Efficacy of Electrochemotherapy with Bleomycin, Oxaliplatin, or Oxaliplatin with Bevacizumab in the Treatment of Colorectal Hepatic Metastases in Rats
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Protocol
2.3. Tumor Cell Injection
2.4. ECT
2.5. Ultrasound and Photoacoustic Imaging
2.6. Analysis of Blood Samples
2.7. Histological and Immunohistochemical Analysis
2.8. Statistical Analysis
3. Results
3.1. Tumor Development and General Health Conditions
3.2. Ultrasound and Photoacoustic Imaging
3.3. Tumor Necrosis
3.4. Apoptotic Cell Death and Tumor Cell Proliferation
3.5. Tumor Vascularization and Inflammatory Response
3.6. Blood Sample Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ECT | Electrochemotherapy |
rEP | reversible Electroporation |
BLM | Bleomycin |
i.v. | Intravenous |
CRLM | Colorectal Liver Metastases |
OXP | Oxaliplatin |
BVZ | Bevacizumab |
SO2 | Oxygen Saturation |
HbT | Hemoglobin Concentration |
PCNA | Proliferating Cell Nuclear Antigen |
MPO | Myeloperoxidase |
HPF | High-Power Field |
SEM | Standard Error of the Mean |
ANOVA | Analysis of Variance |
RBC | Red Blood Cell |
ROS | Reactive Oxygen Species |
VEGF-A | Vascular Endothelial Growth Factor A |
References
- Bonferoni, M.C.; Rassu, G.; Gavini, E.; Sorrenti, M.; Catenacci, L.; Torre, M.L.; Perteghella, S.; Ansaloni, L.; Maestri, M.; Giunchedi, P. Electrochemotherapy of Deep-Seated Tumors: State of Art and Perspectives as Possible “EPR Effect Enhancer” to Improve Cancer Nanomedicine Efficacy. Cancers 2021, 13, 4437. [Google Scholar] [CrossRef]
- Geboers, B.; Scheffer, H.J.; Graybill, P.M.; Ruarus, A.H.; Nieuwenhuizen, S.; Puijk, R.S.; van den Tol, P.M.; Davalos, R.V.; Rubinsky, B.; de Gruijl, T.D.; et al. High-Voltage Electrical Pulses in Oncology: Irreversible Electroporation, Electrochemotherapy, Gene Electrotransfer, Electrofusion, and Electroimmunotherapy. Radiology 2020, 295, 254–272. [Google Scholar] [CrossRef]
- Clover, A.J.P.; de Terlizzi, F.; Bertino, G.; Curatolo, P.; Odili, J.; Campana, L.G.; Kunte, C.; Muir, T.; Brizio, M.; Sersa, G.; et al. Electrochemotherapy in the treatment of cutaneous malignancy: Outcomes and subgroup analysis from the cumulative results from the pan-European International Network for Sharing Practice in Electrochemotherapy database for 2482 lesions in 987 patients (2008–2019). Eur. J. Cancer 2020, 138, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Probst, U.; Fuhrmann, I.; Beyer, L.; Wiggermann, P. Electrochemotherapy as a New Modality in Interventional Oncology: A Review. Technol. Cancer Res. Treat. 2018, 17, 1533033818785329. [Google Scholar] [CrossRef]
- Gehl, J.; Sersa, G.; Matthiessen, L.W.; Muir, T.; Soden, D.; Occhini, A.; Quaglino, P.; Curatolo, P.; Campana, L.G.; Kunte, C.; et al. Updated standard operating procedures for electrochemotherapy of cutaneous tumours and skin metastases. Acta Oncol. 2018, 57, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Condello, M.; D’Avack, G.; Spugnini, E.P.; Meschini, S. Electrochemotherapy: An Alternative Strategy for Improving Therapy in Drug-Resistant SOLID Tumors. Cancers 2022, 14, 4341. [Google Scholar] [CrossRef] [PubMed]
- Djokic, M.; Cemazar, M.; Bosnjak, M.; Dezman, R.; Badovinac, D.; Miklavcic, D.; Kos, B.; Stabuc, M.; Stabuc, B.; Jansa, R.; et al. A Prospective Phase II Study Evaluating Intraoperative Electrochemotherapy of Hepatocellular Carcinoma. Cancers 2020, 12, 3778. [Google Scholar] [CrossRef]
- Edhemovic, I.; Brecelj, E.; Cemazar, M.; Boc, N.; Trotovsek, B.; Djokic, M.; Dezman, R.; Ivanecz, A.; Potrc, S.; Bosnjak, M.; et al. Intraoperative electrochemotherapy of colorectal liver metastases: A prospective phase II study. Eur. J. Surg. Oncol. 2020, 46, 1628–1633. [Google Scholar] [CrossRef]
- Spallek, H.; Bischoff, P.; Zhou, W.; de Terlizzi, F.; Jakob, F.; Kovacs, A. Percutaneous electrochemotherapy in primary and secondary liver malignancies—local tumor control and impact on overall survival. Radiol. Oncol. 2022, 56, 102–110. [Google Scholar] [CrossRef]
- Spiliotis, A.E.; Hollander, S.; Rudzitis-Auth, J.; Wagenpfeil, G.; Eisele, R.; Nika, S.; Mallis Kyriakides, O.; Laschke, M.W.; Menger, M.D.; Glanemann, M.; et al. Evaluation of Electrochemotherapy with Bleomycin in the Treatment of Colorectal Hepatic Metastases in a Rat Model. Cancers 2023, 15, 1598. [Google Scholar] [CrossRef]
- Spiliotis, A.E.; Hollander, S.; Wagenpfeil, G.; Eisele, R.; Nika, S.; Mallis Kyriakides, O.; Laschke, M.W.; Menger, M.D.; Glanemann, M.; Gabelein, G. Electrochemotherapy with intravenous, intratumoral, or combined administration of bleomycin in the treatment of colorectal hepatic metastases in a rat model. Sci. Rep. 2024, 14, 17361. [Google Scholar] [CrossRef]
- Institute of Laboratory Animal Resources NRC. Guide for the care and use of laboratory animals. NIH Guide 1996, 25, 28. [Google Scholar]
- Kauffels, A.; Kitzmuller, M.; Gruber, A.; Nowack, H.; Bohnenberger, H.; Spitzner, M.; Kuthning, A.; Sprenger, T.; Czejka, M.; Ghadimi, M.; et al. Hepatic arterial infusion of irinotecan and EmboCept® S results in high tumor concentration of SN-38 in a rat model of colorectal liver metastases. Clin. Exp. Metastasis 2019, 36, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Jaroszeski, M.J.; Gilbert, R.; Heller, R. Treatment of liver malignancies with electrochemotherapy in a rat model. Methods Mol. Med. 2000, 37, 319–326. [Google Scholar]
- Pestieau, S.R.; Belliveau, J.F.; Griffin, H.; Stuart, O.A.; Sugarbaker, P.H. Pharmacokinetics of intraperitoneal oxaliplatin: Experimental studies. J. Surg. Oncol. 2001, 76, 106–114. [Google Scholar] [CrossRef]
- Schafer, T.; Sperling, J.; Slotta, J.E.; Kollmar, O.; Schilling, M.K.; Menger, M.D.; Richter, S. Hepatic arterial infusion with tumor necrosis factor-alpha induces early hepatic hyperperfusion. Eur. Surg. Res. 2012, 48, 215–222. [Google Scholar] [CrossRef]
- Zhao, N.; Xu, Q.; Wang, M.; Fei, X.; Pan, Y.; Chen, X.; Ma, S. Mechanism of kidney injury caused by bevacizumab in rats. Int. J. Clin. Exp. Pathol. 2014, 7, 8675–8683. [Google Scholar]
- Markelc, B.; Sersa, G.; Cemazar, M. Differential mechanisms associated with vascular disrupting action of electrochemotherapy: Intravital microscopy on the level of single normal and tumor blood vessels. PLoS ONE 2013, 8, e59557. [Google Scholar] [CrossRef] [PubMed]
- Sersa, G.; Krzic, M.; Sentjurc, M.; Ivanusa, T.; Beravs, K.; Kotnik, V.; Coer, A.; Swartz, H.M.; Cemazar, M. Reduced blood flow and oxygenation in SA-1 tumours after electrochemotherapy with cisplatin. Br. J. Cancer 2002, 87, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Marty, M.; Sersa, G.; Garbay, J.R.; Gehl, J.; Collins, C.G.; Snoj, M.; Billard, V.; Geertsen, P.F.; Larkin, J.O.; Miklavcic, D.; et al. Electrochemotherapy—An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur. J. Cancer Suppl. 2006, 4, 3–13. [Google Scholar] [CrossRef]
- Needles, A.; Heinmiller, A.; Sun, J.; Theodoropoulos, C.; Bates, D.; Hirson, D.; Yin, M.; Foster, F.S. Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 888–897. [Google Scholar] [CrossRef]
- Mallidi, S.; Watanabe, K.; Timerman, D.; Schoenfeld, D.; Hasan, T. Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging. Theranostics 2015, 5, 289–301. [Google Scholar] [CrossRef]
- Brloznik, M.; Boc, N.; Sersa, G.; Zmuc, J.; Gasljevic, G.; Seliskar, A.; Dezman, R.; Edhemovic, I.; Milevoj, N.; Plavec, T.; et al. Radiological findings of porcine liver after electrochemotherapy with bleomycin. Radiol. Oncol. 2019, 53, 415–426. [Google Scholar] [CrossRef]
- Zmuc, J.; Gasljevic, G.; Sersa, G.; Edhemovic, I.; Boc, N.; Seliskar, A.; Plavec, T.; Brloznik, M.; Milevoj, N.; Brecelj, E.; et al. Large Liver Blood Vessels and Bile Ducts Are Not Damaged by Electrochemotherapy with Bleomycin in Pigs. Sci. Rep. 2019, 9, 3649. [Google Scholar] [CrossRef]
- Cervantes, A.; Adam, R.; Rosello, S.; Arnold, D.; Normanno, N.; Taieb, J.; Seligmann, J.; De Baere, T.; Osterlund, P.; Yoshino, T.; et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 10–32. [Google Scholar] [CrossRef]
- Morris, V.K.; Kennedy, E.B.; Baxter, N.N.; Benson, A.B.; 3rd Cercek, A.; Cho, M.; Ciombor, K.K.; Cremolini, C.; Davis, A.; Deming, D.A.; et al. Treatment of Metastatic Colorectal Cancer: ASCO Guideline. J. Clin. Oncol. 2023, 41, 678–700. [Google Scholar] [CrossRef]
- Sersa, G.; Jarm, T.; Kotnik, T.; Coer, A.; Podkrajsek, M.; Sentjurc, M.; Miklavcic, D.; Kadivec, M.; Kranjc, S.; Secerov, A.; et al. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br. J. Cancer 2008, 98, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Miklavčič, D.; Mali, B.; Kos, B.; Heller, R.; Serša, G. Electrochemotherapy: From the drawing board into medical practice. Biomed. Eng. Online 2014, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Muir, T.; Bertino, G.; Groselj, A.; Ratnam, L.; Kis, E.; Odili, J.; McCafferty, I.; Wohlgemuth, W.A.; Cemazar, M.; Krt, A.; et al. Bleomycin electrosclerotherapy (BEST) for the treatment of vascular malformations. An International Network for Sharing Practices on Electrochemotherapy (InspECT) study group report. Radiol. Oncol. 2023, 57, 141–149. [Google Scholar] [CrossRef]
- Sersa, G.; Cemazar, M.; Miklavcic, D.; Chaplin, D.J. Tumor blood flow modifying effect of electrochemotherapy with bleomycin. Anticancer. Res. 1999, 19, 4017–4022. [Google Scholar] [PubMed]
- Cemazar, M.; Parkins, C.S.; Holder, A.L.; Chaplin, D.J.; Tozer, G.M.; Sersa, G. Electroporation of human microvascular endothelial cells: Evidence for an anti-vascular mechanism of electrochemotherapy. Br. J. Cancer 2001, 84, 565–570. [Google Scholar] [CrossRef]
- Landstrom, F.; Ivarsson, M.; Von Sydow, A.K.; Magnuson, A.; Von Beckerath, M.; Moller, C. Electrochemotherapy—Evidence for Cell-type Selectivity In Vitro. Anticancer. Res. 2015, 35, 5813–5820. [Google Scholar]
- Meulenberg, C.J.; Todorovic, V.; Cemazar, M. Differential cellular effects of electroporation and electrochemotherapy in monolayers of human microvascular endothelial cells. PLoS ONE 2012, 7, e52713. [Google Scholar] [CrossRef] [PubMed]
- Slyskova, J.; Muniesa-Vargas, A.; da Silva, I.T.; Drummond, R.; Park, J.; Hackes, D.; Poetsch, I.; Ribeiro-Silva, C.; Moretton, A.; Heffeter, P.; et al. Detection of oxaliplatin- and cisplatin-DNA lesions requires different global genome repair mechanisms that affect their clinical efficacy. NAR Cancer 2023, 5, zcad057. [Google Scholar] [CrossRef]
- Sutton, E.C.; DeRose, V.J. Early nucleolar responses differentiate mechanisms of cell death induced by oxaliplatin and cisplatin. J. Biol. Chem. 2021, 296, 100633. [Google Scholar] [CrossRef]
- Zhou, J.; Kang, Y.; Chen, L.; Wang, H.; Liu, J.; Zeng, S.; Yu, L. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Front. Pharmacol. 2020, 11, 343. [Google Scholar] [CrossRef]
- Nik Nabil, W.N.; Xi, Z.; Song, Z.; Jin, L.; Zhang, X.D.; Zhou, H.; De Souza, P.; Dong, Q.; Xu, H. Towards a Framework for Better Understanding of Quiescent Cancer Cells. Cells 2021, 10, 562. [Google Scholar] [CrossRef] [PubMed]
- Brandt, J.P.; Gerriets, V. Bleomycin; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Jia, P.; Dai, C.; Cao, P.; Sun, D.; Ouyang, R.; Miao, Y. The role of reactive oxygen species in tumor treatment. RSC Adv. 2020, 10, 7740–7750. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Yang, F.; Shao, C.; Wei, K.; Xie, M.; Shen, H.; Shu, Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 2019, 18, 157. [Google Scholar] [CrossRef]
- Vernole, P.; Tedeschi, B.; Caporossi, D.; Maccarrone, M.; Melino, G.; Annicchiarico-Petruzzelli, M. Induction of apoptosis by bleomycin in resting and cycling human lymphocytes. Mutagenesis 1998, 13, 209–215. [Google Scholar] [CrossRef]
- Chen, W.; Lian, W.; Yuan, Y.; Li, M. The synergistic effects of oxaliplatin and piperlongumine on colorectal cancer are mediated by oxidative stress. Cell Death Dis. 2019, 10, 600. [Google Scholar] [CrossRef]
- Gogineni, V.R.; Maddirela, D.R.; Park, W.; Jagtap, J.M.; Parchur, A.K.; Sharma, G.; Ibrahim, E.S.; Joshi, A.; Larson, A.C.; Kim, D.H.; et al. Localized and triggered release of oxaliplatin for the treatment of colorectal liver metastasis. J. Cancer 2020, 11, 6982–6991. [Google Scholar] [CrossRef]
- Helderman, R.; Bokan, B.; van Bochove, G.G.W.; Rodermond, H.M.; Thijssen, E.; Marchal, W.; Torang, A.; Loke, D.R.; Franken, N.A.P.; Kok, H.P.; et al. Elevated temperatures and longer durations improve the efficacy of oxaliplatin- and mitomycin C-based hyperthermic intraperitoneal chemotherapy in a confirmed rat model for peritoneal metastasis of colorectal cancer origin. Front. Oncol. 2023, 13, 1122755. [Google Scholar] [CrossRef] [PubMed]
- Ursic, K.; Kos, S.; Kamensek, U.; Cemazar, M.; Scancar, J.; Bucek, S.; Kranjc, S.; Staresinic, B.; Sersa, G. Comparable effectiveness and immunomodulatory actions of oxaliplatin and cisplatin in electrochemotherapy of murine melanoma. Bioelectrochemistry 2018, 119, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, J.; Sato, K.; Nakagawa, H.; Harasawa, H.; Honda, T.; Kodama, Y. Examination of the Effect of Proton Pump Inhibitors on the Anticancer Activity of Oxaliplatin. Cancer Diagn. Progn. 2022, 2, 620–626. [Google Scholar] [CrossRef]
- Buss, I.; Hamacher, A.; Sarin, N.; Kassack, M.U.; Kalayda, G.V. Relevance of copper transporter 1 and organic cation transporters 1-3 for oxaliplatin uptake and drug resistance in colorectal cancer cells. Metallomics 2018, 10, 414–425. [Google Scholar] [CrossRef]
- Hagenaars, M.; Ensink, N.G.; Basse, P.H.; Hokland, M.; Nannmark, U.; Eggermont, A.M.; van de Velde, C.J.; Fleuren, G.J.; Kuppen, P.J. The microscopic anatomy of experimental rat CC531 colon tumour metastases: Consequences for immunotherapy? Clin. Exp. Metastasis 2000, 18, 189–196. [Google Scholar] [CrossRef] [PubMed]
- da Silva, W.C.; de Araujo, V.E.; Lima, E.; Dos Santos, J.B.R.; Silva, M.; Almeida, P.; de Assis Acurcio, F.; Godman, B.; Kurdi, A.; Cherchiglia, M.L.; et al. Comparative Effectiveness and Safety of Monoclonal Antibodies (Bevacizumab, Cetuximab, and Panitumumab) in Combination with Chemotherapy for Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis. BioDrugs 2018, 32, 585–606. [Google Scholar] [CrossRef]
- Batista Napotnik, T.; Polajžer, T.; Miklavčič, D. Cell death due to electroporation—A review. Bioelectrochemistry 2021, 141, 107871. [Google Scholar] [CrossRef]
- Fernandes, P.; O’Donovan, T.R.; McKenna, S.L.; Forde, P.F. Electrochemotherapy Causes Caspase-Independent Necrotic-Like Death in Pancreatic Cancer Cells. Cancers 2019, 11, 1177. [Google Scholar] [CrossRef]
- Ma, L.; Li, X.; Zhao, X.; Sun, H.; Kong, F.; Li, Y.; Sui, Y.; Xu, F. Oxaliplatin promotes siMAD2L2-induced apoptosis in colon cancer cells. Mol. Med. Rep. 2021, 24, 629. [Google Scholar] [CrossRef] [PubMed]
- Sperling, J.; Schafer, T.; Ziemann, C.; Benz-Weiber, A.; Kollmar, O.; Schilling, M.K.; Menger, M.D. Hepatic arterial infusion of bevacizumab in combination with oxaliplatin reduces tumor growth in a rat model of colorectal liver metastases. Clin. Exp. Metastasis 2012, 29, 91–99. [Google Scholar] [CrossRef] [PubMed]
BLM | OXP | OXP/BVZ | |
---|---|---|---|
Leukocytes (109/L) | 9.5 ± 1.0 | 9.7 ± 0.7 | 8.9 ± 0.5 |
Lymphocytes (109/L) | 4.6 ± 0.3 | 4.6 ± 0.3 | 4.2 ± 0.2 |
Monocytes (109/L) | 0.9 ± 0.2 | 0.9 ± 0.2 | 0.8 ± 0.1 |
Neutrophils (109/L) | 4.1 ± 0.9 | 4.5 ± 0.6 | 4.1 ± 0.5 |
RBC (1012/L) | 6.8 ± 0.2 | 6.6 ± 0.2 | 6.6 ± 0.2 |
Platelets (109/L) | 604.0 ± 36.0 | 584.0 ± 49.4 | 592.0 ± 38.2 |
Hemoglobin (g/dL) | 13.1 ± 0.3 | 12.9 ± 0.2 | 13.3 ± 0.2 |
Hematocrit (%) | 37.3 ± 1.0 | 36.4 ± 1.2 | 38.1 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spiliotis, A.E.; Kyriakides, O.M.; Holländer, S.; Wagenpfeil, G.; Laschke, M.W.; Glanemann, M.; Gäbelein, G. Efficacy of Electrochemotherapy with Bleomycin, Oxaliplatin, or Oxaliplatin with Bevacizumab in the Treatment of Colorectal Hepatic Metastases in Rats. Cancers 2025, 17, 2753. https://doi.org/10.3390/cancers17172753
Spiliotis AE, Kyriakides OM, Holländer S, Wagenpfeil G, Laschke MW, Glanemann M, Gäbelein G. Efficacy of Electrochemotherapy with Bleomycin, Oxaliplatin, or Oxaliplatin with Bevacizumab in the Treatment of Colorectal Hepatic Metastases in Rats. Cancers. 2025; 17(17):2753. https://doi.org/10.3390/cancers17172753
Chicago/Turabian StyleSpiliotis, Antonios E., Orestis Mallis Kyriakides, Sebastian Holländer, Gudrun Wagenpfeil, Matthias W. Laschke, Matthias Glanemann, and Gereon Gäbelein. 2025. "Efficacy of Electrochemotherapy with Bleomycin, Oxaliplatin, or Oxaliplatin with Bevacizumab in the Treatment of Colorectal Hepatic Metastases in Rats" Cancers 17, no. 17: 2753. https://doi.org/10.3390/cancers17172753
APA StyleSpiliotis, A. E., Kyriakides, O. M., Holländer, S., Wagenpfeil, G., Laschke, M. W., Glanemann, M., & Gäbelein, G. (2025). Efficacy of Electrochemotherapy with Bleomycin, Oxaliplatin, or Oxaliplatin with Bevacizumab in the Treatment of Colorectal Hepatic Metastases in Rats. Cancers, 17(17), 2753. https://doi.org/10.3390/cancers17172753