EXACT-Net: Framework for EHR-Guided Lung Tumor Auto-Segmentation for Non-Small Cell Lung Cancer Radiotherapy
Simple Summary
Abstract
1. Introduction
2. Related Work
3. Materials and Methods
3.1. LLM Tumor Phenotype Extraction
3.2. Tumor Auto-Segmentation Algorithm Design and Training
3.3. Loss Functions
3.4. Dataset and Data Pre-Processing
3.5. Data Augmentation
3.6. Training and Evaluation Methods
3.7. Experiment Design
4. Results
4.1. Tumor Auto-Segmentation Performance
4.2. LLM Prompt Design
4.3. EHR-Guided Tumor Auto-Segmentation Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Wang, D.; Chung, C.; Tian, D.; Rimner, A.; Huang, J.; Jones, D.R. A Systematic Review and Meta-Analysis of Stereotactic Body Radiation Therapy versus Surgery for Patients with Non–Small Cell Lung Cancer. J. Thorac. Cardiovasc. Surg. 2019, 157, 362–373.e8. [Google Scholar] [CrossRef] [PubMed]
- Tandberg, D.J.; Tong, B.C.; Ackerson, B.G.; Kelsey, C.R. Surgery versus Stereotactic Body Radiation Therapy for Stage I Non–Small Cell Lung Cancer: A Comprehensive Review. Cancer 2018, 124, 667–678. [Google Scholar] [CrossRef]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The Biology and Management of Non-Small Cell Lung Cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef]
- Tyldesley, S.; Boyd, C.; Schulze, K.; Walker, H.; Mackillop, W.J. Estimating the Need for Radiotherapy for Lung Cancer: An Evidence-Based, Epidemiologic Approach. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 973–985. [Google Scholar] [CrossRef]
- Hanna, T.P.; King, W.D.; Thibodeau, S.; Jalink, M.; Paulin, G.A.; Harvey-Jones, E.; O’Sullivan, D.E.; Booth, C.M.; Sullivan, R.; Aggarwal, A. Mortality Due to Cancer Treatment Delay: Systematic Review and Meta-Analysis. BMJ 2020, 371, m4087. [Google Scholar] [CrossRef]
- Samson, P.; Patel, A.; Garrett, T.; Crabtree, T.; Kreisel, D.; Krupnick, A.S.; Patterson, G.A.; Broderick, S.; Meyers, B.F.; Puri, V. Effects of Delayed Surgical Resection on Short-Term and Long-Term Outcomes in Clinical Stage I Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2015, 99, 1906–1913. [Google Scholar] [CrossRef]
- Khorana, A.A.; Tullio, K.; Elson, P.; Pennell, N.A.; Grobmyer, S.R.; Kalady, M.F.; Raymond, D.; Abraham, J.; Klein, E.A.; Walsh, R.M.; et al. Time to Initial Cancer Treatment in the United States and Association with Survival over Time: An Observational Study. PLoS ONE 2019, 14, e0213209. [Google Scholar]
- Cushman, T.R.; Jones, B.; Akhavan, D.; Rusthoven, C.G.; Verma, V.; Salgia, R.; Sedrak, M.; Massarelli, E.; Welsh, J.W.; Amini, A. The Effects of Time to Treatment Initiation for Patients With Non–Small-Cell Lung Cancer in the United States. Clin. Lung Cancer 2021, 22, e84–e97. [Google Scholar] [CrossRef]
- Hooshangnejad, H.; Chen, Q.; Feng, X.; Zhang, R.; Farjam, R.; Voong, K.R.; Hales, R.K.; Du, Y.; Jia, X.; Ding, K. DAART: A Deep Learning Platform for Deeply Accelerated Adaptive Radiation Therapy for Lung Cancer. Front. Oncol. 2023, 13, 1201679. [Google Scholar] [CrossRef]
- Hooshangnejad, H.; Chen, Q.; Feng, X.; Zhang, R.; Ding, K. DeepPERFECT: Novel Deep Learning CT Synthesis Method for Expeditious Pancreatic Cancer Radiotherapy. Cancers 2023, 15, 3061. [Google Scholar] [CrossRef]
- Mohammed, N.; Kestin, L.L.; Grills, I.S.; Battu, M.; Fitch, D.L.; Wong, C.O.; Margolis, J.H.; Chmielewski, G.W.; Welsh, R.J. Rapid Disease Progression With Delay in Treatment of Non–Small-Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Le, V.-L.; Saut, O. RRc-UNet 3D for Lung Tumor Segmentation from CT Scans of Non-Small Cell Lung Cancer Patients. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 2316–2325. [Google Scholar]
- Zhao, D.; Liu, Y.; Yin, H.; Wang, Z. A Novel Multi-Scale CNNs for False Positive Reduction in Pulmonary Nodule Detection. Expert. Syst. Appl. 2022, 207, 117652. [Google Scholar] [CrossRef]
- Gruetzemacher, R.; Gupta, A.; Paradice, D. 3D Deep Learning for Detecting Pulmonary Nodules in CT Scans. J. Am. Med. Inform. Assoc. 2018, 25, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Khosravan, N.; Bagci, U. Semi-Supervised Multi-Task Learning for Lung Cancer Diagnosis. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 710–713. [Google Scholar]
- Yu, X.; He, L.; Wang, Y.; Dong, Y.; Song, Y.; Yuan, Z.; Yan, Z.; Wang, W. A Deep Learning Approach for Automatic Tumor Delineation in Stereotactic Radiotherapy for Non-Small Cell Lung Cancer Using Diagnostic PET-CT and Planning CT. Front. Oncol. 2023, 13, 1235461. [Google Scholar] [CrossRef] [PubMed]
- Shamas, S.; Panda, S.N.; Sharma, I. Review on Lung Nodule Segmentation-Based Lung Cancer Classification Using Machine Learning Approaches BT—Artificial Intelligence on Medical Data; Gupta, M., Ghatak, S., Gupta, A., Mukherjee, A.L., Eds.; Springer Nature: Singapore, 2023; pp. 277–286. [Google Scholar]
- Li, R.; Xiao, C.; Huang, Y.; Hassan, H.; Huang, B. Deep Learning Applications in Computed Tomography Images for Pulmonary Nodule Detection and Diagnosis: A Review. Diagnostics 2022, 12, 298. [Google Scholar] [CrossRef]
- Fan, L.; Li, L.; Ma, Z.; Lee, S.; Yu, H.; Hemphill, L. A Bibliometric Review of Large Language Models Research from 2017 to 2023. arXiv 2023, arXiv:2304.02020. [Google Scholar] [CrossRef]
- Siad, S.M. The Promise and Perils of Google’s Bard for Scientific Research. HASTAC Commons 2023. [Google Scholar] [CrossRef]
- Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A. Training Language Models to Follow Instructions with Human Feedback. Adv. Neural Inf. Process. Syst. 2022, 35, 27730–27744. [Google Scholar]
- Ray, P.P. ChatGPT: A Comprehensive Review on Background, Applications, Key Challenges, Bias, Ethics, Limitations and Future Scope. Internet Things Cyber-Phys. Syst. 2023, 3, 121–154. [Google Scholar] [CrossRef]
- Agrawal, M.; Hegselmann, S.; Lang, H.; Kim, Y.; Sontag, D. Large Language Models Are Zero-Shot Clinical Information Extractors. arXiv 2022, arXiv:2205.12689. [Google Scholar]
- Kojima, T.; Gu, S.S.; Reid, M.; Matsuo, Y.; Iwasawa, Y. Large Language Models Are Zero-Shot Reasoners. Adv. Neural Inf. Process. Syst. 2022, 35, 22199–22213. [Google Scholar]
- Shachar, C. HIPAA, Privacy, and Reproductive Rights in a Post-Roe Era. JAMA 2022, 328, 417–418. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S. ChatGPT and the Future of Medical Writing. Radiology 2023, 307, e223312. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, P.; Li, Y.; Holmes, J.; Shu, P.; Zhang, L.; Liu, C.; Liu, N.; Zhu, D.; Li, X. RadOnc-GPT: A Large Language Model for Radiation Oncology. arXiv 2023, arXiv:2309.10160. [Google Scholar]
- Kenneth, R.C. Digital Image Processing; Prentice Hall.: Hoboken, NJ, USA, 1996; ISBN 0132114674. [Google Scholar]
- Uzelaltinbulat, S.; Ugur, B. Lung Tumor Segmentation Algorithm. Procedia Comput. Sci. 2017, 120, 140–147. [Google Scholar] [CrossRef]
- Delbeke, D.; Coleman, R.E.; Guiberteau, M.J.; Brown, M.L.; Royal, H.D.; Siegel, B.A.; Townsend, D.W.; Berland, L.L.; Parker, J.A.; Hubner, K. Procedure Guideline for Tumor Imaging with 18F-FDG PET/CT 1.0. J. Nucl. Med. 2006, 47, 885–895. [Google Scholar]
- Hooshangnejad, H.; Miles, D.; Hill, C.; Narang, A.; Ding, K.; Han-Oh, S. Inter-Breath-Hold Geometric and Dosimetric Variations in Organs at Risk during Pancreatic Stereotactic Body Radiotherapy: Implications for Adaptive Radiation Therapy. Cancers 2023, 15, 4332. [Google Scholar] [CrossRef]
- Hooshangnejad, H.; Han-Oh, S.; Shin, E.J.; Narang, A.; Rao, A.D.; Lee, J.; McNutt, T.; Hu, C.; Wong, J.; Ding, K. Demonstrating the Benefits of Corrective Intraoperative Feedback in Improving the Quality of Duodenal Hydrogel Spacer Placement. Med. Phys. 2022, 49, 4794–4803. [Google Scholar] [CrossRef]
- Mercieca, S.; Belderbos, J.S.A.; van Herk, M. Challenges in the Target Volume Definition of Lung Cancer Radiotherapy. Transl. Lung Cancer Res. 2021, 10, 1983. [Google Scholar] [CrossRef]
- Van Meerbeeck, J.P.; Fennell, D.A.; De Ruysscher, D.K.M. Small-Cell Lung Cancer. Lancet 2011, 378, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Zotin, A.; Hamad, Y.; Simonov, K.; Kurako, M. Lung Boundary Detection for Chest X-Ray Images Classification Based on GLCM and Probabilistic Neural Networks. Procedia Comput. Sci. 2019, 159, 1439–1448. [Google Scholar] [CrossRef]
- Skourt, B.A.; El Hassani, A.; Majda, A. Lung CT Image Segmentation Using Deep Neural Networks. Procedia Comput. Sci. 2018, 127, 109–113. [Google Scholar] [CrossRef]
- Asuntha, A.; Srinivasan, A. Deep Learning for Lung Cancer Detection and Classification. Multimed. Tools Appl. 2020, 79, 7731–7762. [Google Scholar] [CrossRef]
- Geng, L.; Zhang, S.; Tong, J.; Xiao, Z. Lung Segmentation Method with Dilated Convolution Based on VGG-16 Network. Comput. Assist. Surg. 2019, 24, 27–33. [Google Scholar] [CrossRef]
- Patil, R.; Wee, L.; Dekker, A. Auto Segmentation of Lung in Non-Small Cell Lung Cancer Using Deep Convolution Neural Network. In Proceedings of the Advances in Computing and Data Sciences: 4th International Conference, ICACDS 2020, Valletta, Malta, 24–25 April 2020; Revised Selected Papers 4. Springer: Berlin/Heidelberg, Germany, 2020; pp. 340–351. [Google Scholar]
- Pawar, S.P.; Talbar, S.N. LungSeg-Net: Lung Field Segmentation Using Generative Adversarial Network. Biomed. Signal Process Control 2021, 64, 102296. [Google Scholar] [CrossRef]
- Alom, M.Z.; Yakopcic, C.; Hasan, M.; Taha, T.M.; Asari, V.K. Recurrent Residual U-Net for Medical Image Segmentation. J. Med. Imaging 2019, 6, 14006. [Google Scholar] [CrossRef]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 565–571. [Google Scholar]
- Negahdar, M.; Beymer, D.; Syeda-Mahmood, T. Automated Volumetric Lung Segmentation of Thoracic CT Images Using Fully Convolutional Neural Network. In Proceedings of the Medical Imaging 2018: Computer-Aided Diagnosis, Houston, TX, USA, 12–15 February 2018; SPIE: San Diego, CA, USA, 2018; Volume 10575, pp. 356–361. [Google Scholar]
- Xie, H.; Yang, D.; Sun, N.; Chen, Z.; Zhang, Y. Automated Pulmonary Nodule Detection in CT Images Using Deep Convolutional Neural Networks. Pattern Recognit. 2019, 85, 109–119. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Q.; Li, H. Automatic Segmentation of the Gross Target Volume in Non-Small Cell Lung Cancer Using a Modified Version of ResNet. Technol. Cancer Res. Treat. 2020, 19, 1533033820947484. [Google Scholar] [CrossRef]
- Kopelowitz, E.; Engelhard, G. Lung Nodules Detection and Segmentation Using 3D Mask-RCNN. arXiv 2019, arXiv:1907.07676. [Google Scholar]
- Kamal, U.; Rafi, A.M.; Hoque, R.; Wu, J.; Hasan, M.K. Lung Cancer Tumor Region Segmentation Using Recurrent 3d-Denseunet. In Proceedings of the Thoracic Image Analysis: Second International Workshop, TIA 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, 8 October 2020; Proceedings 2. Springer: Berlin/Heidelberg, Germany, 2020; pp. 36–47. [Google Scholar]
- Renze, M.; Guven, E. The Effect of Sampling Temperature on Problem Solving in Large Language Models. arXiv 2024, arXiv:2402.05201. [Google Scholar]
- Patil, R.; Gudivada, V. A Review of Current Trends, Techniques, and Challenges in Large Language Models (Llms). Appl. Sci. 2024, 14, 2074. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, Z.; Langrené, N.; Zhu, S. Unleashing the Potential of Prompt Engineering in Large Language Models: A Comprehensive Review. arXiv 2023, arXiv:2310.14735. [Google Scholar]
- Sahoo, P.; Singh, A.K.; Saha, S.; Jain, V.; Mondal, S.; Chadha, A. A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications. arXiv 2024, arXiv:2402.07927. [Google Scholar]
- Liu, Z.; Yu, X.; Zhang, L.; Wu, Z.; Cao, C.; Dai, H.; Zhao, L.; Liu, W.; Shen, D.; Li, Q. Deid-Gpt: Zero-Shot Medical Text de-Identification by Gpt-4. arXiv 2023, arXiv:2303.11032. [Google Scholar]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.; Petersen, J.; Maier-Hein, K.H. NnU-Net: A Self-Configuring Method for Deep Learning-Based Biomedical Image Segmentation. Nat. Methods 2021, 18, 203–221. [Google Scholar] [CrossRef]
- Feng, X.; Tustison, N.J.; Patel, S.H.; Meyer, C.H. Brain Tumor Segmentation Using an Ensemble of 3D U-Nets and Overall Survival Prediction Using Radiomic Features. Front. Comput. Neurosci. 2020, 14, 25. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Girshick, R. Fast R-Cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Armato, S.G., III; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.; Hoffman, E.A. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans. Med. Phys. 2011, 38, 915–931. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, C.; Xie, X. Automatic Pulmonary Lobe Segmentation Using Deep Learning. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1225–1228. [Google Scholar]
- Feng, X.; Qing, K.; Tustison, N.J.; Meyer, C.H.; Chen, Q. Deep Convolutional Neural Network for Segmentation of Thoracic Organs-at-risk Using Cropped 3D Images. Med. Phys. 2019, 46, 2169–2180. [Google Scholar] [CrossRef]
Lung Region | DSC |
---|---|
RUL | 0.94 |
RML | 0.83 |
RLL | 0.96 |
LUL | 0.98 |
LLL | 0.97 |
Lungs Overall | 0.97 |
Lung Nodule | 0.67 |
Region of Interest | AP@IoU = 0.5 | AP@IoU = 0.7 |
---|---|---|
Lung Nodule | 65.63 | 59.15 |
Case ID | Ground Truth | Detected Nodules | Removed Nodules | Matching Ground Truth |
---|---|---|---|---|
1 | 1 | 2 (FP) | 1 | Yes |
2 | 1 | 1 | 0 | Yes |
3 | 1 | 1 | 0 | Yes |
4 | 2 | 7 (FP) | 5 | Yes |
5 | 2 | 4 (FP) | 2 | Yes |
6 | 1 | 0 (FN) | 0 | No |
7 | 2 | 5 (FP) | 3 | Yes |
8 | 1 | 4 (FP) | 2 | No (FP) |
9 | 1 | 3 (FP) | 2 | Yes |
10 | 1 | 1 (FP) | 1 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hooshangnejad, H.; Huang, G.; Kelly, K.; Feng, X.; Luo, Y.; Zhang, R.; Xu, Z.; Chen, Q.; Ding, K. EXACT-Net: Framework for EHR-Guided Lung Tumor Auto-Segmentation for Non-Small Cell Lung Cancer Radiotherapy. Cancers 2024, 16, 4097. https://doi.org/10.3390/cancers16234097
Hooshangnejad H, Huang G, Kelly K, Feng X, Luo Y, Zhang R, Xu Z, Chen Q, Ding K. EXACT-Net: Framework for EHR-Guided Lung Tumor Auto-Segmentation for Non-Small Cell Lung Cancer Radiotherapy. Cancers. 2024; 16(23):4097. https://doi.org/10.3390/cancers16234097
Chicago/Turabian StyleHooshangnejad, Hamed, Gaofeng Huang, Katelyn Kelly, Xue Feng, Yi Luo, Rui Zhang, Ziyue Xu, Quan Chen, and Kai Ding. 2024. "EXACT-Net: Framework for EHR-Guided Lung Tumor Auto-Segmentation for Non-Small Cell Lung Cancer Radiotherapy" Cancers 16, no. 23: 4097. https://doi.org/10.3390/cancers16234097
APA StyleHooshangnejad, H., Huang, G., Kelly, K., Feng, X., Luo, Y., Zhang, R., Xu, Z., Chen, Q., & Ding, K. (2024). EXACT-Net: Framework for EHR-Guided Lung Tumor Auto-Segmentation for Non-Small Cell Lung Cancer Radiotherapy. Cancers, 16(23), 4097. https://doi.org/10.3390/cancers16234097