Wong, T.-S.; Yang, W.; et al. miR-375 and miR-205 Regulate the Invasion and Migration of Laryngeal Squamous Cell Carcinoma Synergistically via AKT-Mediated EMT. BioMed Res. Int. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.F.; Yang, Y.; Zhang, R.L.; Jia, C.L.; Li, Z.P.; Wang, W.R.; Zhang, H.; Li, S.S.; Bao, Y.X. Effect of microRNA-27a-3p on proliferation, apoptosis and cell cycle of hepatoma cells. Zhonghua Gan Zang Bing Za Zhi 2019, 27, 198–203. [Google Scholar]
- Chirshev, E.; Oberg, K.C.; Ioffe, Y.J.; Unternaehrer, J.J. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin. Transl. Med. 2019, 8, 24. [Google Scholar] [CrossRef]
- Boubaker, N.S.; Cicchillitti, L.; Said, R.; Gurtner, A.; Ayed, H.; Blel, A.; Karray, O.; Essid, M.A.; Gharbi, M.; Bouzouita, A.; et al. The clinical and prognostic value of miR-9 gene expression in Tunisian patients with bladder cancer. Mol. Biol. Rep. 2019, 46, 4743–4750. [Google Scholar] [CrossRef]
- Boubaker, N.S.; Spagnuolo, M.; Trabelsi, N.; Said, R.; Gurtner, A.; Regazzo, G.; Ayed, H.; Blel, A.; Karray, O.; Saadi, A.; et al. miR-143 expression profiles in urinary bladder cancer: Correlation with clinical and epidemiological parameters. Mol. Biol. Rep. 2019, 47, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Boubaker, N.S.; Gurtner, A.; Trabelsi, N.; Manni, I.; Said, R.; Ayed, H.; Ksentini, M.; Karray, O.; Saadi, A.; Essid, M.A.; et al. Evaluating prognostic utility of preoperative Neutrophil to Lymphocyte Ratio and hsa-let-7g/c up-regulation in patients with urinary bladder cancer. Cancer Biomark. 2019, 27, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Boubaker, N.S.; Gurtner, A.; Trabelsi, N.; Manni, I.; Ayed, H.; Saadi, A.; Naimi, Z.; Ksontini, M.; Ayadi, M.; Blel, A.; et al. Uncovering the expression patterns and the clinical significance of miR-182, miR-205, miR-27a and miR-369 in patients with urinary bladder cancer. Mol. Biol. Rep. 2020, 47, 8819–8830. [Google Scholar] [CrossRef]
- Adam, B.; Jerzy, Z.; Jerzy, K.; Roman, K. A principal component analysis of patients, disease and treatment variables: A new prognostic tool in breast cancer after mastectomy. Rep. Pr. Oncol. Radiother. 2000, 5, 83–89. [Google Scholar] [CrossRef]
- Sainani, K.L. Introduction to principal components analysis. PM R 2014, 6, 275–278. [Google Scholar] [CrossRef]
- Wu, W.-S.; Tu, B.-W.; Chen, T.-T.; Hou, S.-W.; Tseng, J.T.; Bruin, R.A.M.d. CSmiRTar: Condition-Specific microRNA targets database. PLoS ONE 2017, 12, e0181231. [Google Scholar] [CrossRef]
- Lei, X.; Zhang, M.; Guan, B.; Chen, Q.; Dong, Z.; Wang, C. Identification of hub genes associated with prognosis, diagnosis, immune infiltration and therapeutic drug in liver cancer by integrated analysis. Hum. Genom. 2021, 15, 1–21. [Google Scholar] [CrossRef]
- Theodoropoulos, V.E.; Lazaris, A.C.; Sofras, F.; Gerzelis, I.; Tsoukala, V.; Ghikonti, I.; Manikas, T.; Kastriotis, I. Hypoxia-inducible factor 1 alpha expression correlates with angiogenesis and unfavorable prognosis in bladder cancer. Eur. Urol. 2004, 46, 200–208. [Google Scholar] [CrossRef]
- Cazier, J.-B.; Rao, S.R.; McLean, C.M.; Walker, A.K.; Wright, B.J.; Jaeger, E.E.M.; Kartsonaki, C.; Marsden, L.; Yau, C.; Camps, C.; et al. Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden. Nat. Commun. 2014, 5, 3756. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ishiguro, H.; Kawahara, T.; Kashiwagi, E.; Izumi, K.; Miyamoto, H. Loss of GATA3 in bladder cancer promotes cell migration and invasion. Cancer Biol. Ther. 2014, 15, 428–435. [Google Scholar] [CrossRef]
- Maluf, F.; Cordon-Cardo, C.; Verbel, D.; Satagopan, J.; Boyle, M.; Herr, H.; Bajorin, D. Assessing interactions between mdm-2, p53, and bcl-2 as prognostic variables in muscle-invasive bladder cancer treated with neo-adjuvant chemotherapy followed by locoregional surgical treatment. Ann. Oncol. 2006, 17, 1677–1686. [Google Scholar] [CrossRef]
- Burgess, E.F.; Steuerwald, N.; Symanowski, J.T.; Livasy, C.; Farhangfar, C.J.; Gatalica, Z.; Arguello, D.; Zhu, J.; Grigg, C.; Clark, P.E.; et al. Pathogenic variants in PTEN to predict for increased risk of relapse and death in patients with limited stage small cell bladder cancer. J. Clin. Oncol. 2020, 38, 526. [Google Scholar] [CrossRef]
- Fei, D.L.; Sanchez-Mejias, A.; Wang, Z.; Flaveny, C.; Long, J.; Singh, S.; Rodriguez-Blanco, J.; Tokhunts, R.; Giambelli, C.; Briegel, K.J.; et al. Hedgehog Signaling Regulates Bladder Cancer Growth and Tumorigenicity. Cancer Res. 2012, 72, 4449–4458. [Google Scholar] [CrossRef]
- Ha, Y.-S.; Yan, C.; Jeong, P.; Kim, W.T.; Yun, S.-J.; Kim, I.Y.; Moon, S.-K.; Kim, W.-J. GSTM1 Tissue Genotype as a Recurrence Predictor in Non-muscle Invasive Bladder Cancer. J. Korean Med. Sci. 2011, 26, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.-Y.; Chen, P.-C.; Zhang, J.-L.; Gao, Z.-S.; Neves, H.; Zhang, S.-D.; Wen, Q.; Chen, W.-D.; Kwok, H.F.; Lin, Y.; et al. The prognostic significance of DAPK1 in bladder cancer. PLoS ONE 2017, 12, e0175290. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Wei, P.; Zhang, J.; Niu, Y.; Kang, N.; Zhang, Y.; Zhang, W.; Xing, N. Livin, Survivin and Caspase 3 as early recurrence markers in non-muscle-invasive bladder cancer. World J. Urol. 2014, 32, 1477–1484. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, D.; Ramos-Vara, J.A.; Hahn, N.M.; Waddell, J.; Olbricht, G.R.; Zheng, R.; Stewart, J.C.; Knapp, D.W. DNMT1: An emerging target in the treatment of invasive urinary bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2013, 31, 1761–1769. [Google Scholar] [CrossRef]
- Breyer, J.; Otto, W.; Wirtz, R.M.; Wullich, B.; Keck, B.; Erben, P.; Kriegmair, M.C.; Stoehr, R.; Eckstein, M.; Laible, M.; et al. ERBB2 Expression as Potential Risk-Stratification for Early Cystectomy in Patients with pT1 Bladder Cancer and Concomitant Carcinoma in situ. Urol. Int. 2016, 98, 282–289. [Google Scholar] [CrossRef]
- Dueñas, M.; Martínez-Fernández, M.; García-Escudero, R.; Villacampa, F.; Marqués, M.; Saiz-Ladera, C.; Duarte, J.; Martínez, V.; Gómez, M.J.; Martín, M.L.; et al. PIK3CA gene alterations in bladder cancer are frequent and associate with reduced recurrence in non-muscle invasive tumors. Mol. Carcinog. 2013, 54, 566–576. [Google Scholar] [CrossRef]
- Fu, D.; Liu, B.; Jiang, H.; Li, Z.; Fan, C.; Zang, L. Bone marrow mesenchymal stem cells-derived exosomal microRNA-19b-1-5p reduces proliferation and raises apoptosis of bladder cancer cells via targeting ABL2. Genomics 2021, 113, 1338–1348. [Google Scholar] [CrossRef]
- Koul; Kumar, B.; Sinclair, J.; Khandrika, L.; Koul, S.; Wilson, S.; Koul, H.K. Differential effects of MAPKs signaling on the growth of invasive bladder cancer cells. Int. J. Oncol. 2009, 34, 1557–1564. [Google Scholar] [CrossRef]
- Farhan, M.; Wang, H.; Gaur, U.; Little, P.J.; Xu, J.; Zheng, W. FOXO Signaling Pathways as Therapeutic Targets in Cancer. Int. J. Biol. Sci. 2017, 13, 815–827. [Google Scholar] [CrossRef]
- Li, H.; Liu, S.; Li, C.; Xiao, Z.; Hu, J.; Zhao, C. TNF Family–Based Signature Predicts Prognosis, Tumor Microenvironment, and Molecular Subtypes in Bladder Carcinoma. Front. Cell Dev. Biol. 2022, 9, 800967. [Google Scholar] [CrossRef]
- Sathe, A.; Nawroth, R. Targeting the PI3K/AKT/mTOR Pathway in Bladder Cancer. Methods Mol. Biol. 2018, 1655, 335–350. [Google Scholar]
- Zhang, Y.L.; Wang, R.C.; Cheng, K.; Ring, B.Z.; Su, L. Roles of Rap1 signaling in tumor cell migration and invasion. Cancer Biol. Med. 2017, 14, 90–99. [Google Scholar]
- Giordano, A.; Soria, F. Role and efficacy of current biomarkers in bladder cancer. AME Med J. 2020, 5, 6. [Google Scholar] [CrossRef]
- Liu, D.; Qiu, X.; Xiong, X.; Chen, X.; Pan, F. Current updates on the role of reactive oxygen species in bladder cancer pathogenesis and therapeutics. Clin. Transl. Oncol. 2020, 22, 1687–1697. [Google Scholar] [CrossRef]
- Chi, Y.; Zhou, D. MicroRNAs in colorectal carcinoma—From pathogenesis to therapy. J. Exp. Clin. Cancer Res. 2016, 35, 1–11. [Google Scholar] [CrossRef]
- Hausser, J.; Zavolan, M. Identification and consequences of miRNA–target interactions—beyond repression of gene expression. Nat. Rev. Genet. 2014, 15, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Capodanno, A.; Boldrini, L.; Proietti, A.; Alì, G.; Pelliccioni, S.; Niccoli, C.; D’INcecco, A.; Cappuzzo, F.; Chella, A.; Lucchi, M.; et al. Let-7g and miR-21 expression in non-small cell lung cancer: Correlation with clinicopathological and molecular features. Int. J. Oncol. 2013, 43, 765–774. [Google Scholar] [CrossRef]
- Qian, P.; Zuo, Z.; Wu, Z.; Meng, X.; Li, G.; Wu, Z.; Zhang, W.; Tan, S.; Pandey, V.; Yao, Y.; et al. Pivotal role of reduced let-7g expression in breast cancer invasion and metastasis. Cancer Res. 2011, 71, 6463–6474. [Google Scholar] [CrossRef]
- Nowek, K.; Sun, S.M.; Dijkstra, M.K.; Bullinger, L.; Döhner, H.; Erkeland, S.J.; Löwenberg, B.; Jongen-Lavrencic, M. Expression of a passenger miR-9* predicts favorable outcome in adults with acute myeloid leukemia less than 60 years of age. Leukemia 2015, 30, 303–309. [Google Scholar] [CrossRef]
- Chalasani, V.; Chin, J.L.; Izawa, J.I. Histologic variants of urothelial bladder cancer and nonurothelial histology in bladder cancer. Can. Urol. Assoc. J. 2013, 3, S193–S198. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.W.; Kim, W.-J.; Choi, W.; Yun, S.J. Tumor heterogeneity in muscle-invasive bladder cancer. Transl. Androl. Urol. 2020, 9, 2866–2880. [Google Scholar] [CrossRef]
- Cooke, P.; James, N.; Ganesan, R.; Burton, A.; Young, L.; Wallace, D. Bcl-2 expression identifies patients with advanced bladder cancer treated by radiotherapy who benefit from neoadjuvant chemotherapy. BJU Int. 2000, 85, 829–835. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, W.; Zhou, S. Expression and Significance of PTEN in Bladder Transitional Cell Carcinoma. Chinese-German J. Clin. Oncol. 2005, 4, 218–220. [Google Scholar] [CrossRef]
- Qamar, S.; Inam, Q.A.; Ashraf, S.; Khan, M.S.; Khokhar, M.A.; Awan, N. Prognostic Value of p53 Expression Intensity in Urothelial Cancers. J. Coll. Physicians Surg. Pak. 2017, 27, 232–236. [Google Scholar] [PubMed]
- Inoue, S.; Ide, H.; Mizushima, T.; Jiang, G.; Netto, G.J.; Gotoh, M.; Miyamoto, H. Nuclear Factor-κB Promotes Urothelial Tumorigenesis and Cancer Progression via Cooperation with Androgen Receptor Signaling. Mol. Cancer Ther. 2018, 17, 1303–1314. [Google Scholar] [CrossRef]
- Seiler, R.; Thalmann, G.N.; Rotzer, D.; Perren, A.; Fleischmann, A. CCND1/CyclinD1 status in metastasizing bladder cancer: A prognosticator and predictor of chemotherapeutic response. Mod. Pathol. 2014, 27, 87–95. [Google Scholar] [CrossRef]
- Marques-Magalhães, Â.; Graça, I.; Henrique, R.; Jerónimo, C. Targeting DNA Methyltranferases in Urological Tumors. Front. Pharmacol. 2018, 9, 366. [Google Scholar] [CrossRef]
- Zaravinos, A.; Chatziioannou, M.; Lambrou, G.I.; Boulalas, I.; Delakas, D.; Spandidos, D.A. Implication of RAF and RKIP Genes in Urinary Bladder Cancer. Pathol. Oncol. Res. 2010, 17, 181–190. [Google Scholar] [CrossRef]
- Badreldin, W.; Powles, T.; Menard, L.; Ho-Yen, C.; Kermorgant, S. Understanding and targeting Met signalling in bladder cancer. Ann. Oncol. 2017, 28, v16. [Google Scholar] [CrossRef]
- Liu, Y.; Kwiatkowski, D.J. Combined CDKN1A/TP53 Mutation in Bladder Cancer Is a Therapeutic Target. Mol. Cancer Ther. 2015, 14, 174–182. [Google Scholar] [CrossRef]
- Hashmi, A.A.; Hussain, Z.F.; Irfan, M.; Khan, E.Y.; Faridi, N.; Naqvi, H.; Khan, A.; Edhi, M.M. Prognostic significance of epidermal growth factor receptor (EGFR) over expression in urothelial carcinoma of urinary bladder. BMC Urol. 2018, 18, 59. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.; Mansure, J.J.; Almajed, W.; Cury, F.; Ferbeyre, G.; Popovic, M.; Seuntjens, J.; Kassouf, W. The Role of HMGB1 in Radioresistance of Bladder Cancer. Mol. Cancer Ther. 2016, 15, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Stojnev, S.; Krstić, M.; Kokoris, J.Č.; Conić, I.; Petković, I.; Ilić, S.; Milosević-Stevanović, J.; Veličković, L.J. Prognostic Impact of Canonical TGF-β Signaling in Urothelial Bladder Cancer. Medicina 2019, 55, 302. [Google Scholar] [CrossRef]
- Puzio-Kuter, A.M.; Castillo-Martin, M.; Kinkade, C.W.; Wang, X.; Shen, T.H.; Matos, T.; Shen, M.M.; Cordon-Cardo, C.; Abate-Shen, C. Inactivation of p53 and Pten promotes invasive bladder cancer. Genes 2009, 23, 675–680. [Google Scholar] [CrossRef]
- Wang, C.; Yang, S.; Jin, L.; Dai, G.; Yao, Q.; Xiang, H.; Zhang, Y.; Liu, X.; Xue, B. Biological and Clinical Significance of GATA3 Detected from TCGA Database and FFPE Sample in Bladder Cancer Patients. OncoTargets Ther. 2020, ume 13, 945–958. [Google Scholar] [CrossRef]
- Kamel, N.A.; Abdelzaher, E.; Elgebaly, O.; Ibrahim, S.A. Reduced expression of GATA3 predicts progression in non-muscle invasive urothelial carcinoma of the urinary bladder. J. Histotechnol. 2020, 43, 21–28. [Google Scholar] [CrossRef]
- Platt, F.M.; Hurst, C.D.; Taylor, C.F.; Gregory, W.M.; Harnden, P.; Knowles, M.A. Spectrum of Phosphatidylinositol 3-Kinase Pathway Gene Alterations in Bladder Cancer. Clin. Cancer Res. 2009, 15, 6008–6017. [Google Scholar] [CrossRef]
- Ishiguro, H.; Kawahara, T.; Zheng, Y.; Netto, G.J.; Miyamoto, H. Reduced Glucocorticoid Receptor Expression Predicts Bladder Tumor Recurrence and Progression. Am. J. Clin. Pathol. 2014, 142, 157–164. [Google Scholar] [CrossRef]
- Zheng, Y.; Izumi, K.; Li, Y.; Ishiguro, H.; Miyamoto, H. Contrary Regulation of Bladder Cancer Cell Proliferation and Invasion by Dexamethasone-Mediated Glucocorticoid Receptor Signals. Mol. Cancer Ther. 2012, 11, 2621–2632. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lin, M.; Chen, X.; Huang, C.; Zhang, X.; Chen, L.; Wu, K.; Chen, Y.; Zhu, Y.; Lin, Y. Evaluation of the prognostic and physiological functions of death associated protein kinase 1 in breast cancer. Oncol. Lett. 2018, 15, 8261–8268. [Google Scholar] [CrossRef]
- Raut, S.K.; Singh, G.B.; Rastogi, B.; Saikia, U.N.; Mittal, A.; Dogra, N.; Singh, S.; Prasad, R.; Khullar, M. miR-30c and miR-181a synergistically modulate p53–p21 pathway in diabetes induced cardiac hypertrophy. Mol. Cell. Biochem. 2016, 417, 191–203. [Google Scholar] [CrossRef]
- Xue, Q.; Yu, C.; Wang, Y.; Liu, L.; Zhang, K.; Fang, C.; Liu, F.; Bian, G.; Song, B.; Yang, A.; et al. miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3β pathway by targeting Rap2a. Sci. Rep. 2016, 6, 26781. [Google Scholar] [CrossRef]
- Cai, J.; Fang, L.; Huang, Y.; Li, R.; Yuan, J.; Yang, Y.; Zhu, X.; Chen, B.; Wu, J.; Li, M. miR-205 Targets PTEN and PHLPP2 to Augment AKT Signaling and Drive Malignant Phenotypes in Non–Small Cell Lung Cancer. Cancer Res. 2013, 73, 5402–5415. [Google Scholar] [CrossRef]
- Li, J.; Hu, K.; Gong, G.; Zhu, D.; Wang, Y.; Liu, H.; Wu, X. Upregulation of MiR-205 transcriptionally suppresses SMAD4 and PTEN and contributes to human ovarian cancer progression. Sci. Rep. 2017, 7, srep41330. [Google Scholar] [CrossRef]
- Zhang, A.; Li, M.; Wang, B.; Klein, J.D.; Price, S.R.; Wang, X.H. miRNA-23a/27a attenuates muscle atrophy and renal fibrosis through muscle-kidney crosstalk. J. Cachex Sarcopenia Muscle 2018, 9, 755–770. [Google Scholar] [CrossRef]
- Bayati, P.; Kalantari, M.; Assarehzadegan, M.-A.; Poormoghim, H.; Mojtabavi, N. MiR-27a as a diagnostic biomarker and potential therapeutic target in systemic sclerosis. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Xu, X. MiR-205 Promotes the Viability, Migration, and Tube Formation of Cervical Cancer Cells In Vitro by Targeting GATA3. Cancer Biotherapy Radiopharm. 2021, 37, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Tieu, A.H.; Cheng, Y.; Ma, K.; Akshintala, V.S.; Simsek, C.; Prasath, V.; Shin, E.J.; Ngamruengphong, S.; Khashab, M.A.; et al. Novel Long Noncoding RNA miR205HG Functions as an Esophageal Tumor-Suppressive Hedgehog Inhibitor. Cancers 2021, 13, 1707. [Google Scholar] [CrossRef]
- Leibrandt, R.C.; Tu, M.-J.; Yu, A.-M.; Lara, P.N.; Parikh, M. ATR Inhibition in Advanced Urothelial Carcinoma. Clin. Genitourin. Cancer 2022, 21, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhou, X.Z.; Lee, T.H. Death-Associated Protein Kinase 1 as a Promising Drug Target in Cancer and Alzheimer’s Disease. Recent Pat. Anti-Cancer Drug Discov. 2019, 14, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Ciccarese, C.; Massari, F.; Blanca, A.; Tortora, G.; Montironi, R.; Cheng, L.; Scarpelli, M.; Raspollini, M.R.; Vau, N.; Fonseca, J.; et al. Tp53 and its potential therapeutic role as a target in bladder cancer. Expert Opin. Ther. Targets 2017, 21, 401–414. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Value (%) |
---|---|
Sample size | 90 |
Age at diagnosis | 70.04 ±12.15 |
Gender | |
Male | 83/90 (92.22%) |
Female | 7/90 (7.78%) |
Tumor groups | |
NMIBC | 67/90 (74.44%) |
MIBC | 23/90 (25.55%) |
Tumor histological grade | |
LG NMIBC HG NMIBC | 23/67 (34.32%) 44/67 (65.67%) |
Tumor T stage | |
Ta | 22/90 (24.45%) |
T1 | 45/90 (50%) |
T2 | 20/90 (22.22%) |
T3 | 3/90 (3.33%) |
Clinical Parameters | Score | Probability of Recurrence or Progression at 1 Year (%) | Probability of Recurrence or Progression at 5 Years (%) | Recurrence or Progression Risk Groups | Average |
---|---|---|---|---|---|
Recurrence | 5–9 | 38 (35–41) | 62 (58–65) | Intermediate risk | 56/63 (88.89%) |
10–17 | 61 (55–67) | 78 (73–84) | High risk | 7/63 (11.11%) | |
Progression | 2–6 | 1 (0,4–1,6) | 6 (5–8) | Intermediate risk | 14/63 (22.23%) |
7–13 | 5 (4–7) | 17 (14–20) | High risk | 49/63 (77.77%) |
miRNA | Threshold Values (S) | G1 (<S) (%) | G2 (≥S) (%) |
---|---|---|---|
miR-9 | 2.05 | 37.32 | 62.68 |
miR-182 | 47.23 | 70.15 | 29.85 |
Let-7g | 7.67 | 66.66 | 33.34 |
miR-143 | 0.01 | 58.20 | 41.80 |
miR-205 | 1.58 × 10−5 | 1.49 | 98.51 |
miR-369 | 1.23 × 10−5 | 57.78 | 42.22 |
miR-27a | 5.85 × 10−5 | 12.22 | 87.78 |
Let-7c | 5.67 | 72.22 | 27.78 |
miRNA | mRNA Target | Drug | Interaction Score * | Interaction Type | Studies PMIDs |
---|---|---|---|---|---|
Let-7c | RRM2 | GEMCITABINE ELAIDATE | 5.15 | - | - |
GEMCITABINE HYDORCHLORIDE | 0.74 | Inhibitor | - | ||
DAPK1 | GEMCITABINE | 1.53 | - | 22293537 | |
MTR | CISPLATIN | 0.57 | 21605004 29662106 19159907 | ||
Let-7g | RRM2 | GEMCITABINE ELAIDATE | 5.15 | - | - |
GEMCITABINE HYDORCHLORIDE | 0.74 | Inhibitor | - | ||
DAPK1 | GEMCITABINE | 1.53 | - | 22293537 | |
MTR | CISPLATIN | 0.57 | 21605004 29662106 19159907 | ||
MDM2 | NIVOLUMAB | 0.52 | - | 28351930 | |
miR-9 | MTR | CISPLATIN | 0.57 | - | 21605004 29662106 19159907 |
FGFR1 | ERDAFITINIB | 0.73 | Inhibitor | 26324363 28341788 28965185 | |
PEMIGATINIB | 0.48 | Inhibitor | 32315352 | ||
DAPK1 | GEMCITABINE | 1.53 | - | 22293537 | |
ATR | CISPLATIN | 0.11 | - | 12894503 | |
MDM2 | NIVOLUMAB | 0.52 | - | 28351930 | |
miR-27a-3p | MTR | CISPLATIN | 0.57 | - | 21605004 29662106 19159907 |
MDM2 | NIVOLUMAB | 0.52 | - | 28351930 | |
PEMBROLIZUMAB | 0.35 | - | 28351930 | ||
CXCL2 | BCG VACCINE | 2.06 | - | 18217952 | |
GATA3 | DOXORUBICIN | 0.18 | 24141364 | ||
EZH2 | DOXORUBICIN | 0.19 | - | 25605023 | |
ATR | CISPLATIN | 0.11 | - | 12894503 | |
miR-143 | DAPK1 | GEMCITABINE | 1.53 | - | 22293537 |
ATR | CISPLATIN | 0.11 | - | 12894503 | |
miR-182 | MTR | CISPLATIN | 0.57 | - | 21605004 29662106 19159907 |
miR-205 | MTR | CISPLATIN | 0.57 | - | 21605004 29662106 19159907 |
HMGB1 | CISPLATIN | 0.12 | - | 9427537 8968078 | |
GATA3 | DOXORUBICIN | 0.18 | - | 24141364 | |
FGFR1 | ERDAFITINIB | 0.73 | Inhibitor | 26324363 28341788 28965185 | |
PEMIGATINIB | 0.48 | Inhibitor | 32315352 | ||
DAPK1 | GEMCITABINE | 1.53 | - | 22293537 | |
ATR | CISPLATIN | 0.11 | - | 12894503 | |
miR-369 | EZH2 | DOXORUBICIN | 0.19 | - | 25605023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setti Boubaker, N.; Gurtner, A.; Boussetta, S.; Manni, I.; Saadi, A.; Ayed, H.; Ronchetti, L.; Blel, A.; Chakroun, M.; Mokadem, S.; et al. Dysregulated MicroRNAs in Urinary Non-Muscle-Invasive Bladder Cancer: From Molecular Characterization to Clinical Applicability. Cancers 2025, 17, 2768. https://doi.org/10.3390/cancers17172768
Setti Boubaker N, Gurtner A, Boussetta S, Manni I, Saadi A, Ayed H, Ronchetti L, Blel A, Chakroun M, Mokadem S, et al. Dysregulated MicroRNAs in Urinary Non-Muscle-Invasive Bladder Cancer: From Molecular Characterization to Clinical Applicability. Cancers. 2025; 17(17):2768. https://doi.org/10.3390/cancers17172768
Chicago/Turabian StyleSetti Boubaker, Nouha, Aymone Gurtner, Sami Boussetta, Isabella Manni, Ahmed Saadi, Haroun Ayed, Livia Ronchetti, Ahlem Blel, Marouene Chakroun, Seif Mokadem, and et al. 2025. "Dysregulated MicroRNAs in Urinary Non-Muscle-Invasive Bladder Cancer: From Molecular Characterization to Clinical Applicability" Cancers 17, no. 17: 2768. https://doi.org/10.3390/cancers17172768
APA StyleSetti Boubaker, N., Gurtner, A., Boussetta, S., Manni, I., Saadi, A., Ayed, H., Ronchetti, L., Blel, A., Chakroun, M., Mokadem, S., Naimi, Z., Bedoui, M. A., Bel Haj Kacem, L., Meddeb, K., Rammeh, S., Ben Slama, M. R., Ouerhani, S., & Piaggio, G. (2025). Dysregulated MicroRNAs in Urinary Non-Muscle-Invasive Bladder Cancer: From Molecular Characterization to Clinical Applicability. Cancers, 17(17), 2768. https://doi.org/10.3390/cancers17172768