JAK Inhibitors in Cutaneous T-Cell Lymphoma: Friend or Foe? A Systematic Review of the Published Literature
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Result
3.1. Studies Evaluating the Efficacy of JAK Inhibitors in the Treatment of CTCL
3.1.1. Clinical Trials
3.1.2. Case Reports/Series
3.2. De Novo CTCL following JAK Inhibitor Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Willemze, R.; Cerroni, L.; Kempf, W.; Berti, E.; Facchetti, F.; Swerdlow, S.H.; Jaffe, E.S. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood J. Am. Soc. Hematol. 2019, 133, 1703–1714. [Google Scholar] [CrossRef]
- Korgavkar, K.; Xiong, M.; Weinstock, M. Changing incidence trends of cutaneous T-cell lymphoma. JAMA Dermatol. 2013, 149, 1295–1299. [Google Scholar] [CrossRef]
- Nasimi, M.; Kamyab, K.; Aghahi, T.; Fahim, S.; Ghandi, N. Childhood mycosis fungoides: A clinicopathologic study of 30 cases from Iran. Australas. J. Dermatol. 2019, 61, e259–e261. [Google Scholar] [CrossRef]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.d.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M. The 5th edition of the World Health Organization classification of haematolymphoid tumours: Lymphoid neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef]
- Campo, E.; Jaffe, E.S.; Cook, J.R.; Quintanilla-Martinez, L.; Swerdlow, S.H.; Anderson, K.C.; Brousset, P.; Cerroni, L.; de Leval, L.; Dirnhofer, S. The international consensus classification of mature lymphoid neoplasms: A report from the clinical advisory committee. Blood J. Am. Soc. Hematol. 2022, 140, 1229–1253. [Google Scholar] [CrossRef]
- Amorim, G.M.; Corbellini, J.P.N.; Quintella, D.C.; Cuzzi, T.; Ramos-e-Silva, M. Evaluation of the Cutaneous Lymphoma International Prognostic Index in patients with early stage mycosis fungoides. Anais Bras. Dermatol. 2018, 93, 680–685. [Google Scholar] [CrossRef]
- Benton, E.; Crichton, S.; Talpur, R.; Agar, N.; Fields, P.; Wedgeworth, E.; Mitchell, T.; Cox, M.; Ferreira, S.; Liu, P. A cutaneous lymphoma international prognostic index (CLIPi) for mycosis fungoides and Sezary syndrome. Eur. J. Cancer 2013, 49, 2859–2868. [Google Scholar] [CrossRef]
- Hristov, A.C.; Tejasvi, T.; Wilcox, R.A. Mycosis fungoides and Sézary syndrome: 2019 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2019, 94, 1027–1041. [Google Scholar] [CrossRef]
- Gilson, D.; Whittaker, S.; Child, F.; Scarisbrick, J.; Illidge, T.M.; Parry, E.; Mohd Mustapa, M.; Exton, L.; Kanfer, E.; Rezvani, K. British Association of Dermatologists and UK Cutaneous Lymphoma Group guidelines for the management of primary cutaneous lymphomas 2018. Br. J. Dermatol. 2019, 180, 496–526. [Google Scholar] [CrossRef]
- Hristov, A.C.; Tejasvi, T.; Wilcox, R.A. Cutaneous T-cell lymphomas: 2021 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2021, 96, 1313–1328. [Google Scholar] [CrossRef]
- Kamijo, H.; Miyagaki, T. Mycosis fungoides and Sézary syndrome: Updates and review of current therapy. Curr. Treat. Options Oncol. 2021, 22, 1–14. [Google Scholar] [CrossRef]
- Dippel, E.; Assaf, C.; Becker, J.C.; von Bergwelt-Baildon, M.; Bernreiter, S.; Cozzio, A.; Eich, H.T.; Elsayad, K.; Follmann, M.; Grabbe, S. S2k-Guidelines–Cutaneous lymphomas (ICD10 C82-C86): Update 2021. J. Der Dtsch. Dermatol. Ges. 2022, 20, 537. [Google Scholar] [CrossRef]
- de Masson, A.; Beylot-Barry, M.; Ram-Wolff, C.; Mear, J.-B.; Dalle, S.; d’Incan, M.; Ingen-Housz-Oro, S.; Orvain, C.; Abraham, J.; Dereure, O. Allogeneic transplantation in advanced cutaneous T-cell lymphomas (CUTALLO): A propensity score matched controlled prospective study. Lancet 2023, 401, 1941–1950. [Google Scholar] [CrossRef]
- Groner, B.; von Manstein, V. Jak Stat signaling and cancer: Opportunities, benefits and side effects of targeted inhibition. Mol. Cell Endocrinol. 2017, 451, 1–14. [Google Scholar] [CrossRef]
- Samuel, C.; Cornman, H.; Kambala, A.; Kwatra, S.G. A Review on the Safety of Using JAK Inhibitors in Dermatology: Clinical and Laboratory Monitoring. Dermatol. Ther. 2023, 13, 729–749. [Google Scholar] [CrossRef]
- Miot, H.A.; Criado, P.R.; de Castro, C.C.S.; Ianhez, M.; Talhari, C.; Ramos, P.M. JAK-STAT pathway inhibitors in dermatology. Anais Bras. Dermatol. 2023, 98, 656–677. [Google Scholar] [CrossRef]
- Solimani, F.; Meier, K.; Ghoreschi, K. Emerging Topical and Systemic JAK Inhibitors in Dermatology. Front. Immunol. 2019, 10, 2847. [Google Scholar] [CrossRef]
- Gallardo, F.; Pujol, R.M. Genetics Abnormalities with Clinical Impact in Primary Cutaneous Lymphomas. Cancers 2022, 14, 4972. [Google Scholar] [CrossRef]
- Tensen, C.P.; Quint, K.D.; Vermeer, M.H. Genetic and epigenetic insights into cutaneous T-cell lymphoma. Blood 2022, 139, 15–33. [Google Scholar] [CrossRef]
- García-Díaz, N.; Piris, M.; Ortiz-Romero, P.L.; Vaqué, J.P. Mycosis Fungoides and Sézary Syndrome: An Integrative Review of the Pathophysiology, Molecular Drivers, and Targeted Therapy. Cancers 2021, 13, 1931. [Google Scholar] [CrossRef]
- Luo, Y.; Vermeer, M.H.; de Haan, S.; Kinderman, P.; de Gruijl, F.R.; van Hall, T.; Tensen, C.P. Socs1-knockout in skin-resident CD4(+) T cells in a protracted contact-allergic reaction results in an autonomous skin inflammation with features of early-stage mycosis fungoides. Biochem. Biophys. Rep. 2023, 35, 101535. [Google Scholar] [CrossRef]
- Bastidas Torres, A.N.; Cats, D.; Out-Luiting, J.J.; Fanoni, D.; Mei, H.; Venegoni, L.; Willemze, R.; Vermeer, M.H.; Berti, E.; Tensen, C.P. Deregulation of JAK2 signaling underlies primary cutaneous CD8(+) aggressive epidermotropic cytotoxic T-cell lymphoma. Haematologica 2022, 107, 702–714. [Google Scholar] [CrossRef]
- Netchiporouk, E.; Litvinov, I.V.; Moreau, L.; Gilbert, M.; Sasseville, D.; Duvic, M. Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle 2014, 13, 3331–3335. [Google Scholar] [CrossRef]
- Rendón-Serna, N.; Correa-Londoño, L.A.; Velásquez-Lopera, M.M.; Bermudez-Muñoz, M. Cell signaling in cutaneous T-cell lymphoma microenvironment: Promising targets for molecular-specific treatment. Int. J. Dermatol. 2021, 60, 1462–1480. [Google Scholar] [CrossRef]
- Ghoreschi, K.; Laurence, A.; O’Shea, J.J. Janus kinases in immune cell signaling. Immunol. Rev. 2009, 228, 273–287. [Google Scholar] [CrossRef]
- O’Shea, J.J.; Schwartz, D.M.; Villarino, A.V.; Gadina, M.; McInnes, I.B.; Laurence, A. The JAK-STAT pathway: Impact on human disease and therapeutic intervention. Annu. Rev. Med. 2015, 66, 311–328. [Google Scholar] [CrossRef]
- Ciechanowicz, P.; Rakowska, A.; Sikora, M.; Rudnicka, L. JAK-inhibitors in dermatology: Current evidence and future applications. J. Dermatol. Treat. 2019, 30, 648–658. [Google Scholar] [CrossRef]
- Muddebihal, A.; Khurana, A.; Sardana, K. JAK inhibitors in dermatology: The road travelled and path ahead, a narrative review. Expert Rev. Clin. Pharmacol. 2023, 16, 279–295. [Google Scholar] [CrossRef]
- Herrera-deGuise, C.; Serra-Ruiz, X.; Lastiri, E.; Borruel, N. JAK inhibitors: A new dawn for oral therapies in inflammatory bowel diseases. Front. Med. 2023, 10, 1089099. [Google Scholar] [CrossRef]
- Shawky, A.M.; Almalki, F.A.; Abdalla, A.N.; Abdelazeem, A.H.; Gouda, A.M. A comprehensive overview of globally approved JAK inhibitors. Pharmaceutics 2022, 14, 1001. [Google Scholar] [CrossRef]
- Winthrop, K.L. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol. 2017, 13, 234–243. [Google Scholar] [CrossRef]
- Bakr, F.S.; Whittaker, S.J. Advances in the understanding and treatment of Cutaneous T-cell Lymphoma. Front. Oncol. 2022, 12, 1043254. [Google Scholar] [CrossRef]
- Pérez, C.; Mondéjar, R.; García-Díaz, N.; Cereceda, L.; León, A.; Montes, S.; Durán Vian, C.; Pérez Paredes, M.; González-Morán, A.; Alegre de Miguel, V. Advanced-stage mycosis fungoides: Role of the signal transducer and activator of transcription 3, nuclear factor-κB and nuclear factor of activated T cells pathways. Br. J. Dermatol. 2020, 182, 147–155. [Google Scholar] [CrossRef]
- Vadivel, C.K.; Gluud, M.; Torres-Rusillo, S.; Boding, L.; Willerslev-Olsen, A.; Buus, T.B.; Nielsen, T.K.; Persson, J.L.; Bonefeld, C.M.; Geisler, C. JAK3 is expressed in the nucleus of malignant T cells in cutaneous T cell lymphoma (CTCL). Cancers 2021, 13, 280. [Google Scholar] [CrossRef]
- Horwitz, S.M.; Feldman, T.A.; Hess, B.T.; Khodadoust, M.S.; Kim, Y.H.; Munoz, J.; Patel, M.R.; Phillips, T.J.; Smith, S.D.; Smith, S.M. A phase 2 study of the dual SYK/JAK inhibitor cerdulatinib demonstrates good tolerability and clinical response in relapsed/refractory peripheral T-cell lymphoma and cutaneous T-cell lymphoma. Blood 2019, 134, 466. [Google Scholar] [CrossRef]
- Lee, K.; Evans, M.G.; Yang, L.; Ng, S.; Snowden, C.; Khodadoust, M.; Brown, R.A.; Trum, N.A.; Querfeld, C.; Doan, L.T. Primary cytotoxic T-cell lymphomas harbor recurrent targetable alterations in the JAK-STAT pathway. Blood J. Am. Soc. Hematol. 2021, 138, 2435–2440. [Google Scholar]
- Moskowitz, A.J.; Ghione, P.; Jacobsen, E.; Ruan, J.; Schatz, J.H.; Noor, S.; Myskowski, P.; Vardhana, S.; Ganesan, N.; Hancock, H. A phase 2 biomarker-driven study of ruxolitinib demonstrates effectiveness of JAK/STAT targeting in T-cell lymphomas. Blood J. Am. Soc. Hematol. 2021, 138, 2828–2837. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Horwitz, S.M.; Feldman, T.A.; Hess, B.T.; Khodadoust, M.S.; Kim, Y.H.; Munoz, J.; Patel, M.R.; Phillips, T.J.; Smith, S.D.; Smith, S.M. The novel SYK/JAK inhibitor cerdulatinib demonstrates good tolerability and clinical response in a phase 2a study in relapsed/refractory peripheral T-cell lymphoma and cutaneous T-cell lymphoma. Blood 2018, 132, 1001. [Google Scholar] [CrossRef]
- Moskowitz, A.J.; Ghione, P.; Jacobsen, E.D.; Ruan, J.; Schatz, J.H.; Noor, S.; Myskowski, P.; Hancock, H.; Davey, T.; Obadi, O. Final results of a phase II biomarker-driven study of ruxolitinib in relapsed and refractory T-cell lymphoma. Blood 2019, 134, 4019. [Google Scholar] [CrossRef]
- Moskowitz, A.J.; Jacobsen, E.; Ruan, J.; Schatz, J.H.; Obadi, O.; Motylinski, K.; Jarjies, C.; Galasso, N.; Hancock, H.; Davey, T. Durable responses observed with JAK inhibition in T-cell lymphomas. Blood 2018, 132, 2922. [Google Scholar] [CrossRef]
- Lévy, R.; Fusaro, M.; Guerin, F.; Chetouani, A.; Moshous, D.; Fischer, A.; de Saint Basile, G.; Sepulveda, F.E.; Neven, B. Efficacy of ruxolitinib in subcutaneous panniculitis-like T-cell lymphoma and hemophagocytic lymphohistiocytosis. Blood Adv. 2020, 4, 1383–1387. [Google Scholar] [CrossRef]
- Castillo, D.E.; Romanelli, P.; Lev-Tov, H.; Kerdel, F. A case of erythrodermic mycosis fungoides responding to upadacitinib. JAAD Case Rep. 2022, 30, 91–93. [Google Scholar] [CrossRef]
- Kook, H.D.; Park, S.Y.; Hong, N.; Lee, D.H.; Jung, H.J.; Park, M.Y.; Ahn, J. A Case of Mycosis Fungoides Mimicking Atopic Dermatitis Treated with Upadacitinib. Acta Derm.-Venereol. 2022, 102, 30. [Google Scholar]
- Watson, L.R.; Lew, T.E.; Fox, L.C.; Khot, A.; van der Weyden, C. Ruxolitinib bridging therapy to allogeneic SCT for high-risk refractory subcutaneous panniculitis-like T-cell lymphoma. Leuk. Lymphoma 2022, 63, 3217–3221. [Google Scholar] [CrossRef]
- Hansen, S.; Alduaij, W.; Biggs, C.M.; Belga, S.; Luecke, K.; Merkeley, H.; Chen, L.Y. Ruxolitinib as adjunctive therapy for secondary hemophagocytic lymphohistiocytosis: A case series. Eur. J. Haematol. 2021, 106, 654–661. [Google Scholar] [CrossRef]
- Duan, Y.; Gao, H.; Zhou, C.; Jin, L.; Yang, J.; Huang, S.; Zhang, M.; Zhang, Y.; Wang, T. A retrospective study of 18 children with subcutaneous panniculitis-like T-cell lymphoma: Multidrug combination chemotherapy or immunomodulatory therapy? Orphanet J. Rare Dis. 2022, 17, 432. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, C.J.; Li, D.H.; Cui, L.; Li, W.J.; Ma, H.H.; Zhao, Y.Z.; Wang, D.; Li, Z.G.; Wang, T.Y. Efficacy of ruxolitinib for HAVCR2 mutation-associated hemophagocytic lymphohistiocytosis and panniculitis manifestations in children. Br. J. Haematol. 2023, 202, 135–146. [Google Scholar] [CrossRef]
- Iinuma, S.; Hayashi, K.; Noguchi, A.; Ishida-Yamamoto, A. Lymphomatoid papulosis during upadacitinib treatment for rheumatoid arthritis. Eur. J. Dermatol. 2022, 32, 142. [Google Scholar]
- Knapp III, C.; Steele, E.; Mengden-Koon, S.; Williams, T.; Fett, N. A Case of Tofacitinib-Induced Lymphomatoid Papulosis With Ocular Involvement. Am. J. Dermatopathol. 2022, 44, 523–525. [Google Scholar] [CrossRef]
- Saito, K.; Shimauchi, T.; Kageyama, R.; Furukawa, S.; Suzuki, N.; Ginoza, A.; Moriki, M.; Ito, T.; Honda, T. A case of Sézary syndrome in a patient during treatment with baricitinib for seronegative rheumatoid arthritis. Clin. Exp. Dermatol. 2023, 48, 391–393. [Google Scholar] [CrossRef]
- Cohen, E.; Bozonnat, A.; Battistella, M.; Calvani, J.; Vignon-Pennamen, M.-D.; Rivet, J.; Moins-Teisserenc, H.; Ta, V.-A.; Ram-Wolff, C.; Bouaziz, J.-D. Severe relapses of cutaneous T-cell lymphoma after treatment of chronic graft-versus-host disease with ruxolitinib. J. Eur. Acad. Dermatol. Venereol. 2023, 38, e32–e34. [Google Scholar] [CrossRef]
- Papadavid, E.; Pappa, V.; Kapniari, E.; Nikolaou, V.; Hliakis, T.; Dalamaga, M.; Jonak, C.; Porkert, S.; Engelina, S.; Quaglino, P. Real life data on advanced cutaneous T cell lymphoma patients treated with brentuximab vedotin: Results from a multicenter European EORTC study. Eur. J. Cancer 2019, 119, S34–S35. [Google Scholar] [CrossRef]
- Amagai, R.; Kambayashi, Y.; Ohuchi, K.; Furudate, S.; Hashimoto, A.; Asano, Y.; Fujimura, T. Cutaneous T cell lymphoma treated with mogamulizumab monotherapy and mogamulizumab plus etoposide combined therapy: A real-world case series. Dermatol. Ther. 2022, 35, e15858. [Google Scholar] [CrossRef]
- Ansell, S.M.; Maris, M.B.; Lesokhin, A.M.; Chen, R.W.; Flinn, I.W.; Sawas, A.; Minden, M.D.; Villa, D.; Percival, M.-E.M.; Advani, A.S. Phase I study of the CD47 blocker TTI-621 in patients with relapsed or refractory hematologic malignancies. Clin. Cancer Res. 2021, 27, 2190–2199. [Google Scholar] [CrossRef]
- Cao, X.; Wang, Y.; Zhang, W.; Zhong, X.; Gunes, E.G.; Dang, J.; Wang, J.; Epstein, A.L.; Querfeld, C.; Sun, Z. Targeting macrophages for enhancing CD47 blockade–elicited lymphoma clearance and overcoming tumor-induced immunosuppression. Blood J. Am. Soc. Hematol. 2022, 139, 3290–3302. [Google Scholar] [CrossRef]
- Johnson, L.D.; Banerjee, S.; Kruglov, O.; Viller, N.N.; Horwitz, S.M.; Lesokhin, A.; Zain, J.; Querfeld, C.; Chen, R.; Okada, C. Targeting CD47 in Sézary syndrome with SIRPαFc. Blood Adv. 2019, 3, 1145–1153. [Google Scholar] [CrossRef]
- Querfeld, C.; Thompson, J.A.; Taylor, M.H.; DeSimone, J.A.; Zain, J.M.; Shustov, A.R.; Johns, C.; McCann, S.; Lin, G.H.; Petrova, P.S. Intralesional TTI-621, a novel biologic targeting the innate immune checkpoint CD47, in patients with relapsed or refractory mycosis fungoides or Sézary syndrome: A multicentre, phase 1 study. Lancet Haematol. 2021, 8, e808–e817. [Google Scholar] [CrossRef]
- Furumoto, Y.; Gadina, M. The arrival of JAK inhibitors: Advancing the treatment of immune and hematologic disorders. BioDrugs 2013, 27, 431–438. [Google Scholar] [CrossRef]
- Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol. 2020, 80, 106210. [Google Scholar] [CrossRef]
- Schwartz, D.M.; Kanno, Y.; Villarino, A.; Ward, M.; Gadina, M.; O’Shea, J.J. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 2017, 16, 843–862. [Google Scholar] [CrossRef]
- Chapman, S.; Kwa, M.; Gold, L.S.; Lim, H.W. Janus kinase inhibitors in dermatology: Part I. A comprehensive review. J. Am. Acad. Dermatol. 2022, 86, 406–413. [Google Scholar] [CrossRef]
- Talpur, R.; Sui, D.; Gangar, P.; Dabaja, B.S.; Duvic, M. Retrospective analysis of prognostic factors in 187 cases of transformed mycosis fungoides. Clin. Lymphoma Myeloma Leuk. 2016, 16, 49–56. [Google Scholar] [CrossRef]
- Yi, Y.W.; You, K.S.; Park, J.-S.; Lee, S.-G.; Seong, Y.-S. Ribosomal protein S6: A potential therapeutic target against cancer? Int. J. Mol. Sci. 2021, 23, 48. [Google Scholar] [CrossRef]
- Jin, J.; Cai, Q.; Zhang, L.; Zou, L.; Li, Z.; Wu, H.; Zhou, K.; Qiu, L.; Su, L.; Ding, K. Phase 2 Study of Golidocitinib, a JAK1 Selective Inhibitor, As Maintenance Therapy in Patients with Peripheral T Cell Lymphomas after First-Line Systemic Therapy (JACKPOT26). Blood 2023, 142, 4430. [Google Scholar] [CrossRef]
- Koh, J.; Jang, I.; Mun, S.; Lee, C.; Cha, H.J.; Oh, Y.H.; Kim, J.-M.; Han, J.H.; Paik, J.H.; Cho, J. Genetic profiles of subcutaneous panniculitis-like T-cell lymphoma and clinicopathological impact of HAVCR2 mutations. Blood Adv. 2021, 5, 3919–3930. [Google Scholar] [CrossRef]
- Atzeni, F.; Popa, C.D.; Nucera, V.; Nurmohamed, M.T. Safety of JAK inhibitors: Focus on cardiovascular and thromboembolic events. Expert. Rev. Clin. Immunol. 2022, 18, 233–244. [Google Scholar] [CrossRef]
- Hanzel, J.; Hulshoff, M.S.; Grootjans, J.; D’Haens, G. Emerging therapies for ulcerative colitis. Expert Rev. Clin. Immunol. 2022, 18, 513–524. [Google Scholar] [CrossRef]
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N. Engl. J. Med. 2022, 386, 316–326. [Google Scholar] [CrossRef]
- Ingrassia, J.P.; Maqsood, M.H.; Gelfand, J.M.; Weber, B.N.; Bangalore, S.; Sicco, K.I.L.; Garshick, M.S. Cardiovascular and Venous Thromboembolic Risk With JAK Inhibitors in Immune-Mediated Inflammatory Skin Diseases: A Systematic Review and Meta-Analysis. JAMA Dermatol. 2023, 160, 28–36. [Google Scholar] [CrossRef]
CTCL Subtype | Frequency (%) | 5-Years Disease-Specific Survival (%) | Clinical Features | T-Cell Phenotype |
---|---|---|---|---|
Mycosis fungoides (MF) Folliculotropic MF Pagetoid reticulosis Granulomatous slack skin | 39 5 <1 <1 | 88 75 100 100 | Patches and plaques; (ulcerating) tumors in advanced stage | CD3+, CD4+, CD8− |
Sézary syndrome (SS) | 2 | 36 | Triad of pruritic erythroderma, generalized lymphadenopathy, and clonally related neoplastic T cells with cerebriform nuclei (Sézary cells) in the skin, lymph nodes, and peripheral blood | CD4+, CD7−, CD26− |
Primary cutaneous CD30+ lymphoproliferative disorders (LPDs) Primary cutaneous anaplastic large lymphoma (C-ALCL) Lymphomatoid papulosis (LyP) | 8 12 | 95 99 | Solitary or localized nodules or tumors Chronic course of recurrent, self-healing papulonecrotic, or nodular skin lesions. | CD3+/−, CD4+, CD8−, CD30+ CD4+, CD8− or CD4−, CD8+ or CD4−, CD8− |
Subcutaneous panniculitis-like T-cell lymphoma | 1 | 87 | Subcutaneous nodules and plaques | CD3+, CD4−, CD8+ |
Primary cutaneous peripheral T cell lymphoma, rare subtypes Primary cutaneous gamma-delta T cell lymphoma (PCGD-TCL) Primary cutaneous aggressive epidermotropic CD8+ T cell lymphoma (PCAECyTCL) Primary cutaneous CD4+ small- or medium-sized LPDs Primary cutaneous acral CD8+ LPD | <1 <1 6 <1 | 11 31 100 100 | Ulcerating plaques and tumors Ulcerating plaques, nodules, and tumors Solitary nodule or tumor on the face or upper trunk Solitary papule or nodule on acral site (ear; nose) | CD3+, CD4−, CD8−/+ CD3+, CD4−, CD8+ CD3+, CD4+, CD8−, CD279/PD-1+ CD3+, CD4−, CD8+ |
Primary cutaneous peripheral T cell lymphoma, not otherwise specified | 2 | 15 | Localized skin lesions | CD4+ |
Study | Design | Patient Number | Diagnosis | Drug Name | Dosage | Duration | Outcome | Side Effect |
---|---|---|---|---|---|---|---|---|
Horwitz et al., USA 2019 [35] | Clinical trial | 37 | CTCL | Cerdulatinib JAK1, 2, and 3 inhibitor | 30 mg twice daily | NA | ORR was 35% (13/37) MF (ORR of 45%; 9% of the patients achieved CR) versus SS (ORR of 17%, with no CR). | Present |
Moskowitz et al., USA 2021 [37] | Clinical trial | 10 | 7 MF 1 SPTCL 1 PCALCL 1 PCGDTCL | Ruxolitinib JAK1 and 2 inhibitor | 20 mg twice daily | NA | ORRs for MF, SPTCL, and PCALCL were 14% (1/7), 100%, and 100%, respectively. | Present |
Study | Design | Patient Number | Diagnosis | Drug Name | Dosage | Duration | Outcome | Side Effect |
---|---|---|---|---|---|---|---|---|
Levy et al., France 2020 [42] | Case report | 1 | SPTCL + HLH | Ruxolitinib JAK1 and 2 inhibitor | 15 mg twice daily + 20 mg twice daily | 4 + 14 months | CR | NA |
Castillo et al., USA 2022 [43] | Case report | 1 | Erythrodermic MF | Upadacitinib JAK1 inhibitor | 15 mg daily | 16 weeks | CR | NA |
Kook et al., South Korea 2022 [44] | Case report | 1 | MF | Upadacitinib JAK1 inhibitor | NA | 16 weeks | CR | NA |
Watson et al., Australia 2022 [45] | Case report | 1 | SPTCL | Ruxolitinib JAK1 and 2 inhibitor | 15 mg twice daily | 7 weeks | CR | Present |
Hansen et al., Canada 2020 [46] | Case series | 1 | SPTCL+ HLH | Ruxolitinib JAK1 and 2 inhibitor | 15 mg twice daily then 10 mg twice daily | 11 months | CR | Present |
Duan et al., China 2022 [47] | Case series | 4 | SPTCL | Ruxolitinib JAK1 and 2 inhibitor | NA | NA | 75% (3/4) CR 25% (1/4) allo-SCT | NA |
Zhang et al., China 2023 [48] | Case series | 2 | SPTCL + HLH | Ruxolitinib JAK1 and 2 inhibitor | 10 mg twice daily 5 mg twice daily | 16 months About 8 months | CR CR | NA |
Study | Design | Patient Number | Diagnosis | Drug Name | Dosage | Duration | Outcome | Side Effect |
---|---|---|---|---|---|---|---|---|
Iinuma et al., Japan 2022 [49] | Case report | 1 | Rheumatoid arthritis | Upadacitinib JAK1 inhibitor | 7.5 mg daily | 2 weeks | Incident of LyP | NA |
Knapp et al., USA 2022 [50] | Case report | 1 | Erythema elevatum diutinum and associated inflammatory arthritis | Tofacitinib JAK1, 2, and 3 inhibitor | NA | 10 weeks | Incident of LyP | NA |
Saito et al., Japan 2023 [51] | Case report | 1 | Seronegative rheumatoid arthritis | Baricitinib JAK1 and 2 inhibitor | NA | 7 months | Incident of SS | NA |
Cohen et al., France 2023 [52] | Case report | 2 | Chronic graft-versus-host disease | Ruxolitinib JAK1 and 2 inhibitor | 20 mg daily 30 mg daily | NA NA | CTCL relapse MF relapse | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahabi, S.M.; Bahramian, S.; Esmaeili, F.; Danaei, B.; Kalantari, Y.; Fazeli, P.; Sadeghi, S.; Hajizadeh, N.; Assaf, C.; Etesami, I. JAK Inhibitors in Cutaneous T-Cell Lymphoma: Friend or Foe? A Systematic Review of the Published Literature. Cancers 2024, 16, 861. https://doi.org/10.3390/cancers16050861
Vahabi SM, Bahramian S, Esmaeili F, Danaei B, Kalantari Y, Fazeli P, Sadeghi S, Hajizadeh N, Assaf C, Etesami I. JAK Inhibitors in Cutaneous T-Cell Lymphoma: Friend or Foe? A Systematic Review of the Published Literature. Cancers. 2024; 16(5):861. https://doi.org/10.3390/cancers16050861
Chicago/Turabian StyleVahabi, Seyed Mohammad, Saeed Bahramian, Farzad Esmaeili, Bardia Danaei, Yasamin Kalantari, Patrick Fazeli, Sara Sadeghi, Nima Hajizadeh, Chalid Assaf, and Ifa Etesami. 2024. "JAK Inhibitors in Cutaneous T-Cell Lymphoma: Friend or Foe? A Systematic Review of the Published Literature" Cancers 16, no. 5: 861. https://doi.org/10.3390/cancers16050861
APA StyleVahabi, S. M., Bahramian, S., Esmaeili, F., Danaei, B., Kalantari, Y., Fazeli, P., Sadeghi, S., Hajizadeh, N., Assaf, C., & Etesami, I. (2024). JAK Inhibitors in Cutaneous T-Cell Lymphoma: Friend or Foe? A Systematic Review of the Published Literature. Cancers, 16(5), 861. https://doi.org/10.3390/cancers16050861