Thermal Liquid Biopsy: A Promising Tool for the Differential Diagnosis of Pancreatic Cystic Lesions and Malignancy Detection
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Processing
2.2. Data Analysis
2.2.1. Preparation of Thermograms
2.2.2. Obtaining Classification Models (iTLB Models)
- iTLB1 Model: NM-PCLs vs. M-PCLs, training with confirmed LQP diagnoses and validating with high probability diagnoses.
- iTLB2 Model: benign (bM-PCLs) vs. malignant (mM-PCLs), training with all M-PCLs due to the small sample size.
2.2.3. Statistical Analysis
3. Results
3.1. Demographics
3.2. Symptoms
- NM-PCLs: 67% (12/18) abdominal pain (2/5 SCAs and 10/11 PCs, nine with underlying chronic pancreatitis).
- M-PCLs: 71% (12/17) symptomatic.
- ○
- bM-PCLs: 44% (4/9) abdominal pain, one of them (IPMN) with acute pancreatitis.
- ○
- mM-PCLs: jaundice (100% of malignant IPMNs (mIPMNs) and 25% of PDACs) and weight loss (100% of PDACs and 67% of mIPMNs) were predominant.
3.3. Morphological Characteristics, String Sign, and Biochemical Markers
- Mural nodules > 5 mm (n = 3): two IPMNs (one mIPMN), one PC (disappeared in follow-up).
- Solid component (n = 4): All malignant, two PDACs, two mIPMNs.
- Dilated Wirsung > 10 mm: one main duct IPMN (MD-IPMN), not fit for surgery and negative cytology, favorable evolution to date.
- Cyst wall thickening (n = 4): two PCs, one SCA, one PDAC.
- Size > 30 mm: 6/8 M-PCLs.
- Dilated Wirsung 5–9 mm: one PDAC, five IPMNs (three mIPMNs).
- Lymphadenopathies: two PDACs.
3.4. Cytology
3.5. Surgical Resection
- Six distal pancreatectomies: one due to complication (pancreatic fistula), the remaining five due to suspected mM-PCLs with HRS/WF: pain (3/5), size > 30 mm (4/5), growth (3/5), acute pancreatitis (1/5), 8 mm mural nodule (1/5), elevated serum Ca19.9 (1/5). All of them were confirmed as M-PCLs, but only one showed high-grade dysplasia (HGD), with its only WF being growth. All of them presented minor complications.
- Five CDPs: All performed due to suspected mM-PCLs with HRS/WF: new-onset diabetes (5/5), jaundice (2/5), elevated serum Ca19.9 (3/5), size > 30 mm (3/5), dilated Wirsung (3/5), or solid component (2/5). Among these, two were confirmed as SCAs, with no postoperative complications, and three were confirmed as mM-PCLs, with one postoperative death.
- Three exploratory laparotomies, two cystogastrostomies, and one emergency surgery (hemoperitoneum).
3.6. ICF Thermograms
3.6.1. iTLB1 Model: NM-PCLs vs. M-PCLs
3.6.2. iTLB2 Model: bM-PCLs vs. mM-PCLs
4. Discussion
4.1. Differential Diagnosis of NM-PCLs vs. M-PCLs
4.2. Identification of Malignancies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michl, P.; Löhr, M.; Neoptolemos, J.P.; Capurso, G.; Rebours, V.; Malats, N.; Ollivier, M.; Ricciardiello, L. UEG Position Paper on Pancreatic Cancer. Bringing Pancreatic Cancer to the 21st Century: Prevent, Detect, and Treat the Disease Earlier and Better. United Eur. Gastroenterol. J. 2021, 9, 860–871. [Google Scholar] [CrossRef]
- Ergenc, M.; Karpuz, S.; Ergenc, M.; Yegen, C. Enhanced Recovery after Pancreatic Surgery: A Prospective Randomized Controlled Clinical Trial. J. Surg. Oncol. 2021, 124, 1070–1076. [Google Scholar] [CrossRef]
- Privalov, G.; Kavina, V.; Freire, E.; Privalov, P.L. Precise Scanning Calorimeter for Studying Thermal Properties of Biological Macromolecules in Dilute Solution. Anal. Biochem. 1995, 232, 79–85. [Google Scholar] [CrossRef]
- Garbett, N.C.; Brock, G.N. Differential Scanning Calorimetry as a Complementary Diagnostic Tool for the Evaluation of Biological Samples. Biochim. Biophys. Acta Gen. Subj. 2016, 1860, 981–989. [Google Scholar] [CrossRef]
- Dandé; Nöt, L.G.; Wiegand, N.; Kocsis, B.; Lőrinczy, D. DSC Analysis of Human Synovial Fluid Samples in the Diagnostics of Non-Septic and Septic Arthritis. J. Therm. Anal. Calorim. 2017, 130, 1249–1252. [Google Scholar] [CrossRef]
- Chagovetz, A.A.; Jensen, R.L.; Recht, L.; Glantz, M.; Chagovetz, A.M. Preliminary Use of Differential Scanning Calorimetry of Cerebrospinal Fluid for the Diagnosis of Glioblastoma Multiforme. J. Neurooncol. 2011, 105, 499–506. [Google Scholar] [CrossRef]
- Pultrone, L.; Schmid, R.; Waltimo, T.; Braissant, O.; Astasov-Frauenhoffer, M. Saliva Profiling with Differential Scanning Calorimetry: A Feasibility Study with Ex Vivo Samples. PLoS ONE 2022, 17, e0269600. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Campoy, A.; Vega, S.; Sanchez-Gracia, O.; Lanas, A.; Rodrigo, A.; Kaliappan, A.; Hall, M.B.; Nguyen, T.Q.; Brock, G.N.; Chesney, J.A.; et al. Thermal Liquid Biopsy for Monitoring Melanoma Patients under Surveillance during Treatment: A Pilot Study. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1701–1710. [Google Scholar] [CrossRef]
- Annesi, F.; Hermoso-Durán, S.; Rizzuti, B.; Bruno, R.; Pirritano, D.; Petrone, A.; Del Giudice, F.; Ojeda, J.; Vega, S.; Sanchez-Gracia, O.; et al. Thermal Liquid Biopsy (TLB) of Blood Plasma as a Potential Tool to Help in the Early Diagnosis of Multiple Sclerosis. J. Pers. Med. 2021, 11, 295. [Google Scholar] [CrossRef]
- Vega, S.; Garcia-Gonzalez, M.A.; Lanas, A.; Velazquez-Campoy, A.; Abian, O. Deconvolution Analysis for Classifying Gastric Adenocarcinoma Patients Based on Differential Scanning Calorimetry Serum Thermograms. Sci. Rep. 2015, 5, 7988. [Google Scholar] [CrossRef]
- Rodrigo, A.; Ojeda, J.L.; Vega, S.; Sanchez-Gracia, O.; Lanas, A.; Isla, D.; Velazquez-Campoy, A.; Abian, O. Thermal Liquid Biopsy (TLB): A Predictive Score Derived from Serum Thermograms as a Clinical Tool for Screening Lung Cancer Patients. Cancers 2019, 11, 1012. [Google Scholar] [CrossRef]
- Hermoso-Durán, S.; Fraunhoffer, N.; Millastre-Bocos, J.; Sanchez-Gracia, O.; Garrido, P.F.; Vega, S.; Lanas, Á.; Iovanna, J.; Velázquez-Campoy, A.; Abian, O. Development of a Machine-Learning Model for Diagnosis of Pancreatic Cancer from Serum Samples Analyzed by Thermal Liquid Biopsy. Adv. Intell. Syst. 2024, 2400308. [Google Scholar] [CrossRef]
- Hermoso-Durán, S.; García-Rayado, G.; Ceballos-Laita, L.; Sostres, C.; Vega, S.; Millastre, J.; Sánchez-Gracia, O.; Ojeda, J.L.; Lanas, Á.; Velázquez-Campoy, A.; et al. Thermal Liquid Biopsy (TLB) Focused on Benign and Premalignant Pancreatic Cyst Diagnosis. J. Pers. Med. 2021, 11, 25. [Google Scholar] [CrossRef]
- Téoule, P.; Bartel, F.; Birgin, E.; Rückert, F.; Wilhelm, T.J. The Clavien-Dindo Classification in Pancreatic Surgery: A Clinical and Economic Validation. J. Investig. Surg. 2019, 32, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Wehner, M.R.; Matrisian, L.M.; Nead, K.T. Estimated Projection of US Cancer Incidence and Death to 2040. JAMA Netw. Open 2021, 4, e214708. [Google Scholar] [CrossRef]
- Grossberg, A.J.; Chu, L.C.; Deig, C.R.; Fishman, E.K.; Hwang, W.L.; Maitra, A.; Marks, D.L.; Mehta, A.; Nabavizadeh, N.; Simeone, D.M.; et al. Multidisciplinary Standards of Care and Recent Progress in Pancreatic Ductal Adenocarcinoma. CA Cancer J. Clin. 2020, 70, 375–403. [Google Scholar] [CrossRef]
- Goggins, M.; Overbeek, K.A.; Brand, R.; Syngal, S.; Del Chiaro, M.; Bartsch, D.K.; Bassi, C.; Carrato, A.; Farrell, J.; Fishman, E.K.; et al. Management of Patients with Increased Risk for Familial Pancreatic Cancer: Updated Recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut 2020, 69, 7–17. [Google Scholar] [CrossRef]
- Chen, W.; Ahmed, N.; Krishna, S.G. Pancreatic Cystic Lesions: A Focused Review on Cyst Clinicopathological Features and Advanced Diagnostics. Diagnostics 2022, 13, 65. [Google Scholar] [CrossRef]
- Vilela, A.; Quingalahua, E.; Vargas, A.; Hawa, F.; Shannon, C.; Carpenter, E.S.; Shi, J.; Krishna, S.G.; Lee, U.-J.; Chalhoub, J.M.; et al. Global Prevalence of Pancreatic Cystic Lesions in the General Population on Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2024, 22, 1798–1809.e6. [Google Scholar] [CrossRef] [PubMed]
- Aziz, H.; Acher, A.W.; Krishna, S.G.; Cloyd, J.M.; Pawlik, T.M. Comparison of Society Guidelines for the Management and Surveillance of Pancreatic Cysts. JAMA Surg. 2022, 157, 723. [Google Scholar] [CrossRef]
- Valsangkar, N.P.; Morales-Oyarvide, V.; Thayer, S.P.; Ferrone, C.R.; Wargo, J.A.; Warshaw, A.L.; Fernández-del Castillo, C. 851 Resected Cystic Tumors of the Pancreas: A 33-Year Experience at the Massachusetts General Hospital. Surgery 2012, 152, S4–S12. [Google Scholar] [CrossRef] [PubMed]
- Schechter, S.; Shi, J. Simple Mucinous Cyst of the Pancreas: Review and Update. Arch. Pathol. Lab. Med. 2017, 141, 1330–1335. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, T.; Fernandez-del Castillo, C.; Furukawa, T.; Hijioka, S.; Jang, J.-Y.; Lennon, A.M.; Miyasaka, Y.; Ohno, E.; Salvia, R.; Wolfgang, C.L.; et al. International Evidence-Based Kyoto Guidelines for the Management of Intraductal Papillary Mucinous Neoplasm of the Pancreas. Pancreatology 2024, 24, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.S.; Simon, B.; Eapen, A.; Sathyakumar, K.; Chandramohan, A.; Raju, R.S.; Joseph, P.; Kodiatte, T.A.; Gowri, M. Role of Cross-Sectional Imaging (CT/MRI) in Characterization and Distinguishing Benign from Malignant/Potentially Malignant Cystic Lesions of Pancreas. J. Clin. Imaging Sci. 2020, 10, 28. [Google Scholar] [CrossRef]
- European Study Group on Cystic Tumours of the Pancreas. European Evidence-Based Guidelines on Pancreatic Cystic Neoplasms. Gut 2018, 67, 789–804. [Google Scholar] [CrossRef]
- Bick, B.; Enders, F.; Levy, M.; Zhang, L.; Henry, M.; Dayyeh, B.; Chari, S.; Clain, J.; Farnell, M.; Gleeson, F.; et al. The String Sign for Diagnosis of Mucinous Pancreatic Cysts. Endoscopy 2015, 47, 626–631. [Google Scholar] [CrossRef]
- Pflüger, M.J.; Jamouss, K.T.; Afghani, E.; Lim, S.J.; Rodriguez Franco, S.; Mayo, H.; Spann, M.; Wang, H.; Singhi, A.; Lennon, A.M.; et al. Predictive Ability of Pancreatic Cyst Fluid Biomarkers: A Systematic Review and Meta-Analysis. Pancreatology 2023, 23, 868–877. [Google Scholar] [CrossRef]
- Gaddam, S.; Ge, P.S.; Keach, J.W.; Mullady, D.; Fukami, N.; Edmundowicz, S.A.; Azar, R.R.; Shah, R.J.; Murad, F.M.; Kushnir, V.M.; et al. Suboptimal Accuracy of Carcinoembryonic Antigen in Differentiation of Mucinous and Nonmucinous Pancreatic Cysts: Results of a Large Multicenter Study. Gastrointest. Endosc. 2015, 82, 1060–1069. [Google Scholar] [CrossRef]
- Kwan, M.C.; Pitman, M.B.; Fernandez-del Castillo, C.; Zhang, M.L. Revisiting the Performance of Cyst Fluid Carcinoembryonic Antigen as a Diagnostic Marker for Pancreatic Mucinous Cysts: A Comprehensive 20-Year Institutional Review. Gut 2024, 73, 629–638. [Google Scholar] [CrossRef]
- Ribeiro, T.; Lopes, S.; Moutinho-Ribeiro, P.; Macedo, G.; Vilas-Boas, F. Performance of Intracystic Glucose Measurement for the Characterization of Pancreatic Cystic Lesions. J. Gastrointest. Liver Dis. 2024, 33, 74–78. [Google Scholar] [CrossRef]
- Smith, Z.L.; Satyavada, S.; Simons-Linares, R.; Mok, S.R.S.; Martinez Moreno, B.; Aparicio, J.R.; Chahal, P. Intracystic Glucose and Carcinoembryonic Antigen in Differentiating Histologically Confirmed Pancreatic Mucinous Neoplastic Cysts. Am. J. Gastroenterol. 2022, 117, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Noia, J.L.; Mejuto, R.; Oria, I.; De la Iglesia-García, D.; Villaverde, A.; Voces, A.; Pizzala, J.; Iglesias-García, J.; Urgiles, D.; Marcolongo, M.; et al. Rapid Diagnosis of Mucinous Cystic Pancreatic Lesions by On-Site Cyst Fluid Glucometry. Surg. Endosc. 2022, 36, 2473–2479. [Google Scholar] [CrossRef] [PubMed]
- Carr, R.A.; Yip-Schneider, M.T.; Simpson, R.E.; Dolejs, S.; Schneider, J.G.; Wu, H.; Ceppa, E.P.; Park, W.; Schmidt, C.M. Pancreatic Cyst Fluid Glucose: Rapid, Inexpensive, and Accurate Diagnosis of Mucinous Pancreatic Cysts. Surgery 2018, 163, 600–605. [Google Scholar] [CrossRef] [PubMed]
- McCarty, T.R.; Paleti, S.; Rustagi, T. Molecular Analysis of EUS-Acquired Pancreatic Cyst Fluid for KRAS and GNAS Mutations for Diagnosis of Intraductal Papillary Mucinous Neoplasia and Mucinous Cystic Lesions: A Systematic Review and Meta-Analysis. Gastrointest. Endosc. 2021, 93, 1019–1033.e5. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A.; Buccino, V.R.; Sacco, R. Needle-Based Confocal Laser Endomicroscopy in Pancreatic Cysts: A Meta-Analysis. Eur. J. Gastroenterol. Hepatol. 2020, 32, 1084–1090. [Google Scholar] [CrossRef]
- Facciorusso, A.; Kovacevic, B.; Yang, D.; Vilas-Boas, F.; Martínez-Moreno, B.; Stigliano, S.; Rizzatti, G.; Sacco, M.; Arevalo-Mora, M.; Villarreal-Sanchez, L.; et al. Predictors of Adverse Events after Endoscopic Ultrasound-Guided through-the-Needle Biopsy of Pancreatic Cysts: A Recursive Partitioning Analysis. Endoscopy 2022, 54, 1158–1168. [Google Scholar] [CrossRef]
- Lisotti, A.; Napoleon, B.; Facciorusso, A.; Cominardi, A.; Crinò, S.F.; Brighi, N.; Gincul, R.; Kitano, M.; Yamashita, Y.; Marchegiani, G.; et al. Contrast-Enhanced EUS for the Characterization of Mural Nodules within Pancreatic Cystic Neoplasms: Systematic Review and Meta-Analysis. Gastrointest. Endosc. 2021, 94, 881–889.e5. [Google Scholar] [CrossRef]
- Udare, A.; Agarwal, M.; Alabousi, M.; McInnes, M.; Rubino, J.G.; Marcaccio, M.; van der Pol, C.B. Diagnostic Accuracy of MRI for Differentiation of Benign and Malignant Pancreatic Cystic Lesions Compared to CT and Endoscopic Ultrasound: Systematic Review and Meta-analysis. J. Magn. Reson. Imaging 2021, 54, 1126–1137. [Google Scholar] [CrossRef]
- Gillis, A.; Cipollone, I.; Cousins, G.; Conlon, K. Does EUSFNA Molecular Analysis Carry Additional Value When Compared to Cytology in the Diagnosis of Pancreatic Cystic Neoplasm? A Systematic Review. HPB 2015, 17, 377–386. [Google Scholar] [CrossRef]
Non-Mucinous PCLs (NM-PCLs). | Mucinous PCLs (M-PCLs) |
---|---|
|
|
Further subdivided into:
|
Cyst # | n | % Total (% Group) | Age * | Sex: n (%) ♀ | Size ** (mm) | Loc: n (%) B-T *** |
---|---|---|---|---|---|---|
NM-PCLs: | 18 | 51% (100%) | 64 (49–86) | 8 (44%) | 46 [38; 62] | 8 (44%) |
PC | 11 | 31% (61%) | 62 (49–75) | 3 (27%) | 55 [33; 85] | 5 (45%) |
SCA | 5 | 14% (28%) | 72 (60–86) | 4 (80%) | 45 [40; 45] | 2 (40%) |
LINF | 2 | 6% (11%) | 55 (52–59) | 1 (50%) | 48 [47; 48] | 1 (50%) |
M-PCLs: | 17 | 49% (100%) | 61 (36–83) | 10 (59%) | 32 [26; 50] | 9 (52%) |
IPMN | 10 | 29% (59%) | 68 (48–83) | 4 (40%) | 28 [25; 35] | 4 (40%) |
MCN | 2 | 6% (12%) | 39 (36–42) | 2 (100%) | 31 [30; 31] | 2 (100%) |
SMC-HGD | 1 | 3% (6%) | 55 (55–55) | 1 (100%) | 58 [58; 58] | 1 (100%) |
PDAC | 4 | 11% (23%) | 53 (38–74) | 3 (75%) | 65 [44; 80] | 2 (50%) |
Total | 35 | 100% | 62 (36–86) | 18 (51%) | 40 [30; 52] | 17 (49%) |
Non-Mucinous vs. Mucinous | Benign vs. Malignant | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Acc | Sens | Spec | PPV | NPV | Acc | Sens | Spec | PPV | NPV | |
MDCT | 75% | 73% | 80% | 89% | 57% | 88% | 88% | 88% | 88% | 88% |
MRI | 56% | 44% | 71% | 67% | 50% | 75% | 33% | 100% | 100% | 71% |
EUS | 77% | 67% | 90% | 89% | 69% | 91% | 75% | 100% | 100% | 88% |
Dilated Wirsung | 65% | 50% | 78% | 67% | 64% | |||||
Nodules | 53% | 12% | 89% | 50% | 53% | |||||
Solid component | 76% | 50% | 100% | 100% | 69% | |||||
Lymph | 65% | 25% | 100% | 100% | 60% | |||||
String sign (ICF) | 71% | 59% | 83% | 77% | 68% | |||||
ICF-CEA | 79% | 76% | 82% | 81% | 78% | |||||
ICF Glucose | 60% | 50% | 67% | 50% | 67% | |||||
Serum Ca19.9 | 68% | 62% | 70% | 45% | 82% | |||||
iTLB1 Model | 77% | 92% | 60% | 73% | 86% | |||||
iTLB2 Model | 100% | 100% | 100% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millastre, J.; Hermoso-Durán, S.; Solórzano, M.O.d.; Fraunhoffer, N.; García-Rayado, G.; Vega, S.; Bujanda, L.; Sostres, C.; Lanas, Á.; Velázquez-Campoy, A.; et al. Thermal Liquid Biopsy: A Promising Tool for the Differential Diagnosis of Pancreatic Cystic Lesions and Malignancy Detection. Cancers 2024, 16, 4024. https://doi.org/10.3390/cancers16234024
Millastre J, Hermoso-Durán S, Solórzano MOd, Fraunhoffer N, García-Rayado G, Vega S, Bujanda L, Sostres C, Lanas Á, Velázquez-Campoy A, et al. Thermal Liquid Biopsy: A Promising Tool for the Differential Diagnosis of Pancreatic Cystic Lesions and Malignancy Detection. Cancers. 2024; 16(23):4024. https://doi.org/10.3390/cancers16234024
Chicago/Turabian StyleMillastre, Judith, Sonia Hermoso-Durán, María Ortiz de Solórzano, Nicolas Fraunhoffer, Guillermo García-Rayado, Sonia Vega, Luis Bujanda, Carlos Sostres, Ángel Lanas, Adrián Velázquez-Campoy, and et al. 2024. "Thermal Liquid Biopsy: A Promising Tool for the Differential Diagnosis of Pancreatic Cystic Lesions and Malignancy Detection" Cancers 16, no. 23: 4024. https://doi.org/10.3390/cancers16234024
APA StyleMillastre, J., Hermoso-Durán, S., Solórzano, M. O. d., Fraunhoffer, N., García-Rayado, G., Vega, S., Bujanda, L., Sostres, C., Lanas, Á., Velázquez-Campoy, A., & Abian, O. (2024). Thermal Liquid Biopsy: A Promising Tool for the Differential Diagnosis of Pancreatic Cystic Lesions and Malignancy Detection. Cancers, 16(23), 4024. https://doi.org/10.3390/cancers16234024