Detection Rates of Prostate Cancer Across Prostatic Zones Using Freehand Single-Access Transperineal Fusion Biopsies
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection and Data Abstraction
2.2. Biopsy Technique
2.3. Endpoints
2.4. Statistical Analysis
3. Results
3.1. Demographics
3.2. Frequency Distribution of PCa and csPCa Detected by SB
3.3. Frequency Distribution of PCa and csPCa Detected by MRI-TB
3.4. Correlation of PI-RADS, ISUP, and Lesion Location in SB vs. MRI-TB
3.5. Concordance Between PI-RADS and ISUP for the Index Lesion, Stratified by Anterior vs. Posterior Regions for MRI-TB
3.6. Concordance Between PI-RADS and ISUP for the Index Lesion, Stratified by Apex, Mid, and Base
3.7. Clinical Predictors of PCa and csPCa in Discordant MRI-TB and SB Cases
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FSA-TP | Freehand Single-Access Transperineal Prostate Biopsy |
MRI | Magnetic Resonance Imaging |
MRI-TB | Magnetic Resonance Imaging–Targeted Biopsy |
SB | Systematic Biopsy |
PCa | Prostate Cancer |
csPCa | Clinically Significant Prostate Cancer |
ciPCa | Clinically Insignificant Prostate Cancer |
ICC | Intraclass Correlation Coefficient |
PI-RADS | Prostate Imaging–Reporting and Data System |
ISUP | International Society of Urological Pathology |
PSA | Prostate-Specific Antigen |
DRE | Digital Rectal Examination |
mpMRI | Multiparametric Magnetic Resonance Imaging |
IQR | Interquartile Range |
REDCap | Research Electronic Data Capture |
ESUR | European Society of Urogenital Radiology |
TP | Transperineal |
TR | Transrectal |
TR-MRI-TB | Transrectal MRI-Targeted Biopsy |
OR | Odds Ratio |
CI | Confidence Interval |
AOP | Azienda Ospedaliera di Padova |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Le, J.D.; Tan, N.; Shkolyar, E.; Lu, D.Y.; Kwan, L.; Marks, L.S.; Huang, J.; Margolis, D.J.A.; Raman, S.S.; Reiter, R.E. Multifocality and Prostate Cancer Detection by Multiparametric Magnetic Resonance Imaging: Correlation with Whole-mount Histopathology. Eur. Urol. 2015, 67, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Borofsky, S.; George, A.K.; Gaur, S.; Bernardo, M.; Greer, M.D.; Mertan, F.V.; Taffel, M.; Moreno, V.; Merino, M.J.; Wood, B.J.; et al. What are we missing? False- negative cancers at multiparametric MR imaging of the prostate. Radiology 2018, 286, 186–195. [Google Scholar] [CrossRef]
- Sathianathen, N.J.; Omer, A.; Harriss, E.; Davies, L.; Kasivisvanathan, V.; Punwani, S.; Moore, C.M.; Kastner, C.; Barrett, T.; Van Den Bergh, R.; et al. Negative Predictive Value of Multiparametric Magnetic Resonance Imaging in the Detection of Clinically Significant Prostate Cancer in the Prostate Imaging Reporting and Data System Era: A Systematic Review and Meta-analysis. Eur. Urol. 2020, 78, 402–414. [Google Scholar] [CrossRef]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef]
- Schouten, M.G.; van der Leest, M.; Pokorny, M.; Hoogenboom, M.; Barentsz, J.O.; Thompson, L.C.; Fütterer, J.J. Why and Where do We Miss Significant Prostate Cancer with Multi-parametric Magnetic Resonance Imaging followed by Magnetic Resonance-guided and Transrectal Ultrasound-guided Biopsy in Biopsy-naïve Men? Eur. Urol. 2017, 71, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Uleri, A.; Baboudjian, M.; Tedde, A.; Gallioli, A.; Long-Depaquit, T.; Palou, J.; Basile, G.; Gaya, J.M.; Sanguedolce, F.; Lughezzani, G.; et al. Is There an Impact of Transperineal Versus Transrectal Magnetic Resonance Imaging-targeted Biopsy in Clinically Significant Prostate Cancer Detection Rate? A Systematic Review and Meta-analysis. Eur. Urol. Oncol. 2023, 6, 621–628. [Google Scholar] [CrossRef]
- Wu, Q.; Tu, X.; Zhang, C.; Ye, J.; Lin, T.; Liu, Z.; Yang, L.; Qiu, S.; Bao, Y.; Wei, Q. Transperineal magnetic resonance imaging targeted biopsy versus transrectal route in the detection of prostate cancer: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2024, 27, 212–221. [Google Scholar] [CrossRef]
- Osama, S.; Serboiu, C.; Taciuc, I.A.; Angelescu, E.; Petcu, C.; Priporeanu, T.A.; Marinescu, A.; Costache, A. Current Approach to Complications and Difficulties during Transrectal Ultrasound-Guided Prostate Biopsies. J. Clin. Med. 2024, 13, 487. [Google Scholar] [CrossRef]
- Mac Curtain, B.M.; Calpin, G.; Bruinsma, J.; Qian, W.; Deshwal, A.; Collins, E.; Temperley, H.C.; Mac Curtain, R.D.; Shields, W.P.; Yap, L.C.; et al. Transperineal prostate biopsy with freehand technique under local anaesthetic: A systematic review and meta-analysis. BJUI Compass 2025, 6, e70016. [Google Scholar] [CrossRef]
- Ngu, I.S.; Ngooi, M.S.; Ng, H.K.; Tee, K.T.L.; Loo, C.H.; Lim, M.S. Freehand transperineal prostate biopsy with a coaxial needle under local anesthesia: Experience from a single institution in Malaysia. Cancer Pathog. Ther. 2023, 1, 33–39. [Google Scholar] [CrossRef]
- Tang, G.; Yang, R.; Sun, J.; Zhang, F.; Wu, J.; Zhao, H. The Role of Freehand Transperineal Prostate Biopsy Under Local Anesthesia Without Antibiotics in Outpatient Settings. Am. J. Mens. Health 2024, 18, 15579883241302045. [Google Scholar] [CrossRef]
- Zattoni, F.; Rajwa, P.; Miszczyk, M.; Fazekas, T.; Carletti, F.; Carrozza, S.; Sattin, F.; Reitano, G.; Botti, S.; Matsukawa, A.; et al. Transperineal Versus Transrectal Magnetic Resonance Imaging–targeted Prostate Biopsy: A Systematic Review and Meta-analysis of Prospective Studies. Eur. Urol. Oncol. 2024, 7, 1303–1312. [Google Scholar] [CrossRef]
- Paesano, N.; Picola, N.; Muñoz-Rodriguez, J.; Ruiz-Plazas, X.; Muñoz-Rivero, M.V.; Celma, A.; García-de Manuel, G.; Miró, B.; Servian, P.; Abascal, J.M.; et al. Efficacy of Prostate Biopsies via Transperineal and Transrectal Routes for Significant Prostate Cancer Detection: A Multicenter Paired–Matched Study. Diagnostics 2025, 15, 288. [Google Scholar] [CrossRef] [PubMed]
- Zattoni, F.; Fasulo, V.; Kasivisvanathan, V.; Kesch, C.; Marra, G.; Martini, A.; Falagario, U.; Soeterik, T.; van den Bergh, R.; Rajwa, P.; et al. Enhancing Prostate Cancer Detection Accuracy in Magnetic Resonance Imaging–targeted Prostate Biopsy: Optimizing the Number of Cores Taken. Eur. Urol. Open Sci. 2024, 66, 16–25. [Google Scholar] [CrossRef]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Brunckhorst, O.; Darraugh, J.; Eberli, D.; De Meerleer, G.; De Santis, M.; Farolfi, A.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer. Eur. Urol. 2024, 86, 148–163. [Google Scholar] [CrossRef]
- Turkbey, B.; Rosenkrantz, A.B.; Haider, M.A.; Padhani, A.R.; Villeirs, G.; Macura, K.J.; Tempany, C.M.; Choyke, P.L.; Cornud, F.; Margolis, D.J.; et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur. Urol. 2019, 76, 340–351. [Google Scholar] [CrossRef]
- de Rooij, M.; Israël, B.; Tummers, M.; Ahmed, H.U.; Barrett, T.; Giganti, F.; Hamm, B.; Løgager, V.; Padhani, A.; Panebianco, V.; et al. ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: Quality requirements for image acquisition, interpretation and radiologists’ training. Eur. Radiol. 2020, 30, 5404–5416. [Google Scholar] [CrossRef]
- Zattoni, F.; Marra, G.; Kasivisvanathan, V.; Grummet, J.; Nandurkar, R.; Ploussard, G.; Olivier, J.; Chiu, P.K.; Valerio, M.; Gontero, P.; et al. The Detection of Prostate Cancer with Magnetic Resonance Imaging-Targeted Prostate Biopsies is Superior with the Transperineal vs the Transrectal Approach. A European Association of Urology-Young Academic Urologists Prostate Cancer Working Group Multi-Ins. J. Urol. 2022, 208, 830–837. [Google Scholar] [CrossRef]
- Szabo, R.J. Free-hand” transperineal prostate biopsy under local anesthesia: Review of the literature. J. Endourol. 2021, 35, 525–543. [Google Scholar] [CrossRef]
- Pacini, M.; Zucchi, A.; Morganti, R.; Dazzi, F.; Pastore, A.L.; Valenzi, F.M.; Fuschi, A.; al Salhi, Y.; Giannarini, G.; Ficarra, V.; et al. Correlation of clinically significant prostate cancer sites across multiparametric MRI, prostate biopsy, and whole-mount pathology for optimal prostate biopsy strategy. Sci. Rep. 2025, 15, 4310. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, M.; Basourakos, S.P.; Patel, H.D.; Allaway, M.J.; Hu, J.C.; Gorin, M.A. Pooled outcomes of performing freehand transperineal prostate biopsy with the PrecisionPoint Transperineal Access System. BJUI Compass 2022, 3, 434–442. [Google Scholar] [CrossRef]
- Hsu, M.; Sekoulopoulos, S.; Raman, J.D. Choosing the path: Insights into transperineal vs. transrectal prostate biopsy. Transl. Androl. Urol. 2025, 14, 883–887. [Google Scholar] [CrossRef]
- Thomson, A.; Li, M.; Grummet, J.; Sengupta, S. Transperineal prostate biopsy: A review of technique. Transl. Androl. Urol. 2021, 9, 3009–3017. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.J.; Marian, I.R.; Williams, R.; Lopez, J.F.; Mercader, C.; Raslan, M.; Berridge, C.; Whitburn, J.; Campbell, T.; Tuck, S.; et al. Local anaesthetic transperineal biopsy versus transrectal prostate biopsy in prostate cancer detection (TRANSLATE): A multicentre, randomised, controlled trial. Lancet Oncol. 2025, 26, 583–595. [Google Scholar] [CrossRef]
- Pepe, P.; Garufi, A.; Priolo, G.; Pennisi, M. Transperineal Versus Transrectal MRI/TRUS Fusion Targeted Biopsy: Detection Rate of Clinically Significant Prostate Cancer. Clin. Genitourin. Cancer 2017, 15, e33–e36. [Google Scholar] [CrossRef]
- Marra, G.; Zhuang, J.; Marquis, A.; Zhao, X.; Calleris, G.; Kan, Y.; Oderda, M.; Huang, H.; Faletti, R.; Zhang, Q.; et al. Pain in Men Undergoing Transperineal Free-Hand Multiparametric Magnetic Resonance Imaging Fusion Targeted Biopsies under Local Anesthesia: Outcomes and Predictors from a Multicenter Study of 1,008 Patients. J. Urol. 2020, 204, 1209–1215. [Google Scholar] [CrossRef]
- Wetterauer, C.; Shahin, O.; Federer-Gsponer, J.R.; Keller, N.; Wyler, S.; Seifert, H.H.; Kwiatkowski, M. Feasibility of freehand MRI/US cognitive fusion transperineal biopsy of the prostate in local anaesthesia as in-office procedure—Experience with 400 patients. Prostate Cancer Prostatic Dis. 2020, 23, 429–434. [Google Scholar] [CrossRef]
- He, B.M.; Chen, R.; Shi, Z.K.; Xiao, G.A.; Li, H.S.; Lin, H.Z.; Ji, J.; Peng, H.-X.; Wang, Y.; Sun, Y.-H.; et al. Trans-perineal template-guided mapping biopsy vs. Freehand trans-perineal biopsy in chinese patients with PSA < 20 ng/ml: Similar cancer detection rate but different lesion detection rate. Front. Oncol. 2019, 9, 758. [Google Scholar] [CrossRef]
- Urkmez, A.; Demirel, C.; Altok, M.; Bathala, T.K.; Shapiro, D.D.; Davis, J.W. Freehand versus Grid-Based Transperineal Prostate Biopsy: A Comparison of Anatomical Region Yield and Complications. J. Urol. 2021, 206, 894–902. [Google Scholar] [CrossRef]
- Bujaldon, J.M.; Vitagliano, G.J.; Blas, L.; Vocos, M.M.; Pita, H.R. Freehand Transperineal Prostate Biopsy Improves the Detection Rate of Clinically Significant Prostate Cancer. Urol. Res. Pract. 2025, 50, 269. [Google Scholar] [CrossRef] [PubMed]
- Zattoni, F.; Gandaglia, G.; Marra, G.; Carletti, F.; Kasivisvanathan, V.; Ploussard, G.; Fazekas, T.; Martini, A.; Olivier, J.; Chiu, P.K.; et al. Targeting All Multiple Magnetic Resonance Imaging Prostate Lesions Does Not Enhance Cancer Detection: Insights from the YAU Prostate Cancer Group. Eur. Urol. Open Sci. 2025, 75, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Novara, G.; Zattoni, F.; Zecchini, G.; Aceti, A.; Pellizzari, A.; Ferraioli, G.; Cobacchini, C.; Taverna, A.; Sattin, F.; Carletti, F.; et al. Role of targeted biopsy, perilesional biopsy, random biopsy, and their combination in the detection of clinically significant prostate cancer by mpMRI/transrectal ultrasonography fusion biopsy in confirmatory biopsy during active surveillance program. Prostate Cancer Prostatic Dis. 2024, 27, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Brisbane, W.G.; Priester, A.M.; Ballon, J.; Kwan, L.; Delfin, M.K.; Felker, E.R.; Sisk, A.E.; Hu, J.C.; Marks, L.S. Targeted Prostate Biopsy: Umbra, Penumbra, and Value of Perilesional Sampling. Eur. Urol. 2022, 82, 303–310. [Google Scholar] [CrossRef]
Variable | Whole Cohort (n = 277) |
---|---|
Median age (IQR) | 70 (64–75) |
Therapy with 5—ARI | 14 (5.1%) |
Median PSA at initial biopsy (ng/mL) | 5.9 (4.5–8.0) |
Median prostate volume (IQR) | 50.0 (38.0–70.0) |
PSAD (ng/mL/cc3) | 0.11 (0.08–0.2) |
PSA F/T | 15.5 (12.0–21.1) |
Positive rectal examination | 98 (37.0%) |
Clinical stage ≥ T3 at mpMRI | 16 (5.8%) |
Maximum median diameter of the lesion (mm) | 10.0 (7–14) |
PI-RADS score | |
3 | 62 (22.4%) |
4 | 157 (56.7%) |
5 | 58 (20.9%) |
MRI index lesion position | |
Apex | 94 (33.9%) |
Intermediate | 128 (46.2%) |
Base | 55 (19.9%) |
MRI index lesion position | |
Anterior Zone (PZa + TZa + AS) | 87 (31.4%) |
Posterior Zone (PZpl + CZ + PZpm + TZp) | 190 (68.6%) |
MRI index lesion position | |
Periferal (PZpl + CZ + PZpm) | 172 (62.1) |
Transition (TZa + TZp) | 77 (27.8) |
Anterior (AS + PZa) | 28 (10.1) |
Median number of MRI-TB cores | 3 (2–4) |
MRI-TB cores | |
PCa | 145 (52.3%) |
ciPCa | 45 (16.2%) |
csPCa | 100 (36.1%) |
SB cores | |
PCa | 167 (60.3%) |
ciPCa | 96 (34.7%) |
csPCa | 71 (25.6%) |
MRI-TB and SB cores | |
PCa | 174 (62.8%) |
ciPCa | 48 (17.3%) |
csPCa | 123 (45.5%) |
Negative MRI-TB but csPCA on SB | 6 (2.2%) |
CsPCa on MRI-TB but negative SB | 23 (8.3%) |
Negative MRI-TB but PCa on SB | 16 (5.8%) |
PCa on MRI-TB but negative SB | 45 (16.2%) |
CORE NUMBER—ZONE SIDE | PCa n (%) | p-Value | csPCa n (%) | p-Value |
---|---|---|---|---|
CORE 1—PZpm R apex | 53 (19.2) | 0.10 | 30 (10.8) | 0.48 |
CORE 2—PZpm L apex | 64 (23.1) | 34 (12.3) | ||
CORE 3—PZpl R apex | 79 (28.5) | 46 (16.6) | ||
CORE 4—PZpl L apex | 70 (25.3) | 38 (13.3) | ||
CORE 5—PZpm R mid | 58 (20.9) | 33 (11.9) | ||
CORE 6—PZpm L mid | 55 (19.8) | 24 (8.6) | ||
CORE 7—PZa R mid | 48 (17.3) | 25 (9) | ||
CORE 8—PZa L mid | 55 (19.8) | 30 (10.8) | ||
CORE 9—PZpl R base | 56 (20.2) | 39 (14) | ||
CORE 10—PZpl L base | 60 (21.6) | 31 (11.2) | ||
CORE 11—PZa R base | 58 (20.9) | 32 (11.5) | ||
CORE 12—PZa L base | 62 (22.4) | 31 (11.2) | ||
CORE 13—TZa R mid | 48 (17.3) | 31 (11.2) | ||
CORE 14—TZa L mid | 42 (15.2) | 31 (11.2) |
MRI-TB 1 | MRI-TB 2 | MRI-TB 3 | |||||
---|---|---|---|---|---|---|---|
PCa | Apex | 46 (48.9) | p-value < 0.01 | 37 (39.4) | p-value < 0.01 | 41 (43,6) | p-value < 0.01 |
Mid | 56 (43.8) | 55 (43) | 56 (43.7) | ||||
Base | 19 (34.5) | 19 (34.5) | 20 (36.3) | ||||
csPCa | Apex | 33 (35.1) | p-value < 0.01 | 28 (29.8) | p-value < 0.01 | 31 (33) | p-value < 0.01 |
Mid | 40 (31.3) | 39 (30.5) | 42 (32.8) | ||||
Base | 11 (20) | 14 (34.5) | 13 (23.6) | ||||
PCa | Anterior | 90 (47.3) | p-value < 0.01 | 84 (44.3) | p-value < 0.01 | 84 (44.7) | p-value < 0.01 |
Posterior | 31 (33.5) | 27 (30.9) | 33 (38.4) | ||||
csPCa | Anterior | 64 (33.6) | p-value < 0.01 | 62 (32.7) | p-value < 0.01 | 62 (33) | p-value < 0.01 |
Posterior | 20 (22.9) | 21 (21.7) | 24 (7.9) |
NEGATIVE n (%) | ISUP 1 n (%) | ISUP 2 n (%) | ISUP 3 n (%) | ISUP 4 n (%) | ISUP 5 n (%) | ||
---|---|---|---|---|---|---|---|
SB | PI-RADS 3 | 33 (11.9) | 14 (5.1) | 6 (2.2) | 6 (2.2) | 5 (1.8) | 1 (0.4) |
PI-RADS 4 | 69 (24.9) | 31 (11.2) | 18 (6.5) | 14 (5.1) | 19 (6.9) | 4 (1.4) | |
PI-RADS 5 | 8 (2.9) | 7 (2.5) | 17 (6.1) | 6 (2.2) | 11 (4) | 8 (2.9) | |
MRI-TB | PI-RADS 3 | 39 (14.1) | 17 (6.1) | 6 (2.2) | 3 (1.1) | 0 (0.0) | 0 (0.0) |
PI-RADS 4 | 85 (30.7) | 21 (7.6) | 21 (7.6) | 16 (5.8) | 8 (2.9) | 4 (1.4) | |
PI-RADS 5 | 8 (2.9) | 7 (2.5) | 18 (6.5) | 9 (3.2) | 10 (3.6) | 5 (1.8) | |
ANTERIOR ZONE | PI-RADS 3 | 23 (12.1) | 12 (6.3) | 5 (2.6) | 5 (2.6) | 2 (1.1) | 0 (0.0) |
PI-RADS 4 | 45 (23.7) | 18 (9.5) | 15 (7.9) | 9 (4.7) | 16 (8.4) | 3 (1.6) | |
PI-RADS 5 | 4 (2.1) | 4 (2.1) | 9 (4.7) | 4 (2.1) | 10 (5.3) | 6 (3.2) | |
POSTERIOR ZONE | PI-RADS 3 | 10 (11.5) | 2 (2.3) | 1 (1.1) | 1 (1.1) | 3 (3.4) | 1 (1.1) |
PI-RADS 4 | 24 (27.6) | 13 (14.9) | 3 (3.4) | 5 (5.7) | 3 (3.4) | 1 (1.1) | |
PI-RADS 5 | 4 (4.6) | 3 (3.4) | 8 (9.2) | 2 (2.3) | 1 (1.1) | 2 (2.3) |
Index Lesion Region | Negative (n, %) | p-Value | ciPCa (n, %) | p-Value | csPCa (n, %) | p-Value | |
---|---|---|---|---|---|---|---|
SB | Anterior | 72 (37.9) | 0.39 | 67 (35.2) | 0.82 | 51 (26.8) | 0.28 |
Posterior | 38 (43.6) | 29 (33.3) | 20 (22.9) | ||||
MRI-TB | Anterior | 84 (45.6) | 0.39 | 27 (14.6) | 0.87 | 73 (39.7) | 0.34 |
NO PCa n (%) | ISUP 1 n (%) | ISUP 2 n (%) | ISUP 3 n (%) | ISUP 4 n (%) | ISUP 5 n (%) | ||
---|---|---|---|---|---|---|---|
ANTERIOR | PI-RADS 3 | 25 (13.2) | 15 (7.9) | 5 (2.6) | 2 (1.1) | 0 (0.0) | 0 (0.0) |
PI-RADS 4 | 55 (28.9) | 16 (8.4) | 15 (7.9) | 10 (5.3) | 7 (3.7) | 3 (1.6) | |
PI-RADS 5 | 4 (2.1) | 2 (1.1) | 12 (6.3) | 7 (3.7) | 9 (4.7) | 3 (1.6) | |
POSTERIOR | PI-RADS 3 | 14 (16.1) | 2 (2.3) | 1 (1.1) | 1 (1.1) | 0 (0.0) | 0 (0.0) |
PI-RADS 4 | 30 (34.5) | 5 (5.7) | 6 (6.9) | 6 (6.9) | 1 (1.1) | 1 (1.1) | |
PI-RADS 5 | 4 (4.6) | 5 (5.7) | 6 (6.9) | 2 (2.3) | 1 (1.1) | 2 (2.3) |
NEGATIVE n (%) | ISUP 1 n (%) | ISUP 2 n (%) | ISUP 3 n (%) | ISUP 4 n (%) | ISUP 5 n (%) | Negative (n, %) | p-Value (Negative) | ciPCa (n, %) | p-Value (ciPCa) | csPCa (n, %) | p-Value (csPCa) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SB | APEX | PI-RADS 3 | 11 (11.7) | 5 (5.3) | 3 (3.2) | 3 (3.2) | 2 (2.1) | 0 (0.0) | 33 (35.1) | 0.27 | 34 (36.2) | 0.26 | 27 (28.7) | 0.80 |
PI-RADS 4 | 20 (21.3) | 13 (13.8) | 5 (5.3) | 4 (4.3) | 8 (8.5) | 1 (1.1) | ||||||||
PI-RADS 5 | 2 (2.1) | 3 (3.2) | 3 (3.2) | 2 (2.1) | 6 (6.4) | 3 (3.2) | ||||||||
MID | PI-RADS 3 | 12 (9.4) | 6 (4.7) | 2 (1.6) | 1 (0.8) | 3 (2.3) | 1 (0.8) | 47 (36.7) | 50 (39.0) | 31 (24.2) | ||||
PI-RADS 4 | 31 (24.2) | 16 (12.5) | 11 (8.6) | 8 (6.3) | 7 (5.5) | 2 (1.6) | ||||||||
PI-RADS 5 | 4 (3.1) | 4 (3.1) | 10 (7.8) | 2 (1.6) | 5 (3.9) | 3 (2.3) | ||||||||
BASE | PI-RADS 3 | 10 (18.2) | 3 (5.5) | 1 (1.8) | 2 (3.6) | 0 (0.0) | 0 (0.0) | 30 (54.5) | 12 (4.3) | 13 (4.7) | ||||
PI-RADS 4 | 18 (32.7) | 2 (3.6) | 2 (3.6) | 2 (3.6) | 4 (7.3) | 1 (1.8) | ||||||||
PI-RADS 5 | 2 (3.6) | 0 (0.0) | 4 (7.3) | 2 (3.6) | 0 (0.0) | 2 (3.6) | ||||||||
MRI-TB | APEX | PI-RADS 3 | 13 (13.8) | 6 (6.4) | 4 (4.3) | 1 (1.1) | 0 (0.0) | 0 (0.0) | 44 (47.8) | 0.89 | 12 (13.0) | 0.70 | 36 (39.1) | 0.57 |
PI-RADS 4 | 20 (29.8) | 7 (7.4) | 7 (7.4) | 5 (5.3) | 2 (2.1) | 2 (2.1) | ||||||||
PI-RADS 5 | 3 (3.2) | 1 (1.1) | 8 (8.5) | 1 (1.1) | 4 (4.3) | 2 (2.1) | ||||||||
MID | PI-RADS 3 | 18 (14.1) | 4 (3.1) | 1 (0.8) | 2 (1.6) | 0 (0.0) | 0 (0.0) | 59 (47.2) | 17 (13.6) | 49 (39.2) | ||||
PI-RADS 4 | 38 (29.7) | 11 (8.6) | 11 (8.6) | 8 (6.3) | 5 (3.9) | 2 (1.6) | ||||||||
PI-RADS 5 | 3 (2.3) | 5 (3.9) | 8 (6.3) | 7 (5.5) | 4 (3.1) | 1 (0.8) | ||||||||
BASE | PI-RADS 3 | 8 (14.5) | 7 (12.7) | 1 (1.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 29 (53.7) | 10 (18.5) | 15 (27.8) | ||||
PI-RADS 4 | 19 (34.5) | 3 (5.5) | 3 (5.5) | 3 (5.5) | 1 (1.8) | 0 (0.0) | ||||||||
PI-RADS 5 | 2 (3.6) | 1 (1.8) | 2 (3.6) | 1 (1.8) | 2 (3.6) | 2 (3.6) |
Predictor | OR | 95% CI | p-Value |
---|---|---|---|
Age | 0.9 | 0.9–1.0 | 0.04 |
PSA | 0.4 | 0.9–1.1 | 0.4 |
PSAD | 0.9 | 0.5–1.6 | 0.8 |
Prostate Volume | 1.0 | 1.0–1.0 | 0.2 |
Anterior vs. Posterior | 1.9 | 0.8–4.1 | 0.1 |
Apex | 1 (Ref) | - | - |
Middle | 0.9 | 0.4–2.0 | 0.8 |
Base | 0.6 | 0.5–1.2 | 0.1 |
Positive DRE | 0.8 | 0.4–1.8 | 0.7 |
PI-RADS 3 vs. >3 | 0.9 | 0.4–2.2 | 0.8 |
Maximum Lesion Diameter | 1.0 | 0.9–1.0 | 0.2 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
Predictor | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
Age | 1.1 | 0.9–1.1 | 0.3 | 1.1 | 0.9–1.3 | 0.2 |
PSA | 1.1 | 1.0–1.2 | 0.02 | 1.2 | 1.1–1.4 | 0.01 |
PSAD | 0.9 | 0.2–3.0 | 0.9 | |||
Prostate Volume | 1.0 | 0.9–1.0 | 0.7 | 0.9 | 0.9–1.1 | 0.5 |
Anterior vs. Posterior | 1.6 | 0.3–7.5 | 0.5 | 1.7 | 0.3–9.8 | 0.5 |
Apex | 1 | - | 0.8 (Ref) | 1 | - | 0.2 (Ref) |
Middle | 0.9 | 0.1–14 | 0.80 | 2.7 | 0.2–31.2 | 0.4 |
Base | 0.6 | 0.1–7.5 | 0.50 | 7.8 | 0.6–9.4 | 0.1 |
Positive DRE | 0.3 | 0.1–2.3 | 0.2 | 0.2 | 0.02–2.0 | 0.2 |
PI-RADS (3 vs. >3) | 0.7 | 0.1–3.8 | 0.7 | 0.9 | 0.8–1.1 | 0.8 |
Maximum lesion diameter | 1 | 0.9–1.1 | 0.9 | 0.9 | 0.8–1.1 | 0.8 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
Predictor | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
Age | 1.0 | 0.9–1.0 | 0.2 | 1.0 | 1.0–1.1 | 0.02 |
PSA | 1.0 | 1.0–1.1 | 0.01 | 1.2 | 0.9–1.2 | 0.1 |
PSAD | 1.1 | 0.7–1.8 | 0.6 | |||
Prostate Volume | 0.9 | 0.8–0.9 | <0.01 | 0.9 | 0.9–0.9 | 0.5 |
Anterior vs. Posterior | 0.7 | 0.4–1.2 | 0.2 | 0.5 | 0.2–0.9 | 0.5 |
Apex | 1 | - | 0.3 (Ref) | 1 | - | 0.3 (Ref) |
Middle | 1.0 | 0.5–1.7 | 1 | 1.3 | 0.6–2.7 | 0.5 |
Base | 0.6 | 0.3–1.2 | 0.2 | 0.7 | 0.3–1.7 | 0.4 |
Positive DRE | 0.3 | 0.1–2.3 | 0.2 | 2.0 | 1.1–3.8 | 0.03 |
PI-RADS (3 vs. >3) | 5.0 | 2.2–11.1 | <0.01 | 4.5 | 1.7–12.1 | <0.01 |
Max. Lesion Diameter | 1.1 | 1.1–1.2 | <0.01 | 1.1 | 1.1–1.2 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carletti, F.; Reitano, G.; Toffoletto, E.M.; Tumminello, A.; Tonet, E.; Basso, G.; Bruniera, M.; Cacco, A.; Rebaudengo, E.; Saggionetto, G.; et al. Detection Rates of Prostate Cancer Across Prostatic Zones Using Freehand Single-Access Transperineal Fusion Biopsies. Cancers 2025, 17, 2206. https://doi.org/10.3390/cancers17132206
Carletti F, Reitano G, Toffoletto EM, Tumminello A, Tonet E, Basso G, Bruniera M, Cacco A, Rebaudengo E, Saggionetto G, et al. Detection Rates of Prostate Cancer Across Prostatic Zones Using Freehand Single-Access Transperineal Fusion Biopsies. Cancers. 2025; 17(13):2206. https://doi.org/10.3390/cancers17132206
Chicago/Turabian StyleCarletti, Filippo, Giuseppe Reitano, Eleonora Martina Toffoletto, Arianna Tumminello, Elisa Tonet, Giovanni Basso, Martina Bruniera, Anna Cacco, Elena Rebaudengo, Giorgio Saggionetto, and et al. 2025. "Detection Rates of Prostate Cancer Across Prostatic Zones Using Freehand Single-Access Transperineal Fusion Biopsies" Cancers 17, no. 13: 2206. https://doi.org/10.3390/cancers17132206
APA StyleCarletti, F., Reitano, G., Toffoletto, E. M., Tumminello, A., Tonet, E., Basso, G., Bruniera, M., Cacco, A., Rebaudengo, E., Saggionetto, G., Betto, G., Novara, G., Dal Moro, F., & Zattoni, F. (2025). Detection Rates of Prostate Cancer Across Prostatic Zones Using Freehand Single-Access Transperineal Fusion Biopsies. Cancers, 17(13), 2206. https://doi.org/10.3390/cancers17132206