Racial Differences in Vaginal Fluid Metabolites and Association with Systemic Inflammation Markers among Ovarian Cancer Patients: A Pilot Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Biospecimen Collection and Processing
2.3. Analytical Methods
2.3.1. Acylcarnitines
2.3.2. Ceramides and Sphingomyelins
2.3.3. Conventional Metabolites
2.3.4. Assays for Biomarkers of Systemic Inflammation
2.4. Statistical Analyses
2.4.1. Descriptive Summary
2.4.2. Data-Processing Steps
2.4.3. Racial Differences in Vaginal Fluid Metabolites
2.4.4. Correlations with Biomarkers of Systemic Inflammation
2.4.5. Software
3. Results
3.1. Descriptive Summary
3.2. Racial Differences
3.3. Correlations with Biomarkers of Systemic Inflammation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Cancer Society. Cancer Fact & Figures 2021; American Cancer Society: Atlanta, Georgia, 2021. [Google Scholar]
- Harris, H.R.; Guertin, K.A.; Camacho, T.F.; Johnson, C.E.; Wu, A.H.; Moorman, P.G.; Myers, E.; Bethea, T.N.; Bandera, E.V.; Joslin, C.E.; et al. Racial disparities in epithelial ovarian cancer survival: An examination of contributing factors in the Ovarian Cancer in Women of African Ancestry consortium. Int. J. Cancer 2022, 151, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- Bristow, R.E.; Powell, M.A.; Al-Hammadi, N.; Chen, L.; Miller, J.P.; Roland, P.Y.; Mutch, D.G.; Cliby, W.A. Disparities in Ovarian Cancer Care Quality and Survival According to Race and Socioeconomic Status. JNCI J. Natl. Cancer Inst. 2013, 105, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Beckmeyer-Borowko, A.B.; Peterson, C.E.; Brewer, K.C.; Otoo, M.A.; Davis, F.G.; Hoskins, K.F.; Joslin, C.E. The effect of time on racial differences in epithelial ovarian cancer (OVCA) diagnosis stage, overall and by histologic subtypes: A study of the National Cancer Database. Cancer Causes Control 2016, 27, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Peres, L.C.; Schildkraut, J.M. Racial/ethnic disparities in ovarian cancer research. Adv. Cancer Res. 2020, 146, 1–21. [Google Scholar] [PubMed]
- Anyanwu, M.C.; Ohamadike, O.; Wilson, L.E.; Meernik, C.; Huang, B.; Pisu, M.; Liang, M.; Previs, R.A.; Joshi, A.; Ward, K.C.; et al. Race, Affordability and Utilization of Supportive Care in Ovarian Cancer Patients. J. Pain Symptom Manag. 2022, 64, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Montes de Oca, M.K.; Wilson, L.E.; Previs, R.A.; Gupta, A.; Joshi, A.; Huang, B.; Pisu, M.; Liang, M.; Ward, K.C.; Schymura, M.J.; et al. Healthcare Access Dimensions and Guideline-Concordant Ovarian Cancer Treatment: SEER-Medicare Analysis of the ORCHiD Study. J. Natl. Compr. Cancer Netw. 2022, 20, 1255–1266.e11. [Google Scholar] [CrossRef]
- Bandera, E.V.; Lee, V.S.; Rodriguez-Rodriguez, L.; Powell, C.B.; Kushi, L.H. Racial/Ethnic Disparities in Ovarian Cancer Treatment and Survival. Clin. Cancer Res. 2016, 22, 5909–5914. [Google Scholar] [CrossRef]
- Jochum, F.; Hamy, A.-S.; Gaillard, T.; Lecointre, L.; Gougis, P.; Dumas, É.; Grandal, B.; Feron, J.-G.; Laas, E.; Fourchotte, V.; et al. Impact of the Area of Residence of Ovarian Cancer Patients on Overall Survival. Cancers 2022, 14, 5987. [Google Scholar] [CrossRef]
- Sipos, A.; Ujlaki, G.; Mikó, E.; Maka, E.; Szabó, J.; Uray, K.; Krasznai, Z.; Bai, P. The role of the microbiome in ovarian cancer: Mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol. Med. 2021, 27, 33. [Google Scholar] [CrossRef]
- Savant, S.S.; Sriramkumar, S.; O’Hagan, H.M. The role of inflammation and inflammatory mediators in the development, progression, metastasis, and chemoresistance of epithelial ovarian cancer. Cancers 2018, 10, 251. [Google Scholar] [CrossRef]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4680–4687. [Google Scholar] [CrossRef]
- Lewis, F.M.T.; Bernstein, K.T.; Aral, S.O. Vaginal Microbiome and Its Relationship to Behavior, Sexual Health, and Sexually Transmitted Diseases. Obstet. Gynecol. 2017, 129, 643–654. [Google Scholar] [CrossRef]
- Hickey, R.J.; Zhou, X.; Pierson, J.D.; Ravel, J.; Forney, L.J. Understanding vaginal microbiome complexity from an ecological perspective. Transl. Res. 2012, 160, 267–282. [Google Scholar] [CrossRef]
- Ilhan, Z.E.; Laniewski, P.; Thomas, N.; Roe, D.J.; Chase, D.M.; Herbst-Kralovetz, M.M. Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling. EBioMedicine 2019, 44, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Anahtar, M.N.; Byrne, E.H.; Doherty, K.E.; Bowman, B.A.; Yamamoto, H.S.; Soumillon, M.; Padavattan, N.; Ismail, N.; Moodley, A.; Sabatini, M.E. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity 2015, 42, 965–976. [Google Scholar] [CrossRef]
- Laniewski, P.; Barnes, D.; Goulder, A.; Cui, H.; Roe, D.J.; Chase, D.M.; Herbst-Kralovetz, M.M. Linking cervicovaginal immune signatures, HPV and microbiota composition in cervical carcinogenesis in non-Hispanic and Hispanic women. Sci. Rep. 2018, 8, 7593. [Google Scholar] [CrossRef] [PubMed]
- Tossas, K.Y.; Zhu, B.; Perera, R.A.; Serrano, M.G.; Sullivan, S.; Sayeed, S.; Strauss, J.F., 3rd; Winn, R.A.; Buck, G.A.; Seewaldt, V.L. Does the Vaginal Microbiome Operate Differently by Race to Influence Risk of Precervical Cancer? J. Women’s Health 2023, 32, 553–560. [Google Scholar] [CrossRef]
- Dhingra, A.; Sharma, D.; Kumar, A.; Singh, S.; Kumar, P. Microbiome and Development of Ovarian Cancer. Endocr. Metab. Immune Disord.-Drug Targets (Former. Curr. Drug Targets-Immune Endocr. Metab. Disord.) 2022, 22, 1073–1090. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, Z.; Chen, T. Potential role of vaginal microbiota in ovarian cancer carcinogenesis, progression and treatment. Pharmaceutics 2023, 15, 948. [Google Scholar] [CrossRef]
- Laniewski, P.; Ilhan, Z.E.; Herbst-Kralovetz, M.M. The microbiome and gynaecological cancer development, prevention and therapy. Nat. Rev. Urol. 2020, 17, 232–250. [Google Scholar] [CrossRef]
- Mert, I.; Walther-Antonio, M.; Mariani, A. Case for a role of the microbiome in gynecologic cancers: Clinician’s perspective. J. Obstet. Gynaecol. Res. 2018, 44, 1693–1704. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Prieto, M.; Sanchez-Borrego, R.; Lubian-Lopez, D.M.; Perez-Lopez, F.R. Etiopathogenesis of ovarian cancer. An inflamm-aging entity? Gynecol. Oncol. Rep. 2022, 42, 101018. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Johnson, C.; Mincey, K.D. Obesity epidemiology trends by race/ethnicity, gender, and education: National Health Interview Survey, 1997–2012. Gastroenterol. Clin. N. Am. 2016, 45, 571. [Google Scholar] [CrossRef] [PubMed]
- Geronimus, A.T.; Hicken, M.; Keene, D.; Bound, J. “Weathering” and age patterns of allostatic load scores among blacks and whites in the United States. Am. J. Public Health 2006, 96, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Kadry Taher, M.; Farhat, N.; Karyakina, N.A.; Shilnikova, N.; Ramoju, S.; Gravel, C.A.; Krishnan, K.; Mattison, D.; Wen, S.-W.; Krewski, D. Critical review of the association between perineal use of talc powder and risk of ovarian cancer. Reprod. Toxicol. 2019, 90, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Krieger, N. Embodiment: A conceptual glossary for epidemiology. J. Epidemiol. Community Health 2005, 59, 350–355. [Google Scholar] [CrossRef]
- Robinson, O.; Carter, A.R.; Ala-Korpela, M.; Casas, J.P.; Chaturvedi, N.; Engmann, J.; Howe, L.D.; Hughes, A.D.; Jarvelin, M.R.; Kahonen, M.; et al. Metabolic profiles of socio-economic position: A multi-cohort analysis. Int. J. Epidemiol. 2021, 50, 768–782. [Google Scholar] [CrossRef]
- Vineis, P.; Delpierre, C.; Castagne, R.; Fiorito, G.; McCrory, C.; Kivimaki, M.; Stringhini, S.; Carmeli, C.; Kelly-Irving, M. Health inequalities: Embodied evidence across biological layers. Soc. Sci. Med. 2020, 246, 112781. [Google Scholar] [CrossRef]
- Asangba, A.E.; Chen, J.; Goergen, K.M.; Larson, M.C.; Oberg, A.L.; Casarin, J.; Multinu, F.; Kaufmann, S.H.; Mariani, A.; Chia, N.; et al. Diagnostic and prognostic potential of the microbiome in ovarian cancer treatment response. Sci. Rep. 2023, 13, 730. [Google Scholar] [CrossRef]
- Turi, K.N.; Romick-Rosendale, L.; Ryckman, K.K.; Hartert, T.V. A review of metabolomics approaches and their application in identifying causal pathways of childhood asthma. J. Allergy Clin. Immunol. 2018, 141, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Worley, B.; Powers, R. Multivariate Analysis in Metabolomics. Curr. Metabolomics 2013, 1, 92–107. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.; Hou, Y.; Zhang, H.; Fan, L.; Ge, T.; Guo, B.; Zhang, F.; Yang, K.; Wang, J.; Lou, G.; et al. Large-scale profiling of metabolic dysregulation in ovarian cancer. Int. J. Cancer 2015, 136, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Hou, Y.; Cheng, J.; Openkova, M.S.; Xia, B.; Wang, W.; Li, A.; Yang, K.; Li, J.; Xu, H.; et al. Metabolic profiling and novel plasma biomarkers for predicting survival in epithelial ovarian cancer. Oncotarget 2017, 8, 32134–32146. [Google Scholar] [CrossRef]
- Turkoglu, O.; Zeb, A.; Graham, S.; Szyperski, T.; Szender, J.B.; Odunsi, K.; Bahado-Singh, R. Metabolomics of biomarker discovery in ovarian cancer: A systematic review of the current literature. Metabolomics 2016, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Akinyemiju, T.; Deveaux, A.; Wilson, L.; Gupta, A.; Joshi, A.; Bevel, M.; Omeogu, C.; Ohamadike, O.; Huang, B.; Pisu, M. Ovarian Cancer Epidemiology, Healthcare Access and Disparities (ORCHiD): Methodology for a population-based study of black, Hispanic and white patients with ovarian cancer. BMJ Open 2021, 11, e052808. [Google Scholar] [CrossRef]
- Srinivasan, S.; Morgan, M.T.; Fiedler, T.L.; Djukovic, D.; Hoffman, N.G.; Raftery, D.; Marrazzo, J.M.; Fredricks, D.N. Metabolic signatures of bacterial vaginosis. mBio 2015, 6, e00204–e00215. [Google Scholar] [CrossRef]
- Ferrara, C.T.; Wang, P.; Neto, E.C.; Stevens, R.D.; Bain, J.R.; Wenner, B.R.; Ilkayeva, O.R.; Keller, M.P.; Blasiole, D.A.; Kendziorski, C.; et al. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling. PLoS Genet. 2008, 4, e1000034. [Google Scholar] [CrossRef]
- Kwee, L.C.; Ilkayeva, O.; Muehlbauer, M.J.; Bihlmeyer, N.; Wolfe, B.; Purnell, J.Q.; Xavier Pi-Sunyer, F.; Chen, H.; Bahnson, J.; Newgard, C.B.; et al. Metabolites and diabetes remission after weight loss. Nutr. Diabetes 2021, 11, 10. [Google Scholar] [CrossRef]
- Merrill, A.H., Jr.; Sullards, M.C.; Allegood, J.C.; Kelly, S.; Wang, E. Sphingolipidomics: High-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 2005, 36, 207–224. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Laniewski, P.; Chase, D.M.; Caporaso, J.G.; Herbst-Kralovetz, M.M. Integration of multi-omics data improves prediction of cervicovaginal microenvironment in cervical cancer. medRxiv 2020. [Google Scholar] [CrossRef]
- Li, H.; Zang, Y.; Wang, C.; Li, H.; Fan, A.; Han, C.; Xue, F. The Interaction Between Microorganisms, Metabolites, and Immune System in the Female Genital Tract Microenvironment. Front. Cell. Infect. Microbiol. 2020, 10, 796. [Google Scholar] [CrossRef] [PubMed]
- Szabo, Y.Z.; Slavish, D.C.; Graham-Engeland, J.E. The effect of acute stress on salivary markers of inflammation: A systematic review and meta-analysis. Brain Behav. Immun. 2020, 88, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Gore, S.M.; Gardner, M.J.; Pocock, S.J. Statistical guidelines for contributors to medical journals. Br. Med. J. 1983, 286, 1489. [Google Scholar] [CrossRef] [PubMed]
- West, R.M. Best practice in statistics: Use the Welch t-test when testing the difference between two groups. Ann. Clin. Biochem. 2021, 58, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Lee, E.-K.; Cook, D. A projection pursuit index for large p small n data. Stat. Comput. 2010, 20, 381–392. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Driscoll, S.P.; MacMillan, Y.S.; Wentzell, P.D. Sparse Projection Pursuit Analysis: An Alternative for Exploring Multivariate Chemical Data. Anal. Chem. 2020, 92, 1755–1762. [Google Scholar] [CrossRef]
- Cao, Y.; Pearman, A.T.; Zimmerman, G.A.; McIntyre, T.M.; Prescott, S.M. Intracellular unesterified arachidonic acid signals apoptosis. Proc. Natl. Acad. Sci. USA 2000, 97, 11280–11285. [Google Scholar] [CrossRef]
- Weng, L.; Gong, Y.; Culver, J.; Gardell, S.J.; Petucci, C.; Morse, A.M.; Frye, R.F.; Turner, S.T.; Chapman, A.; Boerwinkle, E.; et al. Presence of arachidonoyl-carnitine is associated with adverse cardiometabolic responses in hypertensive patients treated with atenolol. Metabolomics 2016, 12, 160. [Google Scholar] [CrossRef]
- Ali-Fehmi, R.; Morris, R.T.; Bandyopadhyay, S.; Che, M.; Schimp, V.; Malone, J.M., Jr.; Munkarah, A.R. Expression of cyclooxygenase-2 in advanced stage ovarian serous carcinoma: Correlation with tumor cell proliferation, apoptosis, angiogenesis, and survival. Am. J. Obstet. Gynecol. 2005, 192, 819–825. [Google Scholar] [CrossRef]
- MahmoudianDehkordi, S.; Ahmed, A.T.; Bhattacharyya, S.; Han, X.; Baillie, R.A.; Arnold, M.; Skime, M.K.; John-Williams, L.S.; Moseley, M.A.; Thompson, J.W.; et al. Alterations in acylcarnitines, amines, and lipids inform about the mechanism of action of citalopram/escitalopram in major depression. Transl. Psychiatry 2021, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.; Singh, K.K. The mitochondrial landscape of ovarian cancer: Emerging insights. Carcinogenesis 2021, 42, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Li, R.Z.; Wang, X.R.; Wang, J.; Xie, C.; Wang, X.X.; Pan, H.D.; Meng, W.Y.; Liang, T.L.; Li, J.X.; Yan, P.Y.; et al. The key role of sphingolipid metabolism in cancer: New therapeutic targets, diagnostic and prognostic values, and anti-tumor immunotherapy resistance. Front. Oncol. 2022, 12, 941643. [Google Scholar] [CrossRef] [PubMed]
- Tallima, H.; Azzazy, H.M.E.; El Ridi, R. Cell surface sphingomyelin: Key role in cancer initiation, progression, and immune evasion. Lipids Health Dis. 2021, 20, 150. [Google Scholar] [CrossRef] [PubMed]
- Jing, F.; Jing, C.; Dai, X.; Zhou, G.; Di, S.; Bi, X.; Dai, T.; Qin, T.; Hong, L. Sphingomyelin synthase 2 but not sphingomyelin synthase 1 is upregulated in ovarian cancer and involved in migration, growth and survival via different mechanisms. Am. J. Transl. Res. 2021, 13, 4412–4421. [Google Scholar]
- Zhao, J.; Evans, C.R.; Carmody, L.A.; LiPuma, J.J. Impact of storage conditions on metabolite profiles of sputum samples from persons with cystic fibrosis. J. Cyst. Fibros. 2015, 14, 468–473. [Google Scholar] [CrossRef]
- Anton, G.; Wilson, R.; Yu, Z.H.; Prehn, C.; Zukunft, S.; Adamski, J.; Heier, M.; Meisinger, C.; Römisch-Margl, W.; Wang-Sattler, R.; et al. Pre-analytical sample quality: Metabolite ratios as an intrinsic marker for prolonged room temperature exposure of serum samples. PLoS ONE 2015, 10, e0121495. [Google Scholar] [CrossRef]
Categories | Black | White | p-Value ** | |
---|---|---|---|---|
Sample size | 16 | 20 | ||
Age, years (Median (25th, 75th)) | 60 (55.75, 63) | 64.00 (59.5, 69) | 0.122 | |
Histology (%) | Type I epithelial | 2 (12.5) | 5 (25.0) | 0.123 |
Type II epithelial | 6 (37.5) | 12 (60.0) | ||
Other | 1 (6.2) | 0 (0.0) | ||
Unknown | 7 (43.8) | 3 (15.0) | ||
Stage (%) | Local | 0 (0.0) | 3 (15.0) | 0.542 |
Regional | 2 (12.5) | 2 (10.0) | ||
Distant | 7 (43.8) | 7 (35.0) | ||
Unknown | 7 (43.8) | 8 (40.0) | ||
Chemotherapy receipt (%) | No | 2 (12.5) | 0 (0.0) | 0.19 |
Yes | 14 (87.5) | 20 (100.0) | ||
Radiation receipt (%) | No | 16 (100.0) | 20 (100.0) | |
Surgery receipt (%) | Yes | 16 (100.0) | 20 (100.0) | |
Antibiotic use (%) | No | 11 (68.8) | 15 (75.0) | 0.498 |
Yes | 1 (6.2) | 3 (15.0) | ||
Unknown | 4 (25.0) | 2 (10.0) | ||
Vaginal suppository use (%) | No | 16 (100.0) | 19 (95.0) | 1 |
Yes | 0 (0.0) | 1 (5.0) | ||
Vaginal douching (%) | No | 13 (81.2) | 18 (90.0) | 0.637 |
Unknown | 3 (18.8) | 2 (10.0) | ||
Menopausal status (%) | Post-menopausal | 14 (87.5) | 20 (100.0) | 0.19 |
Unknown | 2 (12.5) | 0 (0.0) |
Metabolite | Fold Change | Wilcoxon Rank-Sum Test | |||
---|---|---|---|---|---|
FC | Log2(FC) | V | p-Value | −Log10(P) | |
C20:4 | 0.32113 | −1.6388 | 86 | 0.018 | 1.747 |
C4-OH | 0.65631 | −0.60754 | 94 | 0.037 | 1.431 |
C14:2 | 0.38962 | −1.3598 | 131 | 0.369 | 0.433 |
C16:2 | 0.4131 | −1.2754 | 117 | 0.178 | 0.749 |
C6 | 2.3646 | 1.2416 | 197 | 0.249 | 0.604 |
C22 | 0.43984 | −1.1849 | 124 | 0.262 | 0.582 |
C18:2-OH | 0.46345 | −1.1095 | 132 | 0.386 | 0.413 |
C7-DC | 2.0041 | 1.0029 | 198 | 0.236 | 0.627 |
# | Variable ID | Variable Name | Coefficient on PDA Dimension One |
---|---|---|---|
1 | 1 | C2 | 0.15 |
2 | 4 | C5.1 | −0.15 |
3 | 6 | C4.OH | 0.29 |
4 | 7 | C6 | −0.13 |
5 | 8 | C5.OH.C3.DC | 0.14 |
6 | 9 | C4.DC.Ci4.DC | −0.16 |
7 | 10 | C8.1 | 0.13 |
8 | 11 | C8 | 0.17 |
9 | 16 | C10.2 | −0.15 |
10 | 18 | C10 | 0.2 |
11 | 19 | C7.DC | −0.24 |
12 | 24 | C12.OH.C10.DC | −0.11 |
13 | 25 | C14.2 | 0.1 |
14 | 26 | C14.1 | −0.11 |
15 | 30 | C16.2 | 0.17 |
16 | 34 | C16.OH.C14.DC | −0.1 |
17 | 35 | C18.2 | −0.12 |
18 | 36 | C18.1 | 0.33 |
19 | 37 | C18 | 0.12 |
20 | 40 | C18.OH.C16.DC | −0.22 |
21 | 41 | C20.4 | 0.12 |
22 | 43 | C18.1.DC | 0.12 |
23 | 45 | Cer.d18.1.14.0. | 0.1 |
24 | 57 | GlcCer.d18.1.16.0. | −0.11 |
25 | 58 | GlcCer.d18.1.18.0. | −0.15 |
26 | 59 | GlcCer.d18.1.20.0. | −0.17 |
27 | 60 | GlcCer.d18.1.22.0. | −0.17 |
28 | 81 | SM.d39.3. | −0.13 |
29 | 82 | SM.d39.2. | −0.11 |
30 | 92 | SM.d43.3. | −0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osazuwa-Peters, O.L.; Deveaux, A.; Muehlbauer, M.J.; Ilkayeva, O.; Bain, J.R.; Keku, T.; Berchuck, A.; Huang, B.; Ward, K.; Gates Kuliszewski, M.; et al. Racial Differences in Vaginal Fluid Metabolites and Association with Systemic Inflammation Markers among Ovarian Cancer Patients: A Pilot Study. Cancers 2024, 16, 1259. https://doi.org/10.3390/cancers16071259
Osazuwa-Peters OL, Deveaux A, Muehlbauer MJ, Ilkayeva O, Bain JR, Keku T, Berchuck A, Huang B, Ward K, Gates Kuliszewski M, et al. Racial Differences in Vaginal Fluid Metabolites and Association with Systemic Inflammation Markers among Ovarian Cancer Patients: A Pilot Study. Cancers. 2024; 16(7):1259. https://doi.org/10.3390/cancers16071259
Chicago/Turabian StyleOsazuwa-Peters, Oyomoare L., April Deveaux, Michael J. Muehlbauer, Olga Ilkayeva, James R. Bain, Temitope Keku, Andrew Berchuck, Bin Huang, Kevin Ward, Margaret Gates Kuliszewski, and et al. 2024. "Racial Differences in Vaginal Fluid Metabolites and Association with Systemic Inflammation Markers among Ovarian Cancer Patients: A Pilot Study" Cancers 16, no. 7: 1259. https://doi.org/10.3390/cancers16071259
APA StyleOsazuwa-Peters, O. L., Deveaux, A., Muehlbauer, M. J., Ilkayeva, O., Bain, J. R., Keku, T., Berchuck, A., Huang, B., Ward, K., Gates Kuliszewski, M., & Akinyemiju, T. (2024). Racial Differences in Vaginal Fluid Metabolites and Association with Systemic Inflammation Markers among Ovarian Cancer Patients: A Pilot Study. Cancers, 16(7), 1259. https://doi.org/10.3390/cancers16071259