Immunosuppressant Drug Specific Risk of Malignancy After Organ Transplantation: A Population-Based Analysis of Texas Medicare Beneficiaries
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Selection
2.2. Data Curation
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Morren, J.; Li, Y. Maintenance immunosuppression in myasthenia gravis, an update. J. Neurol. Sci. 2020, 410, 116648. [Google Scholar] [CrossRef] [PubMed]
- Page, A.; Fusil, F.; Cosset, F.-L. Antigen-specific tolerance approach for rheumatoid arthritis: Past, present and future. Jt. Bone Spine 2021, 88, 105164. [Google Scholar] [CrossRef]
- Durcan, L.; O’Dwyer, T.; Petri, M. Management strategies and future directions for systemic lupus erythematosus in adults. Lancet 2019, 393, 2332–2343. [Google Scholar] [CrossRef]
- Tian, H.; Kong, D.; Li, Y.; Gu, C.; Yu, Z.; Wang, Z.; Wu, D.; Yin, J. Successful treatment of acquired amegakaryocytic thrombocytopenia with eltrombopag and immunosuppressant. Platelets 2022, 33, 951–953. [Google Scholar] [CrossRef] [PubMed]
- Gordon, P.A.; Winer, J.B.; Hoogendijk, J.E.; Choy, E.H. Immunosuppressant and immunomodulatory treatment for dermatomyositis and polymyositis. Cochrane Database Syst. Rev. 2012, 2016, CD003643. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, S.; Johnson, C.P.; Bresnahan, B.A.; Taranto, S.E.; McIntosh, M.J.; Stablein, D. Improved Graft Survival after Renal Transplantation in the United States, 1988 to 1996. N. Engl. J. Med. 2000, 342, 605–612. [Google Scholar] [CrossRef]
- Wolfe, R.A.; Ashby, V.B.; Milford, E.L.; Ojo, A.O.; Ettenger, R.E.; Agodoa, L.Y.C.; Held, P.J.; Port, F.K. Comparison of Mortality in All Patients on Dialysis, Patients on Dialysis Awaiting Transplantation, and Recipients of a First Cadaveric Transplant. N. Engl. J. Med. 1999, 341, 1725–1730. [Google Scholar] [CrossRef]
- Cameron, J.I.; Whiteside, C.; Katz, J.; Devins, G.M. Differences in quality of life across renal replacement therapies: A meta-analytic comparison. Am. J. Kidney Dis. 2000, 35, 629–637. [Google Scholar] [CrossRef]
- Zeier, M.; Hartschuh, W.; Wiesel, M.; Lehnert, T.; Ritz, E. Malignancy after renal transplantation. Am. J. Kidney Dis. 2002, 39, e5.1–e5.12. [Google Scholar] [CrossRef]
- Brunner, F.P.; Landais, P.; Selwood, N.H. Malignancies after renal transplantation: The EDTA-ERA registry experience. Nephrol. Dial. Transplant. 1995, 10, 74–80. [Google Scholar] [CrossRef]
- Lutz, J.; Heemann, U. Tumours after kidney transplantation. Curr. Opin. Urol. 2003, 13, 105–109. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Stallone, G.; Infante, B.; Grandaliano, G.; Schena, F.P.; Gesualdo, L. Kaposi’s sarcoma and mTOR: A crossroad between viral infection neoangiogenesis and immunosuppression. Transpl. Int. 2008, 21, 825–832. [Google Scholar] [CrossRef]
- Andrés, A. Cancer incidence after immunosuppressive treatment following kidney transplantation. Crit. Rev. Oncol. Hematol. 2005, 56, 71–85. [Google Scholar] [CrossRef]
- Saowapa, S.; Polpichai, N.; Siladech, P.; Wannaphut, C.; Tanariyakul, M.; Wattanachayakul, P.; Lalitnithi, P. Evaluating Kaposi Sarcoma in Kidney Transplant Patients: A Systematic Review and Meta-Analysis. Cureus 2024, 16, e52527. [Google Scholar] [CrossRef]
- Andreoni, M.; Goletti, D.; Pezzotti, P.; Pozzetto, A.; Monini, P.; Sarmati, L.; Farchi, F.; Tisone, G.; Piazza, A.; Pisani, F.; et al. Prevalence, Incidence and Correlates of HHV-8/KSHV Infection and Kaposi’s Sarcoma in Renal and Liver Transplant Recipients. J. Infect. 2001, 43, 195–199. [Google Scholar] [CrossRef]
- Bishop, B.N.; Lynch, D.T. Kaposi Sarcoma. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Doycheva, I.; Amer, S.; Watt, K.D. De Novo Malignancies After Transplantation. Med. Clin. N. Am. 2016, 100, 551–567. [Google Scholar] [CrossRef] [PubMed]
- Krisl, J.C.; Doan, V.P. Chemotherapy and Transplantation: The Role of Immunosuppression in Malignancy and a Review of Antineoplastic Agents in Solid Organ Transplant Recipients. Am. J. Transplant. 2017, 17, 1974–1991. [Google Scholar] [CrossRef]
- Cicalese, L.; Westra, J.R.; O’Connor, C.M.; Kuo, Y.-F. Increased Risk of Malignancy with Immunosuppression: A Population-Based Analysis of Texas Medicare Beneficiaries. Cancers 2023, 15, 3144. [Google Scholar] [CrossRef]
- Kandiel, A. Increased risk of lymphoma among inflammatory bowel disease patients treated with azathioprine and 6-mercaptopurine. Gut 2005, 54, 1121–1125. [Google Scholar] [CrossRef]
- Peyrin–Biroulet, L.; Khosrotehrani, K.; Carrat, F.; Bouvier, A.; Chevaux, J.; Simon, T.; Carbonnel, F.; Colombel, J.; Dupas, J.; Godeberge, P.; et al. Increased Risk for Nonmelanoma Skin Cancers in Patients Who Receive Thiopurines for Inflammatory Bowel Disease. Gastroenterology 2011, 141, 1621–1628.e5. [Google Scholar] [CrossRef] [PubMed]
- Beaugerie, L.; Brousse, N.; Bouvier, A.M.; Colombel, J.F.; Lémann, M.; Cosnes, J.; Hébuterne, X.; Cortot, A.; Bouhnik, Y.; Gendre, J.P.; et al. Lymphoproliferative disorders in patients receiving thiopurines for inflammatory bowel disease: A prospective observational cohort study. Lancet 2009, 374, 1617–1625. [Google Scholar] [CrossRef]
- Inose, R.; Hashimoto, N.; Hosomi, K.; Yokoyama, S.; Takada, M. Association between malignancy and methotrexate and biological disease-modifying antirheumatic drugs in patients with rheumatoid arthritis. Int. J. Clin. Pharmacol. Ther. 2020, 58, 131–138. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B.; Sardell, R.; Thrift, A.P.; Kanwal, F.; Miller, P. Texas Has the Highest Hepatocellular Carcinoma Incidence Rates in the USA. Dig. Dis. Sci. 2021, 66, 912–916. [Google Scholar] [CrossRef]
- Cicalese, L.; Curcuru, G.; Montalbano, M.; Shirafkan, A.; Georgiadis, J.; Rastellini, C. Hazardous air pollutants and primary liver cancer in Texas. PLoS ONE 2017, 12, e0185610. [Google Scholar] [CrossRef] [PubMed]
- Cicalese, L.; Raun, L.; Shirafkan, A.; Campos, L.; Zorzi, D.; Montalbano, M.; Rhoads, C.; Gazis, V.; Ensor, K.; Rastellini, C. An Ecological Study of the Association between Air Pollution and Hepatocellular Carcinoma Incidence in Texas. Liver Cancer 2017, 6, 287–296. [Google Scholar] [CrossRef]
- Williams, S.B.; Shan, Y.; Jazzar, U.; Kerr, P.S.; Okereke, I.; Klimberg, V.S.; Tyler, D.S.; Putluri, N.; Lopez, D.S.; Prochaska, J.D.; et al. Proximity to Oil Refineries and Risk of Cancer: A Population-Based Analysis. JNCI Cancer Spectr. 2020, 4, pkaa088. [Google Scholar] [CrossRef]
- Guillemin, A.; Rousseau, B.; Neuzillet, C.; Joly, C.; Boussion, H.; Grimbert, P.; Compagnon, P.; Duvoux, C.; Tournigand, C. Cancers solides après transplantation d’organe: Épidémiologie, pronostic et spécificités de prise en charge. Bull Cancer 2017, 104, 245–257. [Google Scholar] [CrossRef]
- Agraharkar, M.L.; Cinclair, R.D.; Kuo, Y.-F.; Daller, J.A.; Shahinian, V.B. Risk of malignancy with long-term immunosuppression in renal transplant recipients. Kidney Int. 2004, 66, 383–389. [Google Scholar] [CrossRef]
- Tessari, G.; Naldi, L.; Boschiero, L.; Minetti, E.; Sandrini, S.; Nacchia, F.; Valerio, F.; Rugiu, C.; Sassi, F.; Gotti, E.; et al. Incidence of Primary and Second Cancers in Renal Transplant Recipients: A Multicenter Cohort Study. Am. J. Transplant. 2013, 13, 214–221. [Google Scholar] [CrossRef]
- Danpanich, E.; Kasiske, B.L. RISK FACTORS FOR CANCER IN RENAL TRANSPLANT RECIPIENTS1. Transplantation 1999, 68, 1859–1864. [Google Scholar] [CrossRef] [PubMed]
- Kasiske, B.L.; Snyder, J.J.; Gilbertson, D.T.; Wang, C. Cancer after Kidney Transplantation in the United States. Am. J. Transplant. 2004, 4, 905–913. [Google Scholar] [CrossRef]
- Jung, S.W.; Lee, H.; Cha, J.M. Risk of malignancy in kidney transplant recipients: A nationwide population-based cohort study. BMC Nephrol. 2022, 23, 160. [Google Scholar] [CrossRef]
- Fung, J.J. TACROLIMUS AND TRANSPLANTATION. Transplantation 2004, 77, S41–S43. [Google Scholar] [CrossRef] [PubMed]
- Plosker, G.L.; Foster, R.H. Tacrolimus. Drugs 2000, 59, 323–389. [Google Scholar] [CrossRef]
- The, U.S. Multicenter FK506 Liver Study Group. A Comparison of Tacrolimus (FK 506) and Cyclosporine for Immunosuppression in Liver Transplantation. N. Engl. J. Med. 1994, 331, 1110–1115. [Google Scholar] [CrossRef]
- Hojo, M.; Morimoto, T.; Maluccio, M.; Asano, T.; Morimoto, K.; Lagman, M.; Shimbo, T.; Suthanthiran, M. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999, 397, 530–534. [Google Scholar] [CrossRef]
- Niederberger, W.; Lemaire, M.; Maurer, G.; Nussbaumer, K.; Wagner, O. Distribution and binding of cyclosporine in blood and tissues. Transplant. Proc. 1983, 15, 2419–2421. [Google Scholar]
- Maurer, G. Metabolism of cyclosporine. Transplant. Proc. 1985, 17, 19–26. [Google Scholar] [PubMed]
- Wagner, O.; Schreier, E.; Heitz, F.; Maurer, G. Tissue distribution, disposition, and metabolism of cyclosporine in rats. Drug Metab. Dispos. 1987, 15, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, K.; Boland, J.; Britton, K.; Biggs, J. Blood and tissue distribution of cyclosporin in humans and mice. Transplant. Proc. 1983, 15, 2430–2433. [Google Scholar]
- Ried, M.; Gibbons, S.; Kwok, D.; Van Buren, C.; Flechner, S.; Kahan, B. Cyclosporine levels in human tissues of patients treated for one week to one year. Transplant. Proc. 1983, 15, 2434–2437. [Google Scholar]
- Han, S.S.; Kim, D.H.; Lee, S.M.; Han, N.Y.; Oh, J.M.; Ha, J.; Kim, Y.S. Pharmacokinetics of tacrolimus according to body composition in recipients of kidney transplants. Kidney Res. Clin. Pr. 2012, 31, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Marfo, K.; Altshuler, J.; Lu, A. Tacrolimus Pharmacokinetic and Pharmacogenomic Differences between Adults and Pediatric Solid Organ Transplant Recipients. Pharmaceutics 2010, 2, 291–299. [Google Scholar] [CrossRef]
- Wijnen, R.M.; Ericzon, B.G.; Tiebosch, A.T.; Beysens, A.J.; Groth, C.G.; Kootstra, G. Toxicity of FK 506 in the cynomolgus monkey: Noncorrelation with FK 506 serum levels. Transplant. Proc. 1991, 23, 3101–3104. [Google Scholar] [PubMed]
- Hussaini, S.A.; Waziri, B.; Dickens, C.; Duarte, R. Pharmacogenetics of Calcineurin inhibitors in kidney transplant recipients: The African gap. A Narrat. review. Pharmacogenomics 2024, 25, 329–341. [Google Scholar] [CrossRef]
- Hesselink, D. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther. 2003, 74, 245–254. [Google Scholar] [CrossRef]
- Naito, M.; Oh-hara, T.; Yamazaki, A.; Danki, T.; Tsuruo, T. Reversal of multidrug resistance by an immunosuppressive agent FK-506. Cancer Chemother. Pharmacol. 1992, 29, 195–200. [Google Scholar] [CrossRef]
- Wang, N.; He, T.; Shen, Y.; Song, L.; Li, L.; Yang, X.; Li, X.; Pang, M.; Su, W.; Liu, X.; et al. Paclitaxel and Tacrolimus Coencapsulated Polymeric Micelles That Enhance the Therapeutic Effect of Drug-Resistant Ovarian Cancer. ACS Appl. Mater. Interfaces 2016, 8, 4368–4377. [Google Scholar] [CrossRef]
- Diep, C.H.; Daniel, A.R.; Mauro, L.J.; Knutson, T.P.; Lange, C.A. Progesterone action in breast, uterine, and ovarian cancers. J. Mol. Endocrinol. 2015, 54, R31–R53. [Google Scholar] [CrossRef]
- Nowak, I.; Shaw, L.M. Mycophenolic acid binding to human serum albumin: Characterization and relation to pharmacodynamics. Clin. Chem. 1995, 41, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Allison, A.C.; Eugui, E.M. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 2000, 47, 85–118. [Google Scholar] [CrossRef] [PubMed]
- Birkeland, S.A. STEROID-FREE IMMUNOSUPPRESSION AFTER KIDNEY TRANSPLANTATION WITH ANTITHYMOCYTE GLOBULIN INDUCTION AND CYCLOSPORINE AND MYCOPHENOLATE MOFETIL MAINTENANCE THERAPY. Transplantation 1998, 66, 1207–1210. [Google Scholar] [CrossRef] [PubMed]
- Leckel, K.; Beecken, W.-D.; Jonas, D.; Oppermann, E.; Coman, M.C.; Beck, K.-F.; Cinatl, J.; Hailer, N.P.; Auth, M.K.H.; Bechstein, W.O.; et al. The immunosuppressive drug mycophenolate mofetil impairs the adhesion capacity of gastrointestinal tumour cells. Clin. Exp. Immunol. 2003, 134, 238–245. [Google Scholar] [CrossRef]
- Koehl, G.E.; Wagner, F.; Stoeltzing, O.; Lang, S.A.; Steinbauer, M.; Schlitt, H.J.; Geissler, E.K. Mycophenolate Mofetil Inhibits Tumor Growth and Angiogenesis In Vitro but Has Variable Antitumor Effects In Vivo, Possibly Related to Bioavailability. Transplantation 2007, 83, 607–614. [Google Scholar] [CrossRef]
- Tressler, R.J.; Garvin, L.J.; Slate, D.L. Anti-tumor activity of mycophenolate mofetil against human and mouse tumorsin vivo. Int. J. Cancer 1994, 57, 568–573. [Google Scholar] [CrossRef]
- Majd, N.; Sumita, K.; Yoshino, H.; Chen, D.; Terakawa, J.; Daikoku, T.; Kofuji, S.; Curry, R.; Wise-Draper, T.M.; Warnick, R.E.; et al. A Review of the Potential Utility of Mycophenolate Mofetil as a Cancer Therapeutic. J. Cancer Res. 2014, 2014, 423401. [Google Scholar] [CrossRef]
- Benjanuwattra, J.; Chaiyawat, P.; Pruksakorn, D.; Koonrungsesomboon, N. Therapeutic potential and molecular mechanisms of mycophenolic acid as an anticancer agent. Eur. J. Pharmacol. 2020, 887, 173580. [Google Scholar] [CrossRef]
- Takebe, N.; Cheng, X.; Wu, S.; Bauer, K.; Goloubeva, O.G.; Fenton, R.G.; Heyman, M.; Rapoport, A.P.; Badros, A.; Shaughnessy, J.; et al. Phase I Clinical Trial of the Inosine Monophosphate Dehydrogenase Inhibitor Mycophenolate Mofetil (Cellcept) in Advanced Multiple Myeloma Patients. Clin. Cancer Res. 2004, 10, 8301–8308. [Google Scholar] [CrossRef]
- Rodríguez-Pascual, J.; Sha, P.; García-García, E.; Rajeshkumar, N.V.; De Vicente, E.; Quijano, Y.; Cubillo, A.; Angulo, B.; Hernando, O.; Hidalgo, M. A preclinical and clinical study of mycophenolate mofetil in pancreatic cancer. Investig. New Drugs 2013, 31, 14–19. [Google Scholar] [CrossRef]
- Koonrungsesomboon, N.; Ngamphaiboon, N.; Townamchai, N.; Teeyakasem, P.; Charoentum, C.; Charoenkwan, P.; Natesirinilkul, R.; Sathitsamitphong, L.; Ativitavas, T.; Chaiyawat, P.; et al. Phase II, multi-center, open-label, single-arm clinical trial evaluating the efficacy and safety of Mycophenolate Mofetil in patients with high-grade locally advanced or metastatic osteosarcoma (ESMMO): Rationale and design of the ESMMO trial. BMC Cancer 2020, 20, 268. [Google Scholar] [CrossRef] [PubMed]
- Barraclough, K.A.; Lee, K.J.; Staatz, C.E. Pharmacogenetic Influences on Mycophenolate Therapy. Pharmacogenomics 2010, 11, 369–390. [Google Scholar] [CrossRef] [PubMed]
- Romano-Aguilar, M.; Reséndiz-Galván, J.E.; Medellín-Garibay, S.E.; Milán-Segovia, R.d.C.; Martínez-Martínez, M.U.; Abud-Mendoza, C.; Romano-Moreno, S. Population pharmacokinetics of mycophenolic acid in Mexican patients with lupus nephritis. Lupus 2020, 29, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, S.N. Rapamune® (RAPA, rapamycin, sirolimus): Mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin. Biochem. 1998, 31, 335–340. [Google Scholar] [CrossRef]
- Eng, C.P.; Sehgal, S.N.; Vezina, C. Activity of rapamycin (AY-22,989) against transplanted tumors. J. Antibiot. 1984, 37, 1231–1237. [Google Scholar] [CrossRef]
- Molnar-Kimber, K.L.; Rhoad, A.; Warner, L. Evidence that the anti-tumor and immunosuppressive effects of rapamycin are mediated via similar mechanisms. In Proceedings of the Cold Spring Harbor Meeting on Cell Cycle, Cold Spring Harbor, NY, USA, 18–22 May 1994; p. 141. [Google Scholar]
- Faivre, S.; Kroemer, G.; Raymond, E. Current development of mTOR inhibitors as anticancer agents. Nat. Rev. Drug Discov. 2006, 5, 671–688. [Google Scholar] [CrossRef]
- Hua, H.; Kong, Q.; Zhang, H.; Wang, J.; Luo, T.; Jiang, Y. Targeting mTOR for cancer therapy. J. Hematol. Oncol. 2019, 12, 71. [Google Scholar] [CrossRef]
- Tian, T.; Li, X.; Zhang, J. mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. Int. J. Mol. Sci. 2019, 20, 755. [Google Scholar] [CrossRef]
- Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 2020, 10, 31. [Google Scholar] [CrossRef]
- Paquette, M.; El-Houjeiri, L.; Pause, A. mTOR Pathways in Cancer and Autophagy. Cancers 2018, 10, 18. [Google Scholar] [CrossRef]
- Pópulo, H.; Lopes, J.M.; Soares, P. The mTOR Signalling Pathway in Human Cancer. Int. J. Mol. Sci. 2012, 13, 1886–1918. [Google Scholar] [CrossRef] [PubMed]
- Napoli, K.L.; Wang, M.-E.; Stepkowski, S.M.; Kahan, B.D. Relative Tissue Distributions of Cyclosporine and Sirolimus After Concomitant Peroral Administration to the Rat: Evidence for Pharmacokinetic Interactions. Ther. Drug Monit. 1998, 20, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Napoli, K.L.; Wang, M.-E.; Stepkowski, S.M.; Kahan, B.D. Distribution of sirolimus in rat tissue. Clin. Biochem. 1997, 30, 135–142. [Google Scholar] [CrossRef]
- Lee, K.-W.; Kim, S.H.; Yoon, K.C.; Lee, J.-M.; Cho, J.-H.; Hong, S.K.; Yi, N.-J.; Han, S.-S.; Park, S.-J.; Suh, K.-S. Sirolimus Prolongs Survival after Living Donor Liver Transplantation for Hepatocellular Carcinoma Beyond Milan Criteria: A Prospective, Randomised, Open-Label, Multicentre Phase 2 Trial. J. Clin. Med. 2020, 9, 3264. [Google Scholar] [CrossRef] [PubMed]
- Euvrard, S.; Morelon, E.; Rostaing, L.; Goffin, E.; Brocard, A.; Tromme, I.; Broeders, N.; del Marmol, V.; Chatelet, V.; Dompmartin, A.; et al. Sirolimus and Secondary Skin-Cancer Prevention in Kidney Transplantation. N. Engl. J. Med. 2012, 367, 329–339. [Google Scholar] [CrossRef]
- Karia, P.S.; Azzi, J.R.; Heher, E.C.; Hills, V.M.; Schmults, C.D. Association of Sirolimus Use with Risk for Skin Cancer in a Mixed-Organ Cohort of Solid-Organ Transplant Recipients with a History of Cancer. JAMA Dermatol. 2016, 152, 533. [Google Scholar] [CrossRef]
All | Tacrolimus | Sirolimus | Cyclosporine | Mycophenolate | Other | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
All | 7721 | 100% | 5963 | 77% | 181 | 2% | 399 | 5% | 5909 | 77% | 388 | 5% |
Transplant year | ||||||||||||
2008 | 646 | 8.4% | 423 | 7.1% | 73 | 40.3% | 83 | 20.8% | 453 | 7.7% | 51 | 13.1% |
2009 | 652 | 8.4% | 456 | 7.6% | 46 | 25.4% | 58 | 14.5% | 497 | 8.4% | 36 | 9.3% |
2010 | 627 | 8.1% | 461 | 7.7% | 30 | 16.6% | 58 | 14.5% | 467 | 7.9% | 42 | 10.8% |
2011 | 635 | 8.2% | 485 | 8.1% | 13 | 7.2% | 46 | 11.5% | 457 | 7.7% | 27 | 7.0% |
2012 | 649 | 8.4% | 513 | 8.6% | 6 | 3.3% | 31 | 7.8% | 485 | 8.2% | 27 | 7.0% |
2013 | 661 | 8.6% | 476 | 8.0% | 4 | 2.2% | 49 | 12.3% | 486 | 8.2% | 48 | 12.4% |
2014 | 734 | 9.5% | 580 | 9.7% | 1 | 0.6% | 27 | 6.8% | 561 | 9.5% | 37 | 9.5% |
2015 | 734 | 9.5% | 586 | 9.8% | 1 | 0.6% | 15 | 3.8% | 560 | 9.5% | 34 | 8.8% |
2016 | 742 | 9.6% | 656 | 11.0% | 1 | 0.6% | 12 | 3.0% | 639 | 10.8% | 29 | 7.5% |
2017 | 736 | 9.5% | 633 | 10.6% | 3 | 1.7% | 8 | 2.0% | 617 | 10.4% | 29 | 7.5% |
2018 | 905 | 11.7% | 694 | 11.6% | 3 | 1.7% | 12 | 3.0% | 687 | 11.6% | 28 | 7.2% |
Sex | ||||||||||||
Male | 4228 | 54.8% | 3378 | 56.6% | 110 | 60.8% | 244 | 61.2% | 3341 | 56.5% | 216 | 55.7% |
Female | 3493 | 45.2% | 2585 | 43.4% | 71 | 39.2% | 155 | 38.8% | 2568 | 43.5% | 172 | 44.3% |
Age | ||||||||||||
Mean, SD | 51.3 | 15.7 | 50.0 | 14.8 | 49.4 | 13.3 | 51.3 | 15.1 | 49.6 | 14.9 | 50.2 | 20.9 |
<40 | 1809 | 23.4% | 1502 | 25.2% | 37 | 20.4% | 86 | 21.6% | 1507 | 25.5% | 97 | 25.0% |
40–49 | 1461 | 18.9% | 1208 | 20.3% | 49 | 27.1% | 87 | 21.8% | 1235 | 20.9% | 49 | 12.6% |
50–59 | 1783 | 23.1% | 1461 | 24.5% | 47 | 26.0% | 89 | 22.3% | 1445 | 24.5% | 75 | 19.3% |
60–69 | 1827 | 23.7% | 1361 | 22.8% | 41 | 22.7% | 94 | 23.6% | 1310 | 22.2% | 113 | 29.1% |
70–79 | 759 | 9.8% | 419 | 7.0% | 7 | 3.9% | 43 | 10.8% | 400 | 6.8% | 49 | 12.6% |
80+ | 82 | 1.1% | 12 | 0.2% | 0 | 0.0% | 0 | 0.0% | 12 | 0.2% | 5 | 1.3% |
Beneficiary Race Code | ||||||||||||
White | 3620 | 46.9% | 2652 | 44.5% | 76 | 42.0% | 178 | 44.6% | 2599 | 44.0% | 232 | 59.8% |
Black | 1451 | 18.8% | 1176 | 19.7% | 31 | 17.1% | 93 | 23.3% | 1160 | 19.6% | 65 | 16.8% |
Other | 1297 | 16.8% | 1010 | 16.9% | 10 | 5.5% | 45 | 11.3% | 1010 | 17.1% | 55 | 14.2% |
Hispanic | 1353 | 17.5% | 1125 | 18.9% | 64 | 35.4% | 83 | 20.8% | 1140 | 19.3% | 36 | 9.3% |
Original Reason for Entitlement Code | ||||||||||||
Old Age | 6897 | 89.3% | 5538 | 92.9% | 171 | 94.5% | 347 | 87.0% | 5537 | 93.7% | 316 | 81.4% |
Disability/ESRD | 824 | 10.7% | 425 | 7.1% | 10 | 5.5% | 52 | 13.0% | 372 | 6.3% | 72 | 18.6% |
Dual Eligibility | ||||||||||||
No | 3709 | 48.0% | 2766 | 46.4% | 82 | 45.3% | 195 | 48.9% | 2697 | 45.6% | 189 | 48.7% |
Yes | 4012 | 52.0% | 3197 | 53.6% | 99 | 54.7% | 204 | 51.1% | 3212 | 54.4% | 199 | 51.3% |
Elixhauser Count | ||||||||||||
Mean, SD | 7.4 | 4.0 | 7.5 | 3.9 | 8.8 | 3.0 | 8.5 | 3.4 | 7.6 | 3.9 | 7.2 | 3.8 |
0–2 | 1037 | 13.4% | 723 | 12.1% | 5 | 2.8% | 14 | 3.5% | 710 | 12.0% | 40 | 10.3% |
3–5 | 1059 | 13.7% | 756 | 12.7% | 16 | 8.8% | 42 | 10.5% | 714 | 12.1% | 79 | 20.4% |
6–7 | 1582 | 20.5% | 1277 | 21.4% | 38 | 21.0% | 96 | 24.1% | 1258 | 21.3% | 92 | 23.7% |
8–9 | 1779 | 23.0% | 1442 | 24.2% | 51 | 28.2% | 116 | 29.1% | 1461 | 24.7% | 67 | 17.3% |
10+ | 2264 | 29.3% | 1765 | 29.6% | 71 | 39.2% | 131 | 32.8% | 1766 | 29.9% | 110 | 28.4% |
Comorbidities | ||||||||||||
AIDS/HIV | 69 | 0.9% | 58 | 1.0% | 3 | 1.7% | 1 | 0.3% | 56 | 0.9% | 1 | 0.3% |
Alcohol Abuse | 235 | 3.0% | 170 | 2.9% | 10 | 5.5% | 22 | 5.5% | 167 | 2.8% | 11 | 2.8% |
Blood Loss Anemia | 660 | 8.5% | 526 | 8.8% | 15 | 8.3% | 40 | 10.0% | 534 | 9.0% | 24 | 6.2% |
Cardiac Arrhythmia | 2537 | 32.9% | 1889 | 31.7% | 65 | 35.9% | 180 | 45.1% | 1851 | 31.3% | 163 | 42.0% |
Chronic Pulmonary Disease | 1805 | 23.4% | 1298 | 21.8% | 44 | 24.3% | 127 | 31.8% | 1234 | 20.9% | 174 | 44.8% |
Coagulopathy | 1597 | 20.7% | 1239 | 20.8% | 34 | 18.8% | 104 | 26.1% | 1168 | 19.8% | 85 | 21.9% |
Congestive Heart Failure | 2107 | 27.3% | 1609 | 27.0% | 49 | 27.1% | 161 | 40.4% | 1617 | 27.4% | 103 | 26.5% |
Deficiency Anemia | 5253 | 68.0% | 4379 | 73.4% | 153 | 84.5% | 283 | 70.9% | 4397 | 74.4% | 207 | 53.4% |
Depression | 1326 | 17.2% | 936 | 15.7% | 25 | 13.8% | 79 | 19.8% | 889 | 15.0% | 97 | 25.0% |
Diabetes Complicated | 3338 | 43.2% | 2611 | 43.8% | 98 | 54.1% | 166 | 41.6% | 2605 | 44.1% | 139 | 35.8% |
Diabetes Uncomplicated | 3051 | 39.5% | 2507 | 42.0% | 101 | 55.8% | 131 | 32.8% | 2509 | 42.5% | 104 | 26.8% |
Drug Abuse | 156 | 2.0% | 107 | 1.8% | 7 | 3.9% | 11 | 2.8% | 107 | 1.8% | 26 | 6.7% |
Fluid and Electrolyte Disorders | 5092 | 66.0% | 4059 | 68.1% | 145 | 80.1% | 312 | 78.2% | 4063 | 68.8% | 251 | 64.7% |
Hypertension complicated | 5816 | 75.3% | 4518 | 75.8% | 161 | 89.0% | 328 | 82.2% | 4493 | 76.0% | 270 | 69.6% |
Hypertension Uncomplicated | 5712 | 74.0% | 4703 | 78.9% | 167 | 92.3% | 328 | 82.2% | 4769 | 80.7% | 204 | 52.6% |
Hypothyroidism | 1559 | 20.2% | 1145 | 19.2% | 43 | 23.8% | 102 | 25.6% | 1167 | 19.7% | 89 | 22.9% |
Liver Disease | 1731 | 22.4% | 1368 | 22.9% | 63 | 34.8% | 113 | 28.3% | 1343 | 22.7% | 100 | 25.8% |
Obesity | 1508 | 19.5% | 1193 | 20.0% | 16 | 8.8% | 59 | 14.8% | 1172 | 19.8% | 63 | 16.2% |
Other Neurological Disorders | 1020 | 13.2% | 702 | 11.8% | 33 | 18.2% | 81 | 20.3% | 731 | 12.4% | 67 | 17.3% |
Paralysis | 155 | 2.0% | 80 | 1.3% | 5 | 2.8% | 8 | 2.0% | 79 | 1.3% | 12 | 3.1% |
Peptic Ulcer Disease excluding bleeding | 229 | 3.0% | 175 | 2.9% | 10 | 5.5% | 17 | 4.3% | 178 | 3.0% | 18 | 4.6% |
Peripheral Vascular Disorders | 2173 | 28.1% | 1681 | 28.2% | 54 | 29.8% | 111 | 27.8% | 1672 | 28.3% | 86 | 22.2% |
Psychoses | 261 | 3.4% | 172 | 2.9% | 13 | 7.2% | 16 | 4.0% | 163 | 2.8% | 14 | 3.6% |
Pulmonary Circulation Disorders | 802 | 10.4% | 583 | 9.8% | 9 | 5.0% | 72 | 18.0% | 562 | 9.5% | 92 | 23.7% |
Renal Failure | 5905 | 76.5% | 4889 | 82.0% | 174 | 96.1% | 338 | 84.7% | 4947 | 83.7% | 228 | 58.8% |
Rheumatoid Arthritis/collagen | 794 | 10.3% | 566 | 9.5% | 16 | 8.8% | 48 | 12.0% | 576 | 9.7% | 56 | 14.4% |
Valvular Disease | 1851 | 24.0% | 1369 | 23.0% | 46 | 25.4% | 143 | 35.8% | 1345 | 22.8% | 107 | 27.6% |
Viral Hepatitis | 900 | 11.7% | 740 | 12.4% | 16 | 8.8% | 60 | 15.0% | 744 | 12.6% | 35 | 9.0% |
Weight Loss | 1051 | 13.6% | 765 | 12.8% | 41 | 22.7% | 75 | 18.8% | 775 | 13.1% | 68 | 17.5% |
Any Indication for IMD Use | 6815 | 88.3% | 5551 | 93.1% | 176 | 97.2% | 326 | 81.7% | 5578 | 94.4% | 289 | 74.5% |
ESRD | 6574 | 85.1% | 5464 | 91.6% | 174 | 96.1% | 314 | 78.7% | 5505 | 93.2% | 236 | 60.8% |
Secondary Indication | 1032 | 13.4% | 734 | 12.3% | 21 | 11.6% | 61 | 15.3% | 738 | 12.5% | 79 | 20.4% |
Cancer Diagnosis | ||||||||||||
Diagnosis to match TCR | 2261 | 29.3% | 1704 | 28.6% | 53 | 29.3% | 145 | 36.3% | 1623 | 27.5% | 139 | 35.8% |
Malignant Neoplasm | 1885 | 24.4% | 1366 | 22.9% | 43 | 23.8% | 126 | 31.6% | 1282 | 21.7% | 124 | 32.0% |
In Situ, Uncertain, or Unspecified Behavior | 1176 | 15.2% | 946 | 15.9% | 24 | 13.3% | 48 | 12.0% | 932 | 15.8% | 65 | 16.8% |
Died in Follow-up | 290 | 3.8% | 108 | 1.8% | 10 | 5.5% | 16 | 4.0% | 89 | 1.5% | 8 | 2.1% |
Other Drugs Used | ||||||||||||
Antibacterial | 6938 | 89.9% | 5520 | 92.6% | 164 | 90.6% | 362 | 90.7% | 5447 | 92.2% | 353 | 91.0% |
Antiviral | 6411 | 83.0% | 5430 | 91.1% | 104 | 57.5% | 306 | 76.7% | 5391 | 91.2% | 316 | 81.4% |
Antifungal | 3809 | 49.3% | 2984 | 50.0% | 133 | 73.5% | 200 | 50.1% | 2974 | 50.3% | 280 | 72.2% |
Electrolyte | 458 | 5.9% | 327 | 5.5% | 15 | 8.3% | 28 | 7.0% | 298 | 5.0% | 29 | 7.5% |
Metformin | 899 | 11.6% | 683 | 11.5% | 16 | 8.8% | 31 | 7.8% | 677 | 11.5% | 43 | 11.1% |
IMD Type | Baseline | 1 Year | 3 Years | 5 Years | ||||
---|---|---|---|---|---|---|---|---|
Tacrolimus | 5963 | 77.2% | 5441 | 77.3% | 3555 | 70.6% | 1539 | 58.6% |
Sirolimus | 181 | 2.3% | 296 | 4.2% | 234 | 4.6% | 135 | 5.1% |
Cyclosporine | 399 | 5.2% | 406 | 5.8% | 266 | 5.3% | 145 | 5.5% |
Mycophenolate | 5909 | 76.5% | 5120 | 72.8% | 3205 | 63.6% | 1348 | 51.3% |
Other | 388 | 5.0% | 629 | 8.9% | 399 | 7.9% | 168 | 6.4% |
Any combination | 5575 | 72.2% | 5121 | 72.8% | 3236 | 64.2% | 1379 | 52.5% |
Tacrolimus and mycophenolate | 5218 | 67.6% | 4743 | 67.4% | 2925 | 58.1% | 1213 | 46.2% |
Total | 7721 | 100% | 7035 | 100% | 5037 | 100% | 2628 | 100% |
Unadjusted HR (95% CI) | Demographics Adjusted HR (95% CI) | Comorbidity Adjusted HR (95% CI) | Medication Adjusted HR (95% CI) | ||
---|---|---|---|---|---|
IMD Type | Cyclosporine | 1.19 (0.95, 1.48) | 1.40 (1.11, 1.77) | 1.50 (1.19, 1.91) | 1.51 (1.19, 1.92) |
Mycophenolate * | 0.66 (0.58, 0.75) | 0.73 (0.63, 0.84) | 0.76 (0.65, 0.87) | 0.77 (0.67, 0.89) | |
Other | 0.93 (0.76, 1.13) | 0.90 (0.74, 1.10) | 0.90 (0.73, 1.11) | 0.91 (0.74, 1.12) | |
Sirolimus | 0.68 (0.49, 0.95) | 0.90 (0.64, 1.27) | 0.95 (0.67, 1.35) | 1.05 (0.74, 1.49) | |
Tacrolimus * | 1.13 (0.98, 1.30) | 1.39 (1.18, 1.63) | 1.47 (1.23, 1.76) | 1.49 (1.25, 1.78) | |
Sex | Female | Ref | Ref | Ref | |
Male | 0.97 (0.88, 1.06) | 1.02 (0.92, 1.13) | 1.06 (0.95, 1.18) | ||
Age | <40 | Ref | Ref | Ref | |
40–49 | 1.06 (0.89, 1.27) | 1.01 (0.85, 1.21) | 1.01 (0.84, 1.21) | ||
50–59 | 1.30 (1.10, 1.53) | 1.22 (1.03, 1.44) | 1.23 (1.04, 1.46) | ||
60–69 | 2.24 (1.93, 2.61) | 2.10 (1.80, 2.45) | 2.13 (1.82, 2.49) | ||
70–79 | 3.44 (2.82, 4.20) | 3.26 (2.67, 3.98) | 3.30 (2.70, 4.04) | ||
80+ | 2.36 (1.54, 3.60) | 2.24 (1.47, 3.44) | 2.31 (1.51, 3.52) | ||
Race | White | Ref | Ref | Ref | |
Black | 0.81 (0.70, 0.93) | 0.82 (0.71, 0.94) | 0.87 (0.76, 1.01) | ||
Other | 1.41 (1.24, 1.61) | 1.13 (0.96, 1.34) | 1.11 (0.94, 1.31) | ||
Hispanic | 0.83 (0.71, 0.96) | 0.84 (0.72, 0.98) | 0.88 (0.75, 1.03) | ||
Original Entitlement | Old Age | Ref | Ref | Ref | |
Disability/ESRD | 0.81 (0.68, 0.96) | 0.79 (0.66, 0.94) | 0.78 (0.65, 0.94) | ||
Medicaid Eligible | No | Ref | Ref | Ref | |
Yes | 0.80 (0.72, 0.88) | 0.79 (0.72, 0.88) | 0.79 (0.71, 0.87) | ||
Elixhauser Comorbidity Count | 0–2 | Ref | Ref | ||
3–5 | 0.63 (0.51, 0.78) | 0.64 (0.51, 0.79) | |||
6–7 | 0.63 (0.52, 0.77) | 0.62 (0.50, 0.76) | |||
8–9 | 0.67 (0.55, 0.82) | 0.66 (0.54, 0.81) | |||
10+ | 0.68 (0.57, 0.82) | 0.64 (0.53, 0.78) | |||
ESRD | 0.86 (0.73, 1.02) | 0.87 (0.73, 1.03) | |||
Secondary IMD Indication | 0.99 (0.85, 1.14) | 0.93 (0.80, 1.07) | |||
Viral Hepatitis | 1.28 (1.11, 1.48) | 1.30 (1.13, 1.51) | |||
Medications | Anti-bacterial | 1.32 (1.20, 1.45) | |||
Anti-viral | 1.79 (1.56, 2.06) | ||||
Anti-fungal | 1.17 (1.00, 1.37) | ||||
Electrolytes | 1.01 (0.73, 1.38) | ||||
Metformin | 1.51 (1.18, 1.94) |
IMD Type | White | Black | Hispanic | Other |
---|---|---|---|---|
Cyclosporine | 2.10 (1.52, 2.92) | 1.00 (0.54, 1.86) | 0.91 (0.48, 1.73) | 1.27 (0.62, 2.63) |
Mycophenolate | 0.90 (0.72, 1.13) | 1.35 (0.92, 1.99) | 0.40 (0.30, 0.52) | 0.77 (0.52, 1.12) |
Other IMD | 1.11 (0.85, 1.44) | 0.97 (0.52, 1.82) | 0.25 (0.10, 0.60) | 0.15 (0.02, 1.09) |
Sirolimus | 1.59 (1.00, 2.52) | 1.25 (0.50, 3.14) | 0.42 (0.08, 2.27) | 0.67 (0.31, 1.44) |
Tacrolimus | 2.28 (1.76, 2.96) | 1.00 (0.65, 1.53) | 0.84 (0.63, 1.14) | 1.25 (0.69, 2.28) |
Cancer Type | Parameter | Medication Adjusted HR (95% CI) |
---|---|---|
Breast | Cyclosporine | 0.83 (0.25, 2.77) |
Mycophenolate | 1.59 (0.70, 3.63) | |
Other | 1.26 (0.38, 4.22) | |
Sirolimus | 1.08 (0.25, 4.63) | |
Tacrolimus | 0.60 (0.27, 1.31) | |
Colorectal | Cyclosporine | 1.89 (0.53, 6.82) |
Mycophenolate | 1.49 (0.47, 4.66) | |
Other | 1.10 (0.23, 5.21) | |
Sirolimus | 0.00 (0.00, 0.00) | |
Tacrolimus | 0.79 (0.26, 2.42) | |
Kidney | Cyclosporine | 0.30 (0.07, 1.31) |
Mycophenolate | 1.53 (0.81, 2.89) | |
Other | 0.25 (0.03, 1.85) | |
Sirolimus | 0.87 (0.20, 3.84) | |
Tacrolimus | 0.66 (0.35, 1.22) | |
Liver | Cyclosporine | 2.67 (0.66, 10.86) |
Mycophenolate | 0.68 (0.38, 1.22) | |
Other | 0.13 (0.02, 1.00) | |
Sirolimus | 1.94 (0.39, 9.63) | |
Tacrolimus | 5.25 (2.03, 13.61) | |
Lung | Cyclosporine | 5.06 (1.47, 17.41) |
Mycophenolate | 0.99 (0.38, 2.63) | |
Other | 2.46 (0.90, 6.71) | |
Sirolimus | 0.00 (0.00, 0.00) | |
Tacrolimus | 1.49 (0.51, 4.35) | |
Lymphoma | Cyclosporine | 0.27 (0.06, 1.16) |
Mycophenolate | 0.65 (0.38, 1.11) | |
Other | 0.95 (0.36, 2.53) | |
Sirolimus | 2.80 (1.00, 7.81) | |
Tacrolimus | 0.60 (0.34, 1.05) | |
Ovarian/Uterine | Cyclosporine | 0.63 (0.06, 6.25) |
Mycophenolate | 0.78 (0.16, 3.82) | |
Other | 0.00 (0.00, 0.00) | |
Sirolimus | 0.00 (0.00, 0.00) | |
Tacrolimus | 0.25 (0.07, 0.84) | |
Prostate | Cyclosporine | 1.57 (0.34, 7.40) |
Mycophenolate | 0.92 (0.37, 2.25) | |
Other | 0.30 (0.04, 2.16) | |
Sirolimus | 0.00 (0.00, 0.00) | |
Tacrolimus | 1.86 (0.55, 6.24) | |
Skin | Cyclosporine | 2.61 (0.99, 6.87) |
Mycophenolate | 1.26 (0.58, 2.73) | |
Other | 0.83 (0.28, 2.47) | |
Sirolimus | 2.94 (0.90, 9.61) | |
Tacrolimus | 1.70 (0.78, 3.71) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicalese, L.; Westra, J.R.; Walton, Z.C.; Kuo, Y.-F. Immunosuppressant Drug Specific Risk of Malignancy After Organ Transplantation: A Population-Based Analysis of Texas Medicare Beneficiaries. Cancers 2025, 17, 2161. https://doi.org/10.3390/cancers17132161
Cicalese L, Westra JR, Walton ZC, Kuo Y-F. Immunosuppressant Drug Specific Risk of Malignancy After Organ Transplantation: A Population-Based Analysis of Texas Medicare Beneficiaries. Cancers. 2025; 17(13):2161. https://doi.org/10.3390/cancers17132161
Chicago/Turabian StyleCicalese, Luca, Jordan R. Westra, Zachary C. Walton, and Yong-Fang Kuo. 2025. "Immunosuppressant Drug Specific Risk of Malignancy After Organ Transplantation: A Population-Based Analysis of Texas Medicare Beneficiaries" Cancers 17, no. 13: 2161. https://doi.org/10.3390/cancers17132161
APA StyleCicalese, L., Westra, J. R., Walton, Z. C., & Kuo, Y.-F. (2025). Immunosuppressant Drug Specific Risk of Malignancy After Organ Transplantation: A Population-Based Analysis of Texas Medicare Beneficiaries. Cancers, 17(13), 2161. https://doi.org/10.3390/cancers17132161