Impact of Long-Term Chemotherapy on Outcomes in Pancreatic Ductal Adenocarcinoma: A Real-World UK Multi-Centre Study
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Patient Selection
2.2. Statistical Considerations
3. Results
3.1. Clinical and Molecular Profile of PDAC Patient Population
3.2. Survival Outcomes of Patients with Unresectable or Metastatic Disease
3.3. Treatment Response and Survival Outcomes in the Localised Disease Cohort
3.4. Treatment Response and Survival Outcomes in the De Novo Metastatic Disease Cohort
3.5. Long-Term Chemotherapy Promotes Instances of Exceptional Responses and Prolongation of OS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amrutkar, M.; Gladhaug, I.P. Pancreatic Cancer Chemoresistance to Gemcitabine. Cancers 2017, 9, 157. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-J.; Li, H.-X.; Gan, Y.; Fang, C.; Yang, X.-L.; Li, B.; Su, S. Efficacy and safety of first-line chemotherapies for patients with advanced pancreatic ductal adenocarcinoma: A systematic review and network meta-analysis. Heliyon 2024, 10, e27679. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.M.A.; Di Molfetta, D.; Greco, M.R.; Koltai, T.; Alfarouk, K.O.; Reshkin, S.J.; Cardone, R.A. Tumor Microenvironment Features and Chemoresistance in Pancreatic Ductal Adenocarcinoma: Insights into Targeting Physicochemical Barriers and Metabolism as Therapeutic Approaches. Cancers 2021, 13, 6135. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Recommendations|Pancreatic Cancer in Adults: Diagnosis and Management|Guidance|NICE. Available online: https://www.nice.org.uk/guidance/ng85/chapter/Recommendations#managing-unresectable-pancreatic-cancer (accessed on 15 February 2025).
- Conroy, T.; Pfeiffer, P.; Vilgrain, V.; Lamarca, A.; Seufferlein, T.; O’Reilly, E.M.; Hackert, T.; Golan, T.; Prager, G.; Haustermans, K.; et al. Pancreatic cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up☆. Ann. Oncol. 2023, 34, 987–1002. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, U.; Carrier, E.; Khan, K. Neoadjuvant management of locally advanced pancreatic ductal adenocarcinoma—Heading towards a promising change in treatment paradigm. Cancer Treat. Rev. 2024, 127, 102750. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.H.; Beane, J.D.; Gazivoda, V.P.; Grandhi, M.S.; Greenbaum, A.A.; Kennedy, T.J.; Langan, R.C.; August, D.A.; Alexander, H.R.; Pitt, H.A. Neoadjuvant Therapy for Pancreatic Cancer: Increased Use and Improved Optimal Outcomes. J. Am. Coll. Surg. 2022, 234, 436. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.B.; Rocha, F.G.; Alseidi, A.; Biehl, T.; Moonka, R.; Ryan, J.A.; Lin, B.; Picozzi, V.; Helton, S. Extended Neoadjuvant Chemotherapy for Borderline Resectable Pancreatic Cancer Demonstrates Promising Postoperative Outcomes and Survival. Ann. Surg. Oncol. 2014, 21, 1530–1537. [Google Scholar] [CrossRef] [PubMed]
- Truty, M.J.; Kendrick, M.L.; Nagorney, D.M.; Smoot, R.L.; Cleary, S.P.; Graham, R.P.; Goenka, A.H.; Hallemeier, C.L.; Haddock, M.G.; Harmsen, W.S.; et al. Factors Predicting Response, Perioperative Outcomes, and Survival Following Total Neoadjuvant Therapy for Borderline/Locally Advanced Pancreatic Cancer. Ann. Surg. 2021, 273, 341. [Google Scholar] [CrossRef]
- Targeted Therapy for Pancreatic Cancer. Pancreat Cancer Action Netw n.d. Available online: https://pancan.org/facing-pancreatic-cancer/treatment/treatment-types/targeted-therapy/ (accessed on 15 February 2025).
- Cowzer, D.; Zameer, M.; Conroy, M.; Kolch, W.; Duffy, A.G. Targeting KRAS in Pancreatic Cancer. J. Pers. Med. 2022, 12, 1870. [Google Scholar] [CrossRef] [PubMed]
- Biankin, A.V.; Waddell, N.; Kassahn, K.S.; Gingras, M.-C.; Muthuswamy, L.B.; Johns, A.L.; Miller, D.K.; Wilson, P.J.; Patch, A.-M.; Wu, J.; et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012, 491, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Trieu, V.N.; Qazi, S.; Fein, S.H.; Maida, A.E.; Joh, T. Meta-analysis comparing the incidence of serious adverse events, overall survival, and progression-free survival in patients with pancreatic adenocarcinoma harboring unresectable tumors treated with modified FOLFIRINOX or FOLFIRINOX regimen. J. Clin. Oncol. 2024, 42, e16318. [Google Scholar] [CrossRef]
- Yoshida, K.; Iwashita, T.; Uemura, S.; Maruta, A.; Okuno, M.; Ando, N.; Iwata, K.; Kawaguchi, J.; Mukai, T.; Shimizu, M. A multicenter prospective phase II study of first-line modified FOLFIRINOX for unresectable advanced pancreatic cancer. Oncotarget 2017, 8, 111346–111355. [Google Scholar] [CrossRef] [PubMed]
- Gotfrit, J.; Marginean, H.; Ko, Y.-J.; Ghafoor, A.; Kavan, P.; Chalchal, H.; Ahmed, S.; Mulder, K.; Tang, P.; Goodwin, R. Administration of FOLFIRINOX for Advanced Pancreatic Cancer: Physician Practice Patterns During Early Use. Curr. Oncol. 2025, 32, 128. [Google Scholar] [CrossRef] [PubMed]
Total Number of Subjects | ||
---|---|---|
N | % | |
Age at commencing first-line chemotherapy following PDAC diagnosis (years) | ||
Median | 65 | |
Range | 33–85 | |
Interquartile range | 60–73 | |
Gender | ||
Male | 63 | 47 |
Female | 72 | 53 |
Smoking status | ||
Non-smoker | 73 | 54 |
Current smoker | 13 | 10 |
Former smoker | 38 | 28 |
Unknown | 11 | 8 |
ECOG performance status | ||
ECOG 0 | 39 | 29 |
ECOG 0–1 | 2 | 1 |
ECOG 1 | 42 | 31 |
ECOG 1–2 | 6 | 4 |
ECOG 2 | 7 | 5 |
Unknown | 39 | 29 |
Stage at initial diagnosis | ||
Resectable PDAC | 14 | 10 |
Borderline resectable PDAC | 14 | 10 |
Locally advanced PDAC | 22 | 16 |
Localised disease followed by distant metastases * | 22 | 16 |
De novo metastatic disease | 63 | 47 |
Anatomic site of disease for de novo metastatic patients | ||
Lung | 18 | 29 |
Liver | 44 | 70 |
Brain | 1 | 2 |
Bone | 3 | 5 |
Lymph node | 12 | 19 |
Peritoneum | 6 | 10 |
Other ** | 14 | 22 |
Prior surgical treatment *** | ||
Resectable PDAC | 14 | 10 |
Borderline resectable PDAC | 2 | 1 |
Locally advanced PDAC | 1 | 1 |
Localised disease followed by distant metastases | 11 | 8 |
De novo metastatic disease | 2 | 1 |
Pre-existing co-morbidities prior to PDAC diagnosis | ||
Type 2 diabetes mellitus | 23 | 17 |
Chronic pancreatitis | 3 | 2 |
Abnormal body weight | ||
Overweight | 32 | 24 |
Obese | 32 | 24 |
None | 47 | 35 |
Unknown | 24 | 18 |
Median PFS1 months (95% CI) | Median OS months (95% CI) | |
---|---|---|
Localised disease * (N = 36) | 8.28 (5.98–19.02) | 15.15 (11.20–NR) |
Localised disease followed by distant metastases (N = 11) | 8.15 (2.56–NR) | 18.27 (17.38–NR) |
De novo metastatic disease (N = 63) | 6.41 (5.98–8.18) | 9.30 (8.05–12.81) |
PFS1 | OS | |||||||
---|---|---|---|---|---|---|---|---|
Univariate HR (95% CI) | p-Value | Multivariate HR (95% CI) * | p-Value | Univariate HR (95% CI) | p-Value | Multivariate HR (95% CI) * | p-Value | |
Age at commencing first chemotherapy (<75 years vs. ≥75 years) | 0.65 (0.21–1.97) | 0.45 | 0.88 (0.28–2.79) | 0.83 | 0.39 (0.14–1.09) | 0.07 | 0.49 (0.16–1.45) | 0.20 |
Gender (male vs. Female) | 0.69 (0.26–1.82) | 0.46 | 0.68 (0.25–1.88) | 0.46 | 0.96 (0.38–2.41) | 0.93 | 0.94 (0.35–2.53) | 0.90 |
Smoking status (current or former smoker vs. never smoker) | 1.30 (0.56–3.00) | 0.54 | 1.19 (0.46–3.07) | 0.72 | 2.52 (1.00–6.34) | 0.05 | 3.46 (1.10–10.86) | 0.03 |
ECOG performance status at commencing first chemotherapy (ECOG 0 vs. ECOG 1 or higher) | 0.00 (0.00–Inf) | 1.00 | 0.00 (0.00–Inf) | 1.00 | 0.00 (0.00–Inf) | 1.00 | 0.00 (0.00–Inf) | 1.00 |
History of type 2 diabetes (prevalent vs. non-prevalent) | 0.84 (0.28–2.50) | 0.76 | 1.28 (0.39–4.17) | 0.68 | 1.02 (0.30–3.50) | 0.97 | 1.81 (0.47–6.98) | 0.39 |
History of abnormal body weight | ||||||||
None | - | - | - | - | - | - | - | - |
Overweight | 1.34 (0.42–4.25) | 0.62 | 1.89 (0.47–7.62) | 0.37 | 1.53 (0.48–4.86) | 0.47 | 1.72 (0.52–5.65) | 0.37 |
Obese | 2.06 (0.65–6.49) | 0.22 | 2.98 (0.75–11.84) | 0.12 | 2.36 (0.74–7.51) | 0.15 | 2.52 (0.75–8.44) | 0.14 |
Number of chemotherapy lines (>1 vs. 1) | N/A | N/A | N/A | N/A | 0.87 (0.29–2.59) | 0.80 | 0.63 (0.19–2.04) | 0.44 |
Number of first-line chemotherapy cycles (≥6 vs. <6 cycles) | 0.32 (0.14–0.72) | 0.006 | 0.23 (0.09–0.63) | 0.004 | 0.34 (0.14–0.83) | 0.02 | 0.22 (0.06–0.77) | 0.02 |
Duration of first-line chemotherapy (≥3.66 months vs. <3.66 months) ** | 0.37 (0.15–0.88) | 0.02 | 0.21 (0.08–0.57) | 0.002 | 0.30 (0.12–0.75) | 0.01 | 0.30 (0.11–0.78) | 0.01 |
Number of first-line chemotherapy interruptions (≤2 vs. >2 treatment interruptions) | 1.00 (0.41–2.42) | 0.99 | 1.72 (0.58–5.16) | 0.33 | 1.55 (0.56–4.28 | 0.39 | 1.67 (0.54–5.11) | 0.37 |
Duration of first-line chemotherapy interruptions (≤28 vs. >28 interrupted days) | 2.22 (0.90–5.47) | 0.08 | 3.48 (1.20–10.09) | 0.02 | 3.93 (1.26–12.27) | 0.02 | 13.48 (2.90–62.60) | <0.001 |
Best overall response on first-line chemotherapy (responders vs. non-responders) | 0.36 (0.14–0.90) | 0.03 | 0.39 (0.15–1.02) | 0.05 | 0.30 (0.11–0.84) | 0.02 | 0.41 (0.14–1.19) | 0.10 |
Local treatment after commencing first-line chemotherapy (recipients vs. non-recipients) | 0.10 (0.03–0.34) | <0.001 | 0.09 (0.03–0.32) | <0.001 | 0.19 (0.07–0.51) | <0.001 | 0.19 (0.07–0.50) | <0.001 |
PFS1 | OS | |||||||
---|---|---|---|---|---|---|---|---|
Univariate HR (95% CI) | p-Value | Multivariate HR (95% CI) * | p-Value | Univariate HR (95% CI) | p-Value | Multivariate HR (95% CI) * | p-Value | |
Age at commencing first chemotherapy (<75 years vs. ≥75 years) | 0.64 (0.33–1.23) | 0.18 | 0.54 (0.26–1.11) | 0.09 | 0.52 (0.27–0.99) | 0.05 | 0.55 (0.27–1.15) | 0.11 |
Gender (male vs. female) | 1.24 (0.71–2.16) | 0.44 | 0.91 (0.48–1.74) | 0.78 | 1.22 (0.68–2.21) | 0.50 | 1.02 (0.51–2.02) | 0.96 |
Smoking status (current or former smoker vs. never smoker) | 1.51 (0.79–2.89) | 0.21 | 1.14 (0.56–2.32) | 0.72 | 1.74 (0.89–3.41) | 0.10 | 1.14 (0.56–2.36) | 0.71 |
ECOG performance status at commencing first chemotherapy (ECOG 0 vs. ECOG 1 or higher) | 1.00 (0.51–1.96) | 1.00 | 1.46 (0.71–3.02) | 0.31 | 0.87 (0.44–1.74) | 0.70 | 0.88 (0.41–1.87) | 0.74 |
History of type 2 diabetes (prevalent vs. non-prevalent) | 0.84 (0.37–1.90) | 0.67 | 1.54 (0.60–3.95) | 0.37 | 1.34 (0.59–3.03) | 0.49 | 2.94 (1.13–7.63) | 0.03 |
History of abnormal body weight | ||||||||
None | - | - | - | - | - | - | - | - |
Overweight | 0.65 (0.28–1.51) | 0.31 | 0.63 (0.25–1.60) | 0.33 | 0.78 (0.34–1.81) | 0.56 | 0.56 (0.23–1.36) | 0.20 |
Obese | 0.95 (0.48–1.87) | 0.88 | 0.85 (0.39–1.86) | 0.69 | 1.05 (0.52–2.13) | 0.90 | 0.74 (0.34–1.61) | 0.45 |
Number of chemotherapy lines (>1 vs. 1) | N/A | N/A | N/A | N/A | 0.37 (0.18–0.73) | 0.004 | 0.31 (0.14–0.67) | 0.003 |
Number of first-line chemotherapy cycles (≥6 vs. <6 cycles) | 0.24 (0.13–0.45) | <0.001 | 0.26 (0.12–0.56) | <0.001 | 0.28 (0.15–0.51) | <0.001 | 0.40 (0.20–0.80) | 0.01 |
Duration of first-line chemotherapy (≥4.37 months vs. <4.37 months) ** | 0.25 (0.14–0.45) | <0.001 | 0.11 (0.05–0.26) | <0.001 | 0.28 (0.15–0.52) | <0.001 | 0.23 (0.12–0.45) | <0.001 |
Number of first-line chemotherapy interruptions (≤2 vs. >2 treatment interruptions) | 1.30 (0.69–2.44) | 0.42 | 1.38 (0.70–2.74) | 0.35 | 1.39 (0.72–2.69) | 0.32 | 1.30 (0.65–2.58) | 0.46 |
Duration of first-line chemotherapy interruptions (≤34 vs. >34 interrupted days) | 0.99 (0.52–1.86) | 0.96 | 0.99 (0.51–1.93) | 0.97 | 1.14 (0.59–2.21) | 0.69 | 1.39 (0.70–2.75) | 0.35 |
Best overall response on first-line chemotherapy (responders vs. non-responders) | 0.32 (0.17–0.59) | <0.001 | 0.40 (0.21–0.79) | 0.008 | 0.27 (0.14–0.52) | <0.001 | 0.35 (0.17–0.71) | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, U.; Lynch, J.; Sandhu, S.K.; Amin, Z.; Bridgewater, J.; Hochhauser, D.; Shiu, K.-K.; Miller, P.; Smyth, E.C.; Khan, K. Impact of Long-Term Chemotherapy on Outcomes in Pancreatic Ductal Adenocarcinoma: A Real-World UK Multi-Centre Study. Cancers 2025, 17, 1896. https://doi.org/10.3390/cancers17111896
Mahmood U, Lynch J, Sandhu SK, Amin Z, Bridgewater J, Hochhauser D, Shiu K-K, Miller P, Smyth EC, Khan K. Impact of Long-Term Chemotherapy on Outcomes in Pancreatic Ductal Adenocarcinoma: A Real-World UK Multi-Centre Study. Cancers. 2025; 17(11):1896. https://doi.org/10.3390/cancers17111896
Chicago/Turabian StyleMahmood, Umair, Joanna Lynch, Simran Kaur Sandhu, Zahir Amin, John Bridgewater, Daniel Hochhauser, Kai-Keen Shiu, Paul Miller, Elizabeth C. Smyth, and Khurum Khan. 2025. "Impact of Long-Term Chemotherapy on Outcomes in Pancreatic Ductal Adenocarcinoma: A Real-World UK Multi-Centre Study" Cancers 17, no. 11: 1896. https://doi.org/10.3390/cancers17111896
APA StyleMahmood, U., Lynch, J., Sandhu, S. K., Amin, Z., Bridgewater, J., Hochhauser, D., Shiu, K.-K., Miller, P., Smyth, E. C., & Khan, K. (2025). Impact of Long-Term Chemotherapy on Outcomes in Pancreatic Ductal Adenocarcinoma: A Real-World UK Multi-Centre Study. Cancers, 17(11), 1896. https://doi.org/10.3390/cancers17111896