Advancing Cholangiocarcinoma Diagnosis: The Role of Liquid Biopsy and CRISPR/Cas Systems in Biomarker Detection
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Overview
3.2. Cholangiocarcinoma: Disease Characteristics and Challenges
3.3. Classification and Working Mechanisms of CRISPR/Cas Systems
3.4. Advancements in Liquid Biopsy Technologies for Early Diagnosis of Cholangiocarcinoma
3.5. The Role of MicroRNAs and Extracellular Vesicles in Cholangiocarcinoma Diagnosis
3.5.1. MicroRNAs
3.5.2. Extracellular Vesicles
3.6. Role of CRISPR/Cas Systems in Cancer Diagnostics
3.7. Challenges and Future Directions of the CRISPR/Cas-Guided CCA Diagnosis
4. CRISPR/Cas9-RACE for miRNA-Based Detection of Distal Cholangiocarcinoma: A Diagnostic Protocol
4.1. Objectives
4.2. Methods
4.2.1. Study Population
- (1)
- dCCA group: Patients with histologically confirmed dCCA or diagnosis based on imaging and clinical data when biopsy is not feasible;
- (2)
- PDAC group: Patients with pancreatic ductal adenocarcinoma, matched to dCCA cases by age, sex, and, when possible, disease stage;
- (3)
- Benign Biliary group: Patients with non-malignant causes of distal bile duct obstruction (e.g., stones, primary sclerosing cholangitis, autoimmune cholangiopathy, chronic pancreatitis);
- (4)
- Healthy Controls: Age- and sex-matched individuals without cancer or significant liver/biliary disease, used to define baseline biomarker levels.
4.2.2. Sample Processing and EV Isolation
4.2.3. miRNA Detection with RACE
- Mix isolated miRNA with padlock (designed specifically for miRNA-16 and miRNA-877) and high-fidelity DNA ligase in ligation buffer;
- Incubate the mixture at 37 °C for 30 min to ensure complete circularization;
- Add phi29 polymerase, dNTPs, and RCA buffer to the ligated mixture;
- Incubate at 37 °C for 60 min to generate long, single-stranded DNA with repeated miRNA-complementary sequences;
- Heat-inactivate phi29 polymerase at 65 °C for 10 min.
- Prepare Cas9/sgRNA complexes: incubate purified Cas9 protein with guide RNA (sgRNA) targeting PAM sequences within RCA products at 25 °C for 10 min;
- Mix Cas9/sgRNA complexes with RCA products and a TaqMan-style fluorescent reporter probe (FAM/BHQ1 labeled);
- Incubate at 37 °C for 30 min at dark conditions; Cas9 cleavage separates fluorophore from quencher, resulting in fluorescence emission;
- Measure fluorescence intensity using a fluorescence spectrophotometer;
- Generate calibration curves with known synthetic miRNA standards to quantify miRNA levels accurately.
4.2.4. Validation with RT-qPCR
4.2.5. Statistical Analysis
4.2.6. Expected Outcomes and Implications
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CCA | Cholangiocarcinoma |
LB | Liquid Biopsy |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
Cas | CRISPR-associated Protein |
EV | Extracellular Vesicle |
miRNA | MicroRNA |
ncRNA | Non-Coding RNA |
iCCA | Intrahepatic Cholangiocarcinoma |
eCCA | Extrahepatic Cholangiocarcinoma |
pCCA | Perihilar Cholangiocarcinoma |
dCCA | Distal Cholangiocarcinoma |
BTC | Biliary Tract Cancer |
PDAC | Pancreatic Ductal Adenocarcinoma |
PSC | Primary Sclerosing Cholangitis |
CEA | Carcinoembryonic Antigen |
CA 19-9 | Carbohydrate Antigen 19-9 |
CA 125 | Carbohydrate Antigen 125 |
MMR | Mismatch Repair |
TNF-α | Tumor Necrosis Factor Alpha |
IL-6 | Interleukin-6 |
COX-2 | Cyclooxygenase-2 |
CTC | Circulating Tumor Cell |
cfDNA | Cell-Free DNA |
ctDNA | Circulating Tumor DNA |
ctRNA | Circulating Tumor RNA |
Ago2 | Argonaute 2 |
PAM | Protospacer Adjacent Motif |
SpCas9 | Streptococcus pyogenes Cas9 |
AsCas12 | Acidaminococcus sp. Cas12 |
HDR | Homology-Directed Repair |
NHEJ | Non-Homologous End Joining |
gRNA or sgRNA | (Single guide) Guide RNA |
Pre-crRNA | Precursor CRISPR RNA |
crRNA | CRISPR RNA |
tracrRNA | Trans-activating CRISPR RNA |
DSB | Double-Strand Break |
RACE | Rolling Circle Amplification-assisted CRISPR/Cas9 Cleavage |
RCA | Rolling Circle Amplification |
SHERLOCK | Specific High Sensitivity Enzymatic Reporter UnLOCKing |
DETECTR | DNA Endonuclease-Targeted CRISPR Trans Reporter |
PCR | Polymerase Chain Reaction |
RT-qPCR | Reverse Transcription Quantitative Polymerase Chain Reaction |
ELISA | Enzyme-linked immunosorbent assay |
LAMP | Loop-Mediated Isothermal Amplification |
EXPAR | Exponential Amplification Reaction |
HCR | Hybridization Chain Reaction |
CHA | Catalyzed Hairpin Assembly |
References
- Rizvi, S.; Khan, S.A.; Hallemeier, C.L.; Kelley, R.K.; Gores, G.J. Cholangiocarcinoma-Evolving Concepts and Therapeutic Strategies. Nat. Rev. Clin. Oncol. 2018, 15, 95–111. [Google Scholar] [CrossRef]
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next Horizon in Mechanisms and Management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- Forner, A.; Vidili, G.; Rengo, M.; Bujanda, L.; Ponz-Sarvisé, M.; Lamarca, A. Clinical Presentation, Diagnosis and Staging of Cholangiocarcinoma. Liver Int. 2019, 39, 98–107. [Google Scholar] [CrossRef]
- Khan, S.A.; Tavolari, S.; Brandi, G. Cholangiocarcinoma: Epidemiology and Risk Factors. Liver Int. 2019, 39, 19–31. [Google Scholar] [CrossRef]
- Labib, P.L.; Goodchild, G.; Pereira, S.P. Molecular Pathogenesis of Cholangiocarcinoma. BMC Cancer 2019, 19, 185. [Google Scholar] [CrossRef]
- Bertuccio, P.; Malvezzi, M.; Carioli, G.; Hashim, D.; Boffetta, P.; El-Serag, H.B.; La Vecchia, C.; Negri, E. Global Trends in Mortality from Intrahepatic and Extrahepatic Cholangiocarcinoma. J. Hepatol. 2019, 71, 104–114. [Google Scholar] [CrossRef]
- Macias, R.I.R.; Banales, J.M.; Sangro, B.; Muntané, J.; Avila, M.A.; Lozano, E.; Perugorria, M.J.; Padillo, F.J.; Bujanda, L.; Marin, J.J.G. The Search for Novel Diagnostic and Prognostic Biomarkers in Cholangiocarcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 1468–1477. [Google Scholar] [CrossRef]
- Sun, C.; Zhu, J.; Wu, B.; Chen, J.; Zhu, Z.; Cai, P.; Guo, W.; Gu, Z.; Wang, J.; Huang, S. Diagnostic and Prognostic Value of MicroRNAs in Cholangiocarcinoma: A Systematic Review and Meta-Analysis. Cancer Manag. Res. 2018, 10, 2125–2139. [Google Scholar] [CrossRef]
- Rodrigues, P.M.; Vogel, A.; Arrese, M.; Balderramo, D.C.; Valle, J.W.; Banales, J.M. Next-Generation Biomarkers for Cholangiocarcinoma. Cancers 2021, 13, 3222. [Google Scholar] [CrossRef]
- Lapitz, A.; Azkargorta, M.; Milkiewicz, P.; Olaizola, P.; Zhuravleva, E.; Grimsrud, M.M.; Schramm, C.; Arbelaiz, A.; O’Rourke, C.J.; La Casta, A.; et al. Liquid Biopsy-Based Protein Biomarkers for Risk Prediction, Early Diagnosis, and Prognostication of Cholangiocarcinoma. J. Hepatol. 2023, 79, 93–108. [Google Scholar] [CrossRef]
- Uppada, V.; Gokara, M.; Rasineni, G.K. Diagnosis and Therapy with CRISPR Advanced CRISPR Based Tools for Point of Care Diagnostics and Early Therapies. Gene 2018, 656, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Rompianesi, G.; Martino, M.D.; Gordon-Weeks, A.; Montalti, R.; Troisi, R. Liquid Biopsy in Cholangiocarcinoma: Current Status and Future Perspectives. World J. Gastrointest. Oncol. 2021, 13, 332–350. [Google Scholar] [CrossRef] [PubMed]
- Weiskirchen, S.; Weiskirchen, R. Unraveling the Future: Hot Topics Shaping Molecular Diagnostics Today. Expert. Rev. Mol. Diagn. 2025, 25, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Pascale, A.; Rosmorduc, O.; Duclos-Vallée, J.C. New Epidemiologic Trends in Cholangiocarcinoma. Clin. Res. Hepatol. Gastroenterol. 2023, 47, 102223. [Google Scholar] [CrossRef]
- Putatunda, V.; Jusakul, A.; Roberts, L.; Wang, X.W. Genetic, Epigenetic, and Microenvironmental Drivers of Cholangiocarcinoma. Am. J. Pathol. 2025, 195, 362–377. [Google Scholar] [CrossRef]
- Izquierdo-Sanchez, L.; Lamarca, A.; La Casta, A.; Buettner, S.; Utpatel, K.; Klümpen, H.J.; Adeva, J.; Vogel, A.; Lleo, A.; Fabris, L.; et al. Cholangiocarcinoma Landscape in Europe: Diagnostic, Prognostic and Therapeutic Insights from the ENSCCA Registry. J. Hepatol. 2022, 76, 1109–1121. [Google Scholar] [CrossRef]
- Valle, J.W.; Borbath, I.; Khan, S.A.; Huguet, F.; Gruenberger, T.; Arnold, D.; On behalf of the ESMO Guidelines Committee. Biliary Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2016, 27, v28–v37. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, C. Single-Molecule Perspectives of CRISPR/Cas Systems: Target Search, Recognition, and Cleavage. BMB Rep. 2025, 58, 8–16. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef]
- Kuniyoshi, N.; Imazu, H.; Masuzaki, R.; Yamazaki, M.; Hamana, S.; Nomura, S.; Hayama, J.; Osawa, R.; Yamada, K.; Fujisawa, M.; et al. Diagnostic Utility of Quantitative Analysis of MicroRNA in Bile Samples Obtained during Endoscopic Retrograde Cholangiopancreatography for Malignant Biliary Strictures. PLoS ONE 2023, 18, e0289537. [Google Scholar] [CrossRef]
- Hu, J.H.; Miller, S.M.; Geurts, M.H.; Tang, W.; Chen, L.; Sun, N.; Zeina, C.M.; Gao, X.; Rees, H.A.; Lin, Z.; et al. Evolved Cas9 Variants with Broad PAM Compatibility and High DNA Specificity. Nature 2018, 556, 57–63. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Koblan, L.W.; Liu, D.R. Genome Editing with CRISPR–Cas Nucleases, Base Editors, Transposases and Prime Editors. Nat. Biotechnol. 2020, 38, 824–844. [Google Scholar] [CrossRef]
- Karvelis, T.; Bigelyte, G.; Young, J.K.; Hou, Z.; Zedaveinyte, R.; Budre, K.; Paulraj, S.; Djukanovic, V.; Gasior, S.; Silanskas, A.; et al. PAM Recognition by Miniature CRISPR-Cas12f Nucleases Triggers Programmable Double-Stranded DNA Target Cleavage. Nucleic Acids Res. 2020, 48, 5016–5023. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Wang, J.; Liu, G. CRISPR/Cas Systems towards Next-Generation Biosensing. Trends Biotechnol 2019, 37, 730–743. [Google Scholar] [CrossRef]
- Anders, C.; Niewoehner, O.; Duerst, A.; Jinek, M. Structural Basis of PAM-Dependent Target DNA Recognition by the Cas9 Endonuclease. Nature 2014, 513, 569–573. [Google Scholar] [CrossRef]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; Van Der Oost, J.; Regev, A.; et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef]
- Yan, W.X.; Chong, S.; Zhang, H.; Makarova, K.S.; Koonin, E.V.; Cheng, D.R.; Scott, D.A. Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Mol. Cell 2018, 70, 327–339.e5. [Google Scholar] [CrossRef]
- Shegekar, T.; Vodithala, S.; Juganavar, A. The Emerging Role of Liquid Biopsies in Revolutionising Cancer Diagnosis and Therapy. Cureus 2023, 15, e43650. [Google Scholar] [CrossRef]
- Ma, L.; Guo, H.; Zhao, Y.; Liu, Z.; Wang, C.; Bu, J.; Sun, T.; Wei, J. Liquid Biopsy in Cancer Current: Status, Challenges and Future Prospects. Signal Transduct. Target. Ther. 2024, 9, 336. [Google Scholar] [CrossRef]
- Arrichiello, G.; Nacca, V.; Paragliola, F.; Giunta, E.F. Liquid Biopsy in Biliary Tract Cancer from Blood and Bile Samples: Current Knowledge and Future Perspectives. Explor. Target. Antitumor. Ther. 2022, 3, 362–374. [Google Scholar] [CrossRef]
- Caramelo, A.; Polónia, A.; Vale, J.; Curado, M.; Campelos, S.; Nascimento, V.; Barros, M.; Ferreira, D.; Pereira, T.; Neves, B.; et al. Demonstrating the Interference of Tissue Processing in the Evaluation of Tissue Biomarkers: The Case of PD-L1. Pathol. Res. Pract. 2023, 248, 154605. [Google Scholar] [CrossRef] [PubMed]
- Connal, S.; Cameron, J.M.; Sala, A.; Brennan, P.M.; Palmer, D.S.; Palmer, J.D.; Perlow, H.; Baker, M.J. Liquid Biopsies: The Future of Cancer Early Detection. J. Transl. Med. 2023, 21, 118. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Zhang, S.; Lu, F.; Pan, W.; Li, N.; Tang, B. CRISPR/Cas-Based in Vitro Diagnostic Platforms for Cancer Biomarker Detection. Anal. Chem. 2021, 93, 11899–11909. [Google Scholar] [CrossRef]
- Bittla, P.; Kaur, S.; Sojitra, V.; Zahra, A.; Hutchinson, J.; Folawemi, O.; Khan, S. Exploring Circulating Tumor DNA (CtDNA) and Its Role in Early Detection of Cancer: A Systematic Review. Cureus 2023, 15, e45784. [Google Scholar] [CrossRef]
- Li, J.; Bao, H.; Huang, Z.; Liang, Z.; Lin, N.; Ni, C.; Xu, Y. Non-Coding RNA in Cholangiocarcinoma: An Update. Front. Biosci.-Landmark 2023, 28, 173. [Google Scholar] [CrossRef]
- Liu, X.; Papukashvili, D.; Wang, Z.; Liu, Y.; Chen, X.; Li, J.; Li, Z.; Hu, L.; Li, Z.; Rcheulishvili, N.; et al. Potential Utility of MiRNAs for Liquid Biopsy in Breast Cancer. Front. Oncol. 2022, 12, 940314. [Google Scholar] [CrossRef]
- Cardinali, B.; Tasso, R.; Piccioli, P.; Ciferri, M.C.; Quarto, R.; Del Mastro, L. Circulating MiRNAs in Breast Cancer Diagnosis and Prognosis. Cancers 2022, 14, 2317. [Google Scholar] [CrossRef]
- Aftab, M.; Poojary, S.S.; Seshan, V.; Kumar, S.; Agarwal, P.; Tandon, S.; Zutshi, V.; Das, B.C. Urine MiRNA Signature as a Potential Non-Invasive Diagnostic and Prognostic Biomarker in Cervical Cancer. Sci. Rep. 2021, 11, 10323. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.S.; Been Park, S.; Kim, C.; Kim, K.; Jung, D.E.; Song, S.Y. Identification of Circulating Serum MiRNAs as Novel Biomarkers in Pancreatic Cancer Using a Penalized Algorithm. Int. J. Mol. Sci. Artic. J. Mol. Sci. 2021, 22, 1007. [Google Scholar] [CrossRef]
- Salati, M.; Braconi, C. Non-Coding RNA in Cholangiocarcinoma; Thieme Medical Publishers: New York, NY, USA, 2019. [Google Scholar]
- Jalil, A.T.; Abdulhadi, M.A.; Al-Ameer, L.R.; Khaleel, L.A.; Abdulameer, S.J.; Hadi, A.M.; Merza, M.S.; Zabibah, R.S.; Ali, A. Small but Mighty: How MicroRNAs Drive the Deadly Progression of Cholangiocarcinoma. Pathol. Res. Pract. 2023, 247, 154565. [Google Scholar] [CrossRef]
- Selaru, F.M.; Olaru, A.V.; Kan, T.; David, S.; Cheng, Y.; Mori, Y.; Yang, J.; Paun, B.; Jin, Z.; Agarwal, R.; et al. MicroRNA-21 Is Overexpressed in Human Cholangiocarcinoma and Regulates Programmed Cell Death 4 and Tissue Inhibitor of Metalloproteinase 3. Hepatology 2009, 49, 1595–1601. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.N.; Song, D.J.; Tan, J.P.; Cao, Y.; Fan, J.; Wang, Z.; Zhou, J. A High-Accuracy Model Based on Plasma Mirnas Diagnoses Intrahepatic Cholangiocarcinoma: A Single Center with 1001 Samples. Diagnostics 2021, 11, 610. [Google Scholar] [CrossRef]
- Salem, P.E.S.; Ghazala, R.A.; El Gendi, A.M.; Emara, D.M.; Ahmed, N.M. The Association between Circulating MicroRNA-150 Level and Cholangiocarcinoma. J. Clin. Lab. Anal. 2020, 34, e23397. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, X.; Zhu, T.; Wei, Y.; Lei, Z.; Guo, M.; Yang, J. Identification of Cholangiocarcinoma Associated with Hepatolithiasis via the Combination of MiRNA and Ultrasound. Cancer Manag. Res. 2020, 12, 1845–1853. [Google Scholar] [CrossRef]
- Wang, L.-J.; Zhang, K.-L.; Zhang, N.; Ma, X.-W.; Yan, S.-W.; Cao, D.-H.; Shi, S.-J. Serum MiR-26a as a Diagnostic and Prognostic Biomarker in Cholangiocarcinoma. Oncotarget 2015, 6, 18631. [Google Scholar] [CrossRef]
- Voigtländer, T.; Gupta, S.K.; Thum, S.; Fendrich, J.; Manns, M.P.; Lankisch, T.O.; Thum, T. MicroRNAs in Serum and Bile of Patients with Primary Sclerosing Cholangitis and/or Cholangiocarcinoma. PLoS ONE 2015, 10, e0139305. [Google Scholar] [CrossRef]
- Loosen, S.H.; Lurje, G.; Wiltberger, G.; Vucur, M.; Koch, A.; Kather, J.N.; Paffenholz, P.; Tacke, F.; Ulmer, F.T.; Trautwein, C.; et al. Serum Levels of MiR-29, MiR-122, MiR-155 and MiR-192 Are Elevated in Patients with Cholangiocarcinoma. PLoS ONE 2019, 14, e0210944. [Google Scholar] [CrossRef]
- Meijer, L.L.; Puik, J.R.; Le Large, T.Y.S.; Heger, M.; Dijk, F.; Funel, N.; Wurdinger, T.; Garajová, I.; Van Grieken, N.C.T.; Van De Wiel, M.A.; et al. Unravelling the Diagnostic Dilemma: A Microrna Panel of Circulating MIR-16 and MIR-877 as a Diagnostic Classifier for Distal Bile Duct Tumors. Cancers 2019, 11, 1181. [Google Scholar] [CrossRef]
- Supradit, K.; Prasopdee, S.; Phanaksri, T.; Tangphatsornruang, S.; Pholhelm, M.; Yusuk, S.; Butthongkomvong, K.; Wongprasert, K.; Kulsantiwong, J.; Chukan, A.; et al. Differential Circulating MiRNA Profiles Identified MiR-423-5p, MiR-93-5p, and MiR-4532 as Potential Biomarkers for Cholangiocarcinoma Diagnosis. PeerJ 2024, 12, e18367. [Google Scholar] [CrossRef]
- Orzan, R.I.; Țigu, A.B.; Nechita, V.I.; Nistor, M.; Agoston, R.; Gonciar, D.; Pojoga, C.; Seicean, A. Circulating MiR-18a and MiR-532 Levels in Extrahepatic Cholangiocarcinoma. J. Clin. Med. 2024, 13, 6177. [Google Scholar] [CrossRef]
- Liu, D.S.K.; Puik, J.R.; Venø, M.T.; Mato Prado, M.; Rees, E.; Patel, B.Y.; Merali, N.; Galloway, D.; Chan, G.; Phillips, N.; et al. MicroRNAs as Bile-Based Biomarkers in Pancreaticobiliary Cancers (MIRABILE): A Cohort Study. Int. J. Surg. 2024, 110, 6518–6527. [Google Scholar] [CrossRef] [PubMed]
- Mato Prado, M.; Puik, J.R.; Castellano, L.; López-Jiménez, E.; Liu, D.S.K.; Meijer, L.L.; Le Large, T.Y.S.; Rees, E.; Funel, N.; Sivakumar, S.; et al. A Bile-Based MicroRNA Signature for Differentiating Malignant from Benign Pancreaticobiliary Disease. Exp. Hematol. Oncol. 2023, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Cabús, L.; Lagarde, J.; Curado, J.; Lizano, E.; Pérez-Boza, J. Current Challenges and Best Practices for Cell-Free Long RNA Biomarker Discovery. Biomark. Res. 2022, 10, 62. [Google Scholar] [CrossRef]
- Chen, C.; Demirkhanyan, L.; Gondi, C.S. The Multifaceted Role of MiR-21 in Pancreatic Cancers. Cells 2024, 13, 948. [Google Scholar] [CrossRef]
- Sayed, G.I.; Solyman, M.; El Gedawy, G.; Moemen, Y.S.; Aboul-Ella, H.; Hassanien, A.E. Circulating MiRNA’s Biomarkers for Early Detection of Hepatocellular Carcinoma in Egyptian Patients Based on Machine Learning Algorithms. Sci. Rep. 2024, 14, 4989. [Google Scholar] [CrossRef]
- Olivieri, F.; Prattichizzo, F.; Giuliani, A.; Matacchione, G.; Rippo, M.R.; Sabbatinelli, J.; Bonafè, M. MiR-21 and MiR-146a: The MicroRNAs of Inflammaging and Age-Related Diseases. Ageing Res. Rev. 2021, 70, 101374. [Google Scholar] [CrossRef]
- Shrivastav, D.; Singh, D.D. Emerging Roles of MicroRNAs as Diagnostics and Potential Therapeutic Interest in Type 2 Diabetes Mellitus. World J. Clin. Cases 2024, 12, 525–537. [Google Scholar] [CrossRef]
- Xue, X.Y.; Liu, Y.X.; Wang, C.; Gu, X.J.; Xue, Z.Q.; Zang, X.L.; Ma, X.D.; Deng, H.; Liu, R.; Pan, L.; et al. Identification of Exosomal MiRNAs as Diagnostic Biomarkers for Cholangiocarcinoma and Gallbladder Carcinoma. Signal Transduct. Target. Ther. 2020, 5, 77. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The Biology, Function, and Biomedical Applications of Exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef]
- Doyle, L.M.; Wang, M.Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef]
- Yu, W.; Hurley, J.; Roberts, D.; Chakrabortty, S.K.; Enderle, D.; Noerholm, M.; Breakefield, X.O.; Skog, J.K. Exosome-Based Liquid Biopsies in Cancer: Opportunities and Challenges. Ann. Oncol. 2021, 32, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ostowari, A.; Gonda, A.; Mashayekhi, K.; Dayyani, F.; Hughes, C.C.W.; Senthil, M. Exosomes as a Source of Biomarkers for Gastrointestinal Cancers. Cancers 2023, 15, 1263. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Shao, S.; Sun, H.; Zhu, H.; Fang, H. Bile-Derived Exosome Noncoding RNAs as Potential Diagnostic and Prognostic Biomarkers for Cholangiocarcinoma. Front. Oncol. 2022, 12, 985089. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Yukawa, H.; Hayashi, K.; Naitoh, I.; Miyabe, K.; Hori, Y.; Natsume, M.; Jinno, N.; Kato, A.; Kachi, K.; et al. Clinical Impact of Bile-Derived Exosomal MicroRNAs as Novel Diagnostic and Prognostic Biomarkers for Biliary Tract Cancers. Cancer Sci. 2023, 114, 295–305. [Google Scholar] [CrossRef]
- Han, J.Y.; Ahn, K.S.; Kim, Y.H.; Kim, T.S.; Baek, W.K.; Suh, S.I.; Kang, K.J. Circulating Micrornas as Biomarkers in Bile-Derived Exosomes of Cholangiocarcinoma. Ann. Surg. Treat. Res. 2021, 101, 140–150. [Google Scholar] [CrossRef]
- Shen, L.; Chen, G.; Xia, Q.; Shao, S.; Fang, H. Exosomal MiR-200 Family as Serum Biomarkers for Early Detection and Prognostic Prediction of Cholangiocarcinoma. Int. J. Clin. Exp. Pathol. 2019, 12, 3870. [Google Scholar]
- Han, Y.; Zhang, H.; Zhou, Z.; Liu, R.; Liu, D.; Bai, M.; Fan, Q.; Li, J.; Zhu, K.; Li, H.; et al. Serum Micrornas as Biomarkers for the Noninvasive Early Diagnosis of Biliary Tract Cancer. Int. J. Gen. Med. 2021, 14, 1185–1195. [Google Scholar] [CrossRef]
- Supradit, K.; Wongprasert, K.; Tangphatsornruang, S.; Yoocha, T.; Sonthirod, C.; Pootakham, W.; Thitapakorn, V.; Butthongkomvong, K.; Phanaksri, T.; Kunjantarachot, A.; et al. MicroRNA Profiling of Exosomes Derived from Plasma and Their Potential as Biomarkers for Opisthorchis Viverrini-Associated Cholangiocarcinoma. Acta Trop. 2024, 258, 107362. [Google Scholar] [CrossRef]
- Lau, C.-H.; Tin, C.; Suh, Y. CRISPR-Based Strategies for Targeted Transgene Knock-in and Gene Correction. Fac. Rev. 2020, 9. [Google Scholar] [CrossRef]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef]
- Song, R.; Chen, Z.; Xiao, H.; Wang, H. The CRISPR-Cas System in Molecular Diagnostics. Clinica Chimica Acta 2024, 561, 119820. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.K.; Roychowdhury, S.; Sahu, B.D.; Mishra, A.; Sethi, K.K. CRISPR-Based Point-of-Care Diagnostics Incorporating Cas9, Cas12, and Cas13 Enzymes Advanced for SARS-CoV-2 Detection. J. Biochem. Mol. Toxicol. 2022, 36, e23113. [Google Scholar] [CrossRef] [PubMed]
- Palaz, F.; Kalkan, A.K.; Can, Ö.; Demir, A.N.; Tozluyurt, A.; Özcan, A.; Ozsoz, M. CRISPR-Cas13 System as a Promising and Versatile Tool for Cancer Diagnosis, Therapy, and Research. ACS Synth. Biol. 2021, 10, 1245–1267. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, H.; Bu, S.; Li, X.; Zhou, H.; Zhang, W.; Wan, J. Ultrasensitive, Rapid, and Highly Specific Detection of MicroRNAs Based on PER-CRISPR/CAS. Bioorg Med. Chem. Lett. 2022, 74, 128949. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.F. Stem-Loop RT-QPCR for MiRNAs. Curr. Protoc. Mol. Biol. 2011, 95, 15.10.1–15.10.15. [Google Scholar] [CrossRef]
- Aman, R.; Mahas, A.; Mahfouz, M. Nucleic Acid Detection Using CRISPR/Cas Biosensing Technologies. ACS Synth. Biol. 2020, 9, 1226–1233. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Crispr Technology Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, L.; Tong, J.; Zhao, X.; Ren, J. CRISPR-Cas12a Enhanced Rolling Circle Amplification Method for Ultrasensitive MiRNA Detection. Microchem. J. 2020, 158, 105239. [Google Scholar] [CrossRef]
- Qiu, X.Y.; Zhu, L.Y.; Zhu, C.S.; Ma, J.X.; Hou, T.; Wu, X.M.; Xie, S.S.; Min, L.; Tan, D.A.; Zhang, D.Y.; et al. Highly Effective and Low-Cost MicroRNA Detection with CRISPR-Cas9. ACS Synth. Biol. 2018, 7, 807–813. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, X.; Chen, X.; Qiu, X.; Qing, G.; Zhang, H.; Zhang, L.; Hu, X.; He, Z.; Zhong, D.; et al. Rolling Circular Amplification (RCA)-Assisted CRISPR/Cas9 Cleavage (RACE) for Highly Specific Detection of Multiple Extracellular Vesicle MicroRNAs. Anal. Chem. 2020, 92, 2176–2185. [Google Scholar] [CrossRef]
- Yan, H.; Wen, Y.; Tian, Z.; Hart, N.; Han, S.; Hughes, S.J.; Zeng, Y. A One-Pot Isothermal Cas12-Based Assay for the Sensitive Detection of MicroRNAs. Nat. Biomed. Eng. 2023, 7, 1583–1601. [Google Scholar] [CrossRef] [PubMed]
- Lapitz, A.; Arbelaiz, A.; O’Rourke, C.J.; Lavin, J.L.; Casta, A.L.; Ibarra, C.; Jimeno, J.P.; Santos-Laso, A.; Izquierdo-Sanchez, L.; Krawczyk, M.; et al. Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis. Cells 2020, 9, 721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, X.; Peng, C.; Du, R.; Hong, X.; Xu, J.; Chen, J.; Li, X.; Tang, Y.; Li, Y.; et al. Machine Learning-Aided Identification of Fecal Extracellular Vesicle MicroRNA Signatures for Noninvasive Detection of Colorectal Cancer. ACS Nano 2025, 19, 10013–10025. [Google Scholar] [CrossRef] [PubMed]
- Talap, J.; AL-maskri, A.A.A.; Shen, M.; Liu, H.; Jiang, X.; Xiao, G.; Yu, L.; Zeng, S.; Jung, C.; Cai, S. Ultrasensitive Detection of Serum MiRNA Biomarkers Related to Papillary Thyroid Cancer Using Ligation-Initiated Phosphorothioated Primer-Based Loop-Mediated Isothermal Amplification. Sens. Actuators B Chem. 2023, 374, 132785. [Google Scholar] [CrossRef]
- Guo, H.; Chen, J.; Feng, Y.; Dai, Z. A Simple and Robust Exponential Amplification Reaction (EXPAR)-Based Hairpin Template (Exp-Hairpin) for Highly Specific, Sensitive, and Universal MicroRNA Detection. Anal. Chem. 2024, 96, 2643–2650. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, X.; Xiang, M.; Mao, Z.; Zhang, F. Artificial Nanochannels for Highly Selective Detection of MiRNA Based on the HCR Signal Amplification. Chem. Eng. J. 2024, 488, 150830. [Google Scholar] [CrossRef]
- Feng, X.; Yang, K.; Feng, Z.; Xie, Y.; Han, W.; Chen, Q.; Li, S.; Zhang, Y.; Yu, Y.; Zou, G. Selective and Sensitive Detection of MiRNA-198 Using Single Polymeric Microfiber Waveguide Platform with Heterogeneous CHA Amplification Strategy. Talanta 2022, 240, 123218. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, K.; Wang, Y. Highly Sensitive MiRNA-21 Detection with Enzyme-Free Cascade Amplification Biosensor. Talanta 2024, 273, 125928. [Google Scholar] [CrossRef]
- Fan, T.; Mao, Y.; Liu, F.; Zhang, W.; Lin, J.S.; Yin, J.; Tan, Y.; Huang, X.; Jiang, Y. Label-Free Fluorescence Detection of Circulating MicroRNAs Based on Duplex-Specific Nuclease-Assisted Target Recycling Coupled with Rolling Circle Amplification. Talanta 2019, 200, 480–486. [Google Scholar] [CrossRef]
- Chi, Z.; Wu, Y.; Chen, L.; Yang, H.; Khan, M.R.; Busquets, R.; Huang, N.; Lin, X.; Deng, R.; Yang, W.; et al. CRISPR-Cas14a-Integrated Strand Displacement Amplification for Rapid and Isothermal Detection of Cholangiocarcinoma Associated Circulating MicroRNAs. Anal. Chim. Acta 2022, 1205, 339763. [Google Scholar] [CrossRef]
- Zhou, M.; Li, C.; Wei, R.; Wang, H.; Jia, H.; Yan, C.; Huang, L. Exponential Amplification-Induced Activation of CRISPR/Cas9 for Sensitive Detection of Exosomal MiRNA. Anal. Chem. 2024, 96, 4322–4329. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pu, G.; Liu, T.; Chen, G.; Li, H.; Amuda, T.O.; Cao, S.; Yan, H.; Yin, H.; Fu, B.; et al. Parasite-Derived MicroRNA Let-7-5p Detection for Metacestodiasis Based on Rolling Circular Amplification-Assisted CRISPR/Cas9. FASEB J. 2024, 38, e23708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, H.; Wang, H.; Wang, F.; Li, Z. CRISPR/Cas12a-Assisted Ligation-Initiated Loop-Mediated Isothermal Amplification (CAL-LAMP) for Highly Specific Detection of MicroRNAs. Anal. Chem. 2021, 93, 7942–7948. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wang, L.; Qin, P.; Yin, B.C.; Ye, B.C. An RNA-Based Catalytic Hairpin Assembly Circuit Coupled with CRISPR-Cas12a for One-Step Detection of MicroRNAs. Biosens. Bioelectron. 2022, 207, 114152. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, R.; Zhang, Z.; Jiang, Y.; Miao, Y.; Zhou, S.; Ji, M.; Hsu, C.W.; Xu, H.; Li, Z.; et al. An Ultrasensitive One-Pot Cas13a-Based Microfluidic Assay for Rapid Multiplexed Detection of MicroRNAs. Biosens. Bioelectron. 2025, 274, 117212. [Google Scholar] [CrossRef]
- Sahel, D.K.; Giriprasad, G.; Jatyan, R.; Guha, S.; Korde, A.; Mittal, A.; Bhand, S.; Chitkara, D. Next-Generation CRISPR/Cas-Based Ultrasensitive Diagnostic Tools: Current Progress and Prospects. RSC Adv. 2024, 14, 32411–32435. [Google Scholar] [CrossRef]
- Uijterwijk, B.A.; Lemmers, D.H.; Ghidini, M.; Wilmink, H.; Zaniboni, A.; Salvia, R.; Kito Fusai, G.; Groot Koerkamp, B.; Koek, S.; Ghorbani, P.; et al. The Five Periampullary Cancers, Not Just Different Siblings but Different Families: An International Multicenter Cohort Study. Ann. Surg. Oncol. 2024, 31, 6157–6169. [Google Scholar] [CrossRef]
Detectable Location | miRNA | Levels in CCA | Comparison | AUC | SEN% | SPE% | Ref. |
---|---|---|---|---|---|---|---|
Tissue | miRNA-21 | Up | CCA (N = 18) vs. healthy controls (N = 12) | 0.995 | 95.00 | 100.00 | [42] |
Plasma | miRNA-21 | Up | Hepatolithiasis-CCA (N = 31) vs. hepatolithiasis (N = 40) | 0.610 | 96.77 | 30.00 | [45] |
miRNA-21 and miRNA-22 | Up | iCCA (N = 359) vs. control (N = 642) | 0.790 | 63.90 | 84.70 | [43] | |
miRNA-221 | Up | Hepatolithiasis-CCA (N = 31) vs. hepatolithiasis (N = 40) | 0.767 | 54.84 | 95.00 | [45] | |
miRNA-21, miRNA-221 a | Up | Hepatolithiasis-CCA (N = 31) vs. hepatolithiasis (N = 40) | 0.911 | 77.42 | 97.50 | [45] | |
miRNA-16 and miRNA-877 | Up | dCCA (N = 24) vs. benign (N = 20) | 0.900 | 79.00 | 90.00 | [49] | |
Up | dCCA (N = 24) vs. PDAC (N = 24) | 0.880 | 70.83 | 90.00 | [49] | ||
miRNA-423-5p, miRNA-93-5p, and miRNA-4532 | Up | CCA (N = 30) vs. healthy controls (N = 30) vs. Opisthorchis viverrini (N = 30) | - | 85.71 | 76.92 | [50] | |
Serum | miRNA-150-5p | Down | CCA (N = 35) vs. healthy controls (N = 35) | - | 91.43 | 80.00 | [44] |
miRNA-26a | Up | CCA (N = 66) vs. healthy controls (N = 66) | 0.899 | 84.80 | 81.80 | [46] | |
Down | CCA (N = 30) vs. PSC (N = 30) | 0.780 | 52.00 | 88.00 | [47] | ||
miRNA-122, miRNA-192, miRNA-29b, and miRNA-155 b | Up | CCA (N = 94) vs. healthy controls (N = 40) | - | 98.30 | 100.00 | [48] | |
miRNA-18a | Up | Extrahepatic CCA (N = 27) vs. healthy controls (N = 13) | 0.360 | 51.80 | 84.60 | [51] | |
miRNA-532 | Up | Extrahepatic CCA (N = 27) vs. healthy controls (N = 13) | 0.350 | 66.60 | 69.20 | [51] | |
Bile | miRNA-1275 | Up | BTC (n = 38) vs. control (n = 35) | 0.630 | 52.60 | 80.00 | [20] |
miRNA-340 and miRNA-182 | Up | Cholangiocarcinoma (N = 14) vs. benign disease (N = 37) | 0.790 | 64.60 | 82.10 | [52] | |
miRNA-125b-5p and miRNA-194-5p | Up | PDAC (N = 28) vs. CCA (6) | 0.815 | - | - | [53] | |
Bile EV miRNAs | miRNA-200c-3p | Up | CCA (N = 50) vs. biliary stone (N = 50) | 0.870 | 83.30 | 86.70 | [64] |
miRNA-451a and miRNA-3619-3p | Up | BTC (N = 45) vs. noncancer control samples (N = 43) | 0.819 | 73.50 | 88.20 | [65] | |
Serum EV miRNA | miRNA-200c-3p | Up | CCA (N = 36) vs. healthy controls (N = 12) | 0.930 | - | - | [67] |
Plasma EV miRNA | miRNA-194–5p | Down | CCA (N = 15) vs. healthy controls (N = 15) vs. Opisthorchis viverrini (N = 15) | - | - | - | [69] c |
miRNA-203a-3p, miRNA-192–5p, | Up | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidabraite, A.; Mosert, P.L.; Ahmed, U.; Jones, S.K.; Gulla, A. Advancing Cholangiocarcinoma Diagnosis: The Role of Liquid Biopsy and CRISPR/Cas Systems in Biomarker Detection. Cancers 2025, 17, 2155. https://doi.org/10.3390/cancers17132155
Sidabraite A, Mosert PL, Ahmed U, Jones SK, Gulla A. Advancing Cholangiocarcinoma Diagnosis: The Role of Liquid Biopsy and CRISPR/Cas Systems in Biomarker Detection. Cancers. 2025; 17(13):2155. https://doi.org/10.3390/cancers17132155
Chicago/Turabian StyleSidabraite, Agne, Paula Lucia Mosert, Uzair Ahmed, Stephen Knox Jones, and Aiste Gulla. 2025. "Advancing Cholangiocarcinoma Diagnosis: The Role of Liquid Biopsy and CRISPR/Cas Systems in Biomarker Detection" Cancers 17, no. 13: 2155. https://doi.org/10.3390/cancers17132155
APA StyleSidabraite, A., Mosert, P. L., Ahmed, U., Jones, S. K., & Gulla, A. (2025). Advancing Cholangiocarcinoma Diagnosis: The Role of Liquid Biopsy and CRISPR/Cas Systems in Biomarker Detection. Cancers, 17(13), 2155. https://doi.org/10.3390/cancers17132155