Immuno-Molecular Targeted Therapy Use and Survival Benefit in Patients with Stage IVB Cervical Carcinoma in Commission on Cancer®-Accredited Facilities in the United States
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design and Patient Selection Criteria
2.2. Statistical Methods
3. Results
3.1. Factors Influencing Immuno-Molecular Therapy Use
3.2. Relationship between Immuno-Molecular Therapy and Survival in Propensity-Score-Balanced Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Bhatla, N.; Aoki, D.; Sharma, D.N.; Sankaranarayanan, R. Cancer of the cervix uteri: 2021 update. Int. J. Gynaecol. Obstet. Off. J. Int. Fed. Gynaecol. Obstet. 2021, 155 (Suppl. 1), 28–44. [Google Scholar] [CrossRef] [PubMed]
- Olawaiye, A.B.; Baker, T.P.; Washington, M.K.; Mutch, D.G. The new (Version 9) American Joint Committee on Cancer tumor, node, metastasis staging for cervical cancer. CA Cancer J. Clin. 2021, 71, 287–298. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Cervical Cancer (Version 1.2023). Available online: https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf (accessed on 28 April 2023).
- Moore, D.H.; Tian, C.; Monk, B.J.; Long, H.J.; Omura, G.A.; Bloss, J.D. Prognostic factors for response to cisplatin-based chemotherapy in advanced cervical carcinoma: A Gynecologic Oncology Group Study. Gynecol. Oncol. 2010, 116, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Lim, M.C.; Seo, S.S.; Kang, S.; Park, S.Y.; Kim, J.Y. Outcomes and toxicities for the treatment of stage IVB cervical cancer. Arch. Gynecol. Obstet. 2012, 285, 1685–1693. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, J.Y.; Kim, J.H.; Yoon, M.S.; Kim, J.; Kim, Y.S. Curative chemoradiotherapy in patients with stage IVB cervical cancer presenting with paraortic and left supraclavicular lymph node metastases. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, T.; Lee, E.S.; Kim, H.J.; Chung, H.H.; Kim, J.W.; Song, Y.S.; Park, N.H. Impact of Chemoradiation on Prognosis in Stage IVB Cervical Cancer with Distant Lymphatic Metastasis. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2013, 45, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Oishi, S.; Kudaka, W.; Toita, T.; Ariga, T.; Nakamoto, T.; Wakayama, A.; Nagai, Y.; Kaneshima, I.; Nishihira, K.; Aoki, Y. Prognostic Factors and Treatment Outcome for Patients with Stage IVB Cervical Cancer. Anticancer Res. 2016, 36, 3471–3475. [Google Scholar]
- Usami, T.; Takahashi, A.; Matoda, M.; Okamoto, S.; Kondo, E.; Kanao, H.; Umayahara, K.; Takeshima, N. Review of Treatment and Prognosis of Stage IVB Cervical Carcinoma. Int. J. Gynecol. Cancer 2016, 26, 1239–1245. [Google Scholar] [CrossRef]
- Nishio, S.; Matsuo, K.; Yonemoto, K.; Shimokawa, M.; Hosaka, M.; Kodama, M.; Miyake, T.M.; Ushijima, K.; Kamura, T.; Westin, S.N.; et al. Race and nodal disease status are prognostic factors in patients with stage IVB cervical cancer. Oncotarget 2018, 9, 32321–32330. [Google Scholar] [CrossRef]
- Venigalla, S.; Guttmann, D.M.; Horne, Z.D.; Carmona, R.; Shabason, J.E.; Beriwal, S. Definitive local therapy is associated with improved overall survival in metastatic cervical cancer. Pract. Radiat. Oncol. 2018, 8, e377–e385. [Google Scholar] [CrossRef]
- Lin, H.; Wang, D.; Li, H.; Wu, C.; Zhang, F.; Lin, Z.; Yao, T. Survival, treatment pattern, and treatment outcome in patients with cervical cancer metastatic to distant lymph nodes. Front. Oncol. 2022, 12, 952480. [Google Scholar] [CrossRef] [PubMed]
- Joh, S.; Violette, C.J.; Khetan, V.U.; Tavakoli, A.; Jooya, N.D.; Cahoon, S.S.; Klar, M.; Roman, L.D.; Matsuo, K. Metastatic extent-specific prognosis of women with stage IVB cervical cancer: Multiple versus single distant organ involvement. Arch. Gynecol. Obstet. 2023, 307, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Farmer, M.; Izaguirre, E.W.; Schwartz, D.L.; Somer, B.; Tillmanns, T.; Ballo, M.T. Association of Definitive Pelvic Radiation Therapy with Survival Among Patients with Newly Diagnosed Metastatic Cervical Cancer. JAMA Oncol. 2018, 4, 1288–1291. [Google Scholar] [CrossRef]
- Bonomi, P.; Blessing, J.A.; Stehman, F.B.; DiSaia, P.J.; Walton, L.; Major, F.J. Randomized trial of three cisplatin dose schedules in squamous-cell carcinoma of the cervix: A Gynecologic Oncology Group study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1985, 3, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Omura, G.A.; Blessing, J.A.; Vaccarello, L.; Berman, M.L.; Clarke-Pearson, D.L.; Mutch, D.G.; Anderson, B. Randomized trial of cisplatin versus cisplatin plus mitolactol versus cisplatin plus ifosfamide in advanced squamous carcinoma of the cervix: A Gynecologic Oncology Group study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1997, 15, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.H.; Blessing, J.A.; McQuellon, R.P.; Thaler, H.T.; Cella, D.; Benda, J.; Miller, D.S.; Olt, G.; King, S.; Boggess, J.F.; et al. Phase III study of cisplatin with or without paclitaxel in stage IVB, recurrent, or persistent squamous cell carcinoma of the cervix: A gynecologic oncology group study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2004, 22, 3113–3119. [Google Scholar] [CrossRef] [PubMed]
- Long, H.J., 3rd; Bundy, B.N.; Grendys, E.C., Jr.; Benda, J.A.; McMeekin, D.S.; Sorosky, J.; Miller, D.S.; Eaton, L.A.; Fiorica, J.V. Randomized phase III trial of cisplatin with or without topotecan in carcinoma of the uterine cervix: A Gynecologic Oncology Group Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 4626–4633. [Google Scholar] [CrossRef]
- Monk, B.J.; Sill, M.W.; McMeekin, D.S.; Cohn, D.E.; Ramondetta, L.M.; Boardman, C.H.; Benda, J.; Cella, D. Phase III trial of four cisplatin-containing doublet combinations in stage IVB, recurrent, or persistent cervical carcinoma: A Gynecologic Oncology Group study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 4649–4655. [Google Scholar] [CrossRef]
- Koh, W.J.; Greer, B.E.; Abu-Rustum, N.R.; Apte, S.M.; Campos, S.M.; Chan, J.; Cho, K.R.; Cohn, D.; Crispens, M.A.; DuPont, N.; et al. Cervical cancer. J. Natl. Compr. Cancer Netw. JNCCN 2013, 11, 320–343. [Google Scholar] [CrossRef]
- Kitagawa, R.; Katsumata, N.; Shibata, T.; Kamura, T.; Kasamatsu, T.; Nakanishi, T.; Nishimura, S.; Ushijima, K.; Takano, M.; Satoh, T.; et al. Paclitaxel plus Carboplatin versus Paclitaxel plus Cisplatin in Metastatic or Recurrent Cervical Cancer: The Open-Label Randomized Phase III Trial JCOG0505. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 2129–2135. [Google Scholar] [CrossRef]
- Gill, B.S.; Lin, J.F.; Krivak, T.C.; Sukumvanich, P.; Laskey, R.A.; Ross, M.S.; Lesnock, J.L.; Beriwal, S. National Cancer Data Base analysis of radiation therapy consolidation modality for cervical cancer: The impact of new technological advancements. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Sill, M.W.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; Michael, H.E.; et al. Bevacizumab for advanced cervical cancer: Final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet 2017, 390, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Krill, L.S.; Tewari, K.S. Integration of bevacizumab with chemotherapy doublets for advanced cervical cancer. Expert Opin. Pharmacother. 2015, 16, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Perkins, V.; Moore, K.; Vesely, S.; Matsuo, K.; Mostofizadeh, S.; Sims, T.T.; Lea, J.; Barnes, D.; Chen, S.; Carlson, M.; et al. Incorporation of whole pelvic radiation into treatment of stage IVB cervical cancer: A novel treatment strategy. Gynecol. Oncol. 2020, 156, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Grau, J.F.; Farinas-Madrid, L.; Oaknin, A. A randomized phase III trial of platinum chemotherapy plus paclitaxel with bevacizumab and atezolizumab versus platinum chemotherapy plus paclitaxel and bevacizumab in metastatic (stage IVB), persistent, or recurrent carcinoma of the cervix: The BEATcc study (ENGOT-Cx10/GEICO 68-C/JGOG1084/GOG-3030). Int. J. Gynecol. Cancer 2020, 30, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yañez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef]
- Mauricio, D.; Zeybek, B.; Tymon-Rosario, J.; Harold, J.; Santin, A.D. Immunotherapy in Cervical Cancer. Curr. Oncol. Rep. 2021, 23, 61. [Google Scholar] [CrossRef]
- Monk, B.J.; Enomoto, T.; Kast, W.M.; McCormack, M.; Tan, D.S.P.; Wu, X.; González-Martín, A. Integration of immunotherapy into treatment of cervical cancer: Recent data and ongoing trials. Cancer Treat. Rev. 2022, 106, 102385. [Google Scholar] [CrossRef]
- Wiley, R.L.; Bondre, I.L.; Jalloul, R.; Klopp, A.H.; Taylor, J.S.; Ramondetta, L.M. Definitive vs palliative pelvic radiation for patients with newly diagnosed stage IVB cervical cancer treated with bevacizumab—An exploratory study. Gynecol. Oncol. Rep. 2022, 40, 100963. [Google Scholar] [CrossRef]
- Maiorano, B.A.; Maiorano, M.F.P.; Ciardiello, D.; Maglione, A.; Orditura, M.; Lorusso, D.; Maiello, E. Beyond Platinum, ICIs in Metastatic Cervical Cancer: A Systematic Review. Cancers 2022, 14, 5955. [Google Scholar] [CrossRef]
- Gennigens, C.; Jerusalem, G.; Lapaille, L.; De Cuypere, M.; Streel, S.; Kridelka, F.; Ray-Coquard, I. Recurrent or primary metastatic cervical cancer: Current and future treatments. ESMO Open 2022, 7, 100579. [Google Scholar] [CrossRef] [PubMed]
- Nishio, S.; Yonemori, K.; Usami, T.; Minobe, S.; Yunokawa, M.; Iwata, T.; Okamoto, A.; Aoki, Y.; Itamochi, H.; Takekuma, M.; et al. Pembrolizumab plus chemotherapy in Japanese patients with persistent, recurrent or metastatic cervical cancer: Results from KEYNOTE-826. Cancer Sci. 2022, 113, 3877–3887. [Google Scholar] [CrossRef] [PubMed]
- Ang, D.J.M.; Chan, J.J. Evolving standards and future directions for systemic therapies in cervical cancer. J. Gynecol. Oncol. 2024, 35, e65. [Google Scholar] [CrossRef] [PubMed]
- Oaknin, A.; Gladieff, L.; Martínez-García, J.; Villacampa, G.; Takekuma, M.; De Giorgi, U.; Lindemann, K.; Woelber, L.; Colombo, N.; Duska, L.; et al. Atezolizumab plus bevacizumab and chemotherapy for metastatic, persistent, or recurrent cervical cancer (BEATcc): A randomised, open-label, phase 3 trial. Lancet 2024, 403, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Vergote, I.; Van Nieuwenhuysen, E.; O’Cearbhaill, R.E.; Westermann, A.; Lorusso, D.; Ghamande, S.; Collins, D.C.; Banerjee, S.; Mathews, C.A.; Gennigens, C.; et al. Tisotumab Vedotin in Combination With Carboplatin, Pembrolizumab, or Bevacizumab in Recurrent or Metastatic Cervical Cancer: Results from the InnovaTV 205/GOG-3024/ENGOT-cx8 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 5536–5549. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Monk, B.J.; Vergote, I.; Miller, A.; de Melo, A.C.; Kim, H.S.; Kim, Y.M.; Lisyanskaya, A.; Samouëlian, V.; Lorusso, D.; et al. Survival with Cemiplimab in Recurrent Cervical Cancer. N. Engl. J. Med. 2022, 386, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Karpel, H.C.; Powell, S.S.; Pothuri, B. Antibody-Drug Conjugates in Gynecologic Cancer. American Society of Clinical Oncology Educational Book. American Society of Clinical Oncology. Meeting 2023, 43, e390772. [Google Scholar] [CrossRef]
- Musa, F.B.; Brouwer, E.; Ting, J.; Schwartz, N.R.M.; Surinach, A.; Bloudek, L.; Ramsey, S.D. Trends in treatment patterns and costs of care among patients with advanced stage cervical cancer. Gynecol. Oncol. 2022, 164, 645–650. [Google Scholar] [CrossRef]
- Kim, H.; Liew, D.; Goodall, S. Cost-effectiveness and financial risks associated with immune checkpoint inhibitor therapy. Br. J. Clin. Pharmacol. 2020, 86, 1703–1710. [Google Scholar] [CrossRef]
- Kucera, C.W.; Tian, C.; Tarney, C.M.; Presti, C.; Jokajtys, S.; Winkler, S.S.; Casablanca, Y.; Bateman, N.W.; Mhawech-Fauceglia, P.; Wenzel, L.; et al. Factors Associated with Survival Disparities Between Non-Hispanic Black and White Patients with Uterine Cancer. JAMA Netw. Open 2023, 6, e238437. [Google Scholar] [CrossRef]
- Austin, P.C. The performance of different propensity score methods for estimating marginal hazard ratios. Stat. Med. 2013, 32, 2837–2849. [Google Scholar] [CrossRef] [PubMed]
- Shu, D.; Young, J.G.; Toh, S.; Wang, R. Variance estimation in inverse probability weighted Cox models. Biometrics 2021, 77, 1101–1117. [Google Scholar] [CrossRef]
- Santin, A.D.; Deng, W.; Frumovitz, M.; Buza, N.; Bellone, S.; Huh, W.; Khleif, S.; Lankes, H.A.; Ratner, E.S.; O’Cearbhaill, R.E.; et al. Phase II evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002). Gynecol. Oncol. 2020, 157, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Friedman, C.F.; Snyder Charen, A.; Zhou, Q.; Carducci, M.A.; Buckley De Meritens, A.; Corr, B.R.; Fu, S.; Hollmann, T.J.; Iasonos, A.; Konner, J.A.; et al. Phase II study of atezolizumab in combination with bevacizumab in patients with advanced cervical cancer. J. Immunother. Cancer 2020, 8, e001126. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Milosevic, M.; Fyles, A.; Pintilie, M.; Viswanathan, A.N. Trends in the utilization of brachytherapy in cervical cancer in the United States. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, K.; Lu, Z.; Zhao, L.; Tao, Y.; Ouyang, Y.; Cao, X. Intensity-modulated radiation therapy for definitive treatment of cervical cancer: A meta-analysis. Radiat. Oncol. 2018, 13, 177. [Google Scholar] [CrossRef] [PubMed]
- Youn, S.H.; Kim, Y.J.; Seo, S.S.; Kang, S.; Lim, M.C.; Chang, H.K.; Park, S.Y.; Kim, J.Y. Effect of addition of bevacizumab to chemoradiotherapy in newly diagnosed stage IVB cervical cancer: A single institution experience in Korea. Int. J. Gynecol. Cancer 2020, 30, 764–771. [Google Scholar] [CrossRef]
- Zighelboim, I.; Taylor, N.P.; Powell, M.A.; Gibb, R.K.; Rader, J.S.; Mutch, D.G.; Grigsby, P.W. Outcomes in 24 selected patients with stage IVB cervical cancer and excellent performance status treated with radiotherapy and chemotherapy. Radiat. Med. 2006, 24, 625–630. [Google Scholar] [CrossRef]
- Moore, K.N.; Herzog, T.J.; Lewin, S.; Giuntoli, R.L.; Armstrong, D.K.; Rocconi, R.P.; Spannuth, W.A.; Gold, M.A. A comparison of cisplatin/paclitaxel and carboplatin/paclitaxel in stage IVB, recurrent or persistent cervical cancer. Gynecol. Oncol. 2007, 105, 299–303. [Google Scholar] [CrossRef]
- Moore, K.N.; Rowland, M.R. Treatment Advances in Locoregionally Advanced and Stage IVB/Recurrent Cervical Cancer: Can We Agree That More Is Not Always Better? J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 2125–2128. [Google Scholar] [CrossRef]
- Hu, K.; Wang, W.; Liu, X.; Meng, Q.; Zhang, F. Comparison of treatment outcomes between squamous cell carcinoma and adenocarcinoma of cervix after definitive radiotherapy or concurrent chemoradiotherapy. Radiat. Oncol. 2018, 13, 249. [Google Scholar] [CrossRef]
- Wang, Y.; Ouyang, Y.; Su, J.; Bai, Z.; Cai, Q.; Cao, X. Role of locoregional surgery in treating FIGO 2009 stage IVB cervical cancer patients: A population-based study. BMJ Open 2021, 11, e042364. [Google Scholar] [CrossRef] [PubMed]
- Pothuri, B.; Blank, S.V.; Myers, T.K.; Hines, J.F.; Randall, L.M.; O’Cearbhaill, R.E.; Slomovitz, B.M.; Eskander, R.N.; Alvarez Secord, A.; Coleman, R.L.; et al. Inclusion, diversity, equity, and access (IDEA) in gynecologic cancer clinical trials: A joint statement from GOG foundation and Society of Gynecologic Oncology (SGO). Gynecol. Oncol. 2023, 174, 278–287. [Google Scholar] [CrossRef]
- Boffa, D.J. What’s Lost in What’s Missing: A Thoughtful Approach to Missing Data in the National Cancer Database. Ann. Surg. Oncol. 2019, 26, 709–710. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C.; Mamdani, M.M.; Stukel, T.A.; Anderson, G.M.; Tu, J.V. The use of the propensity score for estimating treatment effects: Administrative versus clinical data. Stat. Med. 2005, 24, 1563–1578. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C. The use of propensity score methods with survival or time-to-event outcomes: Reporting measures of effect similar to those used in randomized experiments. Stat. Med. 2014, 33, 1242–1258. [Google Scholar] [CrossRef] [PubMed]
Total | Original Cohort | Propensity-Score-Balanced Cohort i | |||||
---|---|---|---|---|---|---|---|
All Cases | No IMT | IMT g | p Value h | No IMT | IMT g | SMD j | |
N = 3164 | N = 2195 | N = 969 | N = 2103 | N = 910 | |||
Age at Diagnosis (years) | |||||||
[Mean (SD)] | [54.2 (12.7)] | [54.7 (12.9)] | [53.0 (12.1)] | 0.0002 | [54.2 (12.8)] | [54.4 (12.3)] | 2.4% |
Race/Ethnicity (%) a | 0.005 | ||||||
Non-Hispanic White | 64.2 | 63.2 | 68.4 | 64.1 | 64.4 | 0.5% | |
Non-Hispanic Black | 17.7 | 18.6 | 15.7 | 17.9 | 18.8 | 2.4% | |
Hispanic | 10.9 | 11.8 | 9.1 | 10.9 | 10.5 | 0.2% | |
Asian/Pacific Islander | 4.0 | 3.8 | 4.4 | 4.0 | 3.8 | 1.0% | |
Others/Unknown | 3.1 | 3.5 | 2.4 | 3.1 | 2.6 | 2.5% | |
Year of Diagnosis (%) | <0.0001 | ||||||
2013 | 11.4 | 14.8 | 3.9 | 11.4 | 10.7 | 1.0% | |
2014 | 12.8 | 14.7 | 8.6 | 12.9 | 12.6 | 0.8% | |
2015 | 14.0 | 15.4 | 10.8 | 14.0 | 13.4 | 1.8% | |
2016 | 15.3 | 15.4 | 15.3 | 15.3 | 15.6 | 0.1% | |
2017 | 16.2 | 15.9 | 16.8 | 16.0 | 16.5 | 0.7% | |
2018 | 15.8 | 12.8 | 22.7 | 16.0 | 16.3 | 0.2% | |
2019 | 14.4 | 11.2 | 21.9 | 14.4 | 14.9 | 0.7% | |
Comorbidity Score (%) b | 0.495 | ||||||
0 | 80.7 | 80.6 | 80.8 | 80.5 | 80.0 | 1.5% | |
1 | 13.7 | 13.5 | 14.2 | 13.8 | 14.3 | 1.7% | |
≥2 | 5.6 | 5.9 | 5.0 | 5.7 | 5.7 | 0.0% | |
Insurance Status (%) c | 0.001 | ||||||
Private Insurance | 40.4 | 38.5 | 44.8 | 40.4 | 39.9 | 1.8% | |
Medicare | 21.9 | 22.9 | 19.5 | 21.6 | 21.3 | 0.8% | |
Medicaid | 26.6 | 26.6 | 26.4 | 26.9 | 28.5 | 3.9% | |
Uninsured | 8.7 | 9.6 | 6.5 | 8.6 | 8.0 | 1.5% | |
Unknown | 2.5 | 2.4 | 2.8 | 2.5 | 2.4 | 0.7% | |
Facility Type (%) d | 0.230 | ||||||
Academic/Research Program | 39.0 | 38.5 | 40.4 | 39.4 | 40.1 | 1.3% | |
Non-Academic/Research | 47.3 | 48.3 | 45.0 | 47.2 | 47.1 | 0.1% | |
Other/Unknown | 13.7 | 13.3 | 14.7 | 13.5 | 12.9 | 1.7% | |
Neighborhood Income (%) e | 0.174 | ||||||
<USD 40,227 | 22.3 | 22.9 | 21.1 | 22.2 | 22.3 | 0.7% | |
USD 40,227 to USD 50,353 | 21.6 | 21.4 | 22.0 | 21.6 | 21.3 | 0.8% | |
USD 50,354 to USD 63,332 | 19.9 | 19.3 | 21.3 | 19.7 | 19.0 | 2.1% | |
≥USD 63,333 | 22.4 | 23.2 | 20.5 | 22.4 | 23.1 | 1.9% | |
Unknown | 13.8 | 13.2 | 15.2 | 14.1 | 14.4 | 0.3% | |
Geographic Region (%) f | 0.027 | ||||||
Northeast | 17.5 | 17.9 | 16.6 | 17.5 | 16.6 | 2.5% | |
Midwest | 20.2 | 19.0 | 22.9 | 20.2 | 20.5 | 0.2% | |
South | 35.3 | 36.8 | 32.1 | 35.5 | 37.4 | 4.0% | |
West | 13.3 | 13.1 | 13.7 | 13.3 | 12.7 | 1.4% | |
Unknown | 13.7 | 13.3 | 14.7 | 13.5 | 12.9 | 1.7% | |
Histologic Type (%) | <0.0001 | ||||||
Squamous Cell Carcinoma | 64.7 | 63.0 | 68.6 | 64.5 | 63.5 | 2.7% | |
Adenocarcinoma | 16.1 | 15.5 | 17.4 | 16.2 | 16.3 | 0.5% | |
Adenosquamous Carcinoma | 3.7 | 3.0 | 5.2 | 3.7 | 3.7 | 0.0% | |
Other Histologic Types | 15.5 | 18.5 | 8.8 | 15.6 | 16.5 | 4.2% | |
Tumor Grade (%) | 0.441 | ||||||
1–2 | 21.2 | 21.5 | 20.5 | 21.2 | 22.0 | 1.4% | |
3 | 42.5 | 41.7 | 44.2 | 42.4 | 42.0 | 0.9% | |
Not Graded | 36.3 | 36.8 | 35.3 | 36.4 | 36.0 | 0.3% | |
Tumor Size (%) | 0.387 | ||||||
<4.0 cm | 5.7 | 5.5 | 6.2 | 5.5 | 5.0 | 2.6% | |
4.0–5.9 cm | 13.9 | 13.6 | 14.6 | 13.6 | 13.8 | 0.2% | |
6.0–7.9 cm | 17.3 | 17.5 | 16.7 | 17.3 | 17.7 | 1.2% | |
≥8.0 cm | 17.1 | 17.9 | 15.4 | 17.1 | 16.7 | 0.8% | |
Unknown | 46.0 | 45.5 | 47.2 | 46.5 | 46.9 | 0.8% | |
Site of Distant Metastasis (%) | <0.0001 | ||||||
Distant Lymph Node | 26.8 | 28.4 | 23.2 | 26.5 | 24.2 | 4.5% | |
Distant Organ | 34.7 | 34.9 | 34.4 | 35.2 | 36.5 | 2.1% | |
Distant Lymph Node and Organ | 28.4 | 25.4 | 35.0 | 28.2 | 29.2 | 1.6% | |
Unknown | 10.1 | 11.3 | 7.4 | 10.1 | 10.1 | 0.9% | |
First-Line Therapy | <0.0001 | ||||||
CT | 38.1 | 32.9 | 49.9 | 38.0 | 38.2 | 0.5% | |
CT and EBRT | 42.7 | 44.2 | 39.3 | 42.8 | 44.2 | 2.2% | |
CT and EBRT and ICBT | 19.2 | 22.8 | 10.8 | 19.2 | 17.6 | 2.3% |
Clinical Characteristics | OR (95% CI) a | p-Value | Adjusted OR (95% CI) b | p-Value |
---|---|---|---|---|
Age | ||||
Each 5-Year Increase | 0.91 (0.88–0.95) | <0.0001 | 0.90 (0.85–0.95) | <0.0001 |
Insurance Status | ||||
Private | Reference | Reference | ||
Medicare | 0.85 (0.65–1.12) | 0.253 | 0.85 (0.65–1.12) | 0.253 |
Medicaid | 0.74 (0.60–0.91) | 0.005 | 0.74 (0.60–0.91) | 0.005 |
Uninsured | 0.60 (0.43–0.83) | 0.002 | 0.60 (0.43–0.83) | 0.002 |
Facility Type | ||||
Academic/Research | Reference | Reference | ||
Non-Academic/Research | 0.83 (0.70–0.99) | 0.035 | 0.75 (0.63–0.90) | 0.002 |
Site of Distant Metastasis | ||||
Distant Lymph Node | Reference | Reference | ||
Distant Organ | 0.97 (0.78–1.19) | 0.739 | 0.88 (0.71–1.10) | 0.258 |
Distant Lymph Node and Organ | 1.49 (1.20–1.84) | 0.0003 | 1.27 (1.01–1.59) | 0.042 |
First-Line Treatment | ||||
CT | Reference | Reference | ||
CT and EBRT | 0.66 (0.56–0.79) | <0.0001 | 0.61 (0.51–0.73) | <0.0001 |
CT and EBRT plus ICBT | 0.32 (0.25–0.40) | <0.0001 | 0.25 (0.19–0.33) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitler, C.A.; Tian, C.; Hamilton, C.A.; Richardson, M.T.; Chan, J.K.; Kapp, D.S.; Leath, C.A., III; Casablanca, Y.; Washington, C.; Chappell, N.P.; et al. Immuno-Molecular Targeted Therapy Use and Survival Benefit in Patients with Stage IVB Cervical Carcinoma in Commission on Cancer®-Accredited Facilities in the United States. Cancers 2024, 16, 1071. https://doi.org/10.3390/cancers16051071
Sitler CA, Tian C, Hamilton CA, Richardson MT, Chan JK, Kapp DS, Leath CA III, Casablanca Y, Washington C, Chappell NP, et al. Immuno-Molecular Targeted Therapy Use and Survival Benefit in Patients with Stage IVB Cervical Carcinoma in Commission on Cancer®-Accredited Facilities in the United States. Cancers. 2024; 16(5):1071. https://doi.org/10.3390/cancers16051071
Chicago/Turabian StyleSitler, Collin A., Chunqiao Tian, Chad A. Hamilton, Michael T. Richardson, John K. Chan, Daniel S. Kapp, Charles A. Leath, III, Yovanni Casablanca, Christina Washington, Nicole P. Chappell, and et al. 2024. "Immuno-Molecular Targeted Therapy Use and Survival Benefit in Patients with Stage IVB Cervical Carcinoma in Commission on Cancer®-Accredited Facilities in the United States" Cancers 16, no. 5: 1071. https://doi.org/10.3390/cancers16051071
APA StyleSitler, C. A., Tian, C., Hamilton, C. A., Richardson, M. T., Chan, J. K., Kapp, D. S., Leath, C. A., III, Casablanca, Y., Washington, C., Chappell, N. P., Klopp, A. H., Shriver, C. D., Tarney, C. M., Bateman, N. W., Conrads, T. P., Maxwell, G. L., Phippen, N. T., & Darcy, K. M. (2024). Immuno-Molecular Targeted Therapy Use and Survival Benefit in Patients with Stage IVB Cervical Carcinoma in Commission on Cancer®-Accredited Facilities in the United States. Cancers, 16(5), 1071. https://doi.org/10.3390/cancers16051071