Novel Computational and Artificial Intelligence Models in Cancer Research
1. Introduction
2. Summary of Studies
2.1. Cancer Imaging
2.2. Molecular Pathways and Drivers of Cancer
2.3. Benchmarking Computational Tools
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, F.; Liu, L.; Wang, K.; Liu, X.; Zhao, Z. Intelligent Biology and Medicine: Accelerating Innovative Computational Approaches. Comput. Struct. Biotechnol. J. 2024, 27, 32–34. [Google Scholar] [CrossRef]
- Koh, D.M.; Papanikolaou, N.; Bick, U.; Illing, R.; Kahn, C.E., Jr.; Kalpathi-Cramer, J.; Matos, C.; Marti-Bonmati, L.; Miles, A.; Mun, S.K.; et al. Artificial intelligence and machine learning in cancer imaging. Commun. Med. 2022, 2, 133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Esteva, A.; Chou, K.; Yeung, S.; Naik, N.; Madani, A.; Mottaghi, A.; Liu, Y.; Topol, E.; Dean, J.; Socher, R. Deep learning-enabled medical computer vision. npj Digit. Med. 2021, 4, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Galić, I.; Habijan, M.; Leventić, H.; Romić, K. Machine learning empowering personalized medicine: A comprehensive review of medical image analysis methods. Electronics 2023, 12, 4411. [Google Scholar] [CrossRef]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, Z.; Ma, L.; Ding, Y.; Zhao, X.; Shi, X.; Lu, H.; Liu, K. Enhancing the Accuracy of Lymph-Node-Metastasis Prediction in Gynecologic Malignancies Using Multimodal Federated Learning: Integrating CT, MRI, and PET/CT. Cancers 2023, 15, 5281. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Das, A.; Ding, S.; Liu, R.; Huang, C. Quantifying the Growth of Glioblastoma Tumors Using Multimodal MRI Brain Images. Cancers 2023, 15, 3614. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pecorino, L. Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther. 2020, 5, 28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baysoy, A.; Bai, Z.; Satija, R.; Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 2023, 24, 695–713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prelaj, A.; Miskovic, V.; Zanitti, M.; Trovo, F.; Genova, C.; Viscardi, G.; Rebuzzi, S.E.; Mazzeo, L.; Provenzano, L.; Kosta, S.; et al. Artificial intelligence for predictive biomarker discovery in immuno-oncology: A systematic review. Ann. Oncol. 2024, 35, 29–65. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Poulos, R.C.; Liu, J.; Zhong, Q. Machine learning for multi-omics data integration in cancer. iScience 2022, 25, 103798. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chi, J.; Shu, J.; Li, M.; Mudappathi, R.; Jin, Y.; Lewis, F.; Boon, A.; Qin, X.; Liu, L.; Gu, H. Artificial Intelligence in Metabolomics: A Current Review. Trends Analyt. Chem. 2024, 178, 117852. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Young, J.D.; Ren, S.; Chen, L.; Lu, X. Revealing the Impact of Genomic Alterations on Cancer Cell Signaling with an Interpretable Deep Learning Model. Cancers 2023, 15, 3857. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, L.; Chen, R.; Melendy, T.; Goodison, S.; Sun, Y. Identifying Significantly Perturbed Subnetworks in Cancer Using Multiple Protein-Protein Interaction Networks. Cancers 2023, 15, 4090. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, W.; Ye, B.; Huang, Z.; Mu, X.; Qiao, J.; Zhao, P.; Jiang, Y.; Wu, J.; Zhan, X. Prediction of Prognosis, Immunotherapy and Chemotherapy with an Immune-Related Risk Score Model for Endometrial Cancer. Cancers 2023, 15, 3673. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, H.; Lu, X.; Lu, B.; Chen, L. scGEM: Unveiling the Nested Tree-Structured Gene Co-Expressing Modules in Single Cell Transcriptome Data. Cancers 2023, 15, 4277. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, H.; Shu, J.; Maley, C.C.; Liu, L. A Mouse-Specific Model to Detect Genes under Selection in Tumors. Cancers 2023, 15, 5156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chandrashekar, P.; Ahmadinejad, N.; Wang, J.; Sekulic, A.; Egan, J.B.; Asmann, Y.W.; Kumar, S.; Maley, C.; Liu, L. Somatic selection distinguishes oncogenes and tumor suppressor genes. Bioinformatics 2020, 36, 1712–1717. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, H.; Zhang, G.; Zhang, L.; Wang, Q.; Li, H.; Han, Y.; Xie, L.; Yan, Z.; Li, Y.; An, Y.; et al. Comprehensive Review of Web Servers and Bioinformatics Tools for Cancer Prognosis Analysis. Front. Oncol. 2020, 10, 68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nourbakhsh, M.; Degn, K.; Saksager, A.; Tiberti, M.; Papaleo, E. Prediction of cancer driver genes and mutations: The potential of integrative computational frameworks. Brief. Bioinform. 2024, 25, bbad519. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weber, L.M.; Saelens, W.; Cannoodt, R.; Soneson, C.; Hapfelmeier, A.; Gardner, P.P.; Boulesteix, A.L.; Saeys, Y.; Robinson, M.D. Essential guidelines for computational method benchmarking. Genome Biol. 2019, 20, 125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kang, H.; Zhu, X.; Cui, Y.; Xiong, Z.; Zong, W.; Bao, Y.; Jia, P. A Comprehensive Benchmark of Transcriptomic Biomarkers for Immune Checkpoint Blockades. Cancers 2023, 15, 4094. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, J.; Chen, H.C.; Sheng, Q.; Dawson, T.R.; Coffey, R.J.; Patton, J.G.; Weaver, A.M.; Shyr, Y.; Liu, Q. Systematic Assessment of Small RNA Profiling in Human Extracellular Vesicles. Cancers 2023, 15, 3446. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Li, F.; Liu, X.; Wang, K.; Zhao, Z. Novel Computational and Artificial Intelligence Models in Cancer Research. Cancers 2025, 17, 116. https://doi.org/10.3390/cancers17010116
Liu L, Li F, Liu X, Wang K, Zhao Z. Novel Computational and Artificial Intelligence Models in Cancer Research. Cancers. 2025; 17(1):116. https://doi.org/10.3390/cancers17010116
Chicago/Turabian StyleLiu, Li, Fuhai Li, Xiaoming Liu, Kai Wang, and Zhongming Zhao. 2025. "Novel Computational and Artificial Intelligence Models in Cancer Research" Cancers 17, no. 1: 116. https://doi.org/10.3390/cancers17010116
APA StyleLiu, L., Li, F., Liu, X., Wang, K., & Zhao, Z. (2025). Novel Computational and Artificial Intelligence Models in Cancer Research. Cancers, 17(1), 116. https://doi.org/10.3390/cancers17010116