Circulating Tumor DNA in Early and Metastatic Breast Cance—Current Role and What Is Coming Next
Simple Summary
Abstract
1. Introduction
2. Liquid Biopsy and the Role of ctDNA
3. Methods for ctDNA Detection and Analysis
4. Metastatic Breast Cancer—ctDNA Current Role and What Is Coming Next in the Course of the Chronic Disease
5. Early Breast Cancer—The Current and the Future Role of ctDNA During (Neo)Adjuvant Treatment
5.1. Challenges in the Detection of ctDNA in Early Breast Cancer
5.2. Prediction of Therapy Response and Prognosis
5.3. ctDNA Compared to CTCs as a Prognostic Marker in Early Breast Cancer
5.4. ctDNA as Possible Marker for Therapy Decision
5.5. ctDNA During Follow-Up—Will the Current Standard Be Changed Soon?
6. ctDNA as Screening Method for Asymptomatic Population—Dream or Realistic Future Scenario?
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Adjuvant therapy | AT |
Allele frequency | AF |
Breast imaging-reporting and data system | BIRADS |
Cell-free DNA | cfDNA |
Circulating tumor cells | CTCs |
Circulating tumor DNA | ctDNA |
Confidence interval | CI |
Cyclin-dependent kinase 4/6 | CDK4/6 |
Disease free survival | DFS |
Distant disease-free survival | DDFS |
Hazard ratio | HR |
Minimal residual disease | MRD |
Multi-cancer early detection | MCED |
Neoadjuvant chemotherapy | NAT |
Non-pathologic complete response | non-pCR |
Overall survival | OS |
Poly-ADP ribose polymerase | PARP |
Polymerase chain reaction | PCR |
Positive predictive value | PPV |
Triple-negative breast cancer | TNBC |
References
- Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid biopsy: Current technology and clinical applications. J. Hematol. Oncol. 2022, 15, 131. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.A.; Brown, J.; Coombes, R.C.; Jacob, J.; Payne, R.; Lee, B.; Page, K.; Hava, N.; Stebbing, J. Circulating tumor cells and plasma DNA analysis in patients with indeterminate early or metastatic breast cancer. Biomark. Med. 2011, 5, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Stadler, J.-C.; Belloum, Y.; Deitert, B.; Sementsov, M.; Heidrich, I.; Gebhardt, C.; Keller, L.; Pantel, K. Current and Future Clinical Applications of ctDNA in Immuno-Oncology. Cancer Res. 2022, 82, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Diehl, F.; Schmidt, K.; Choti, M.A.; Romans, K.; Goodman, S.; Li, M.; Thornton, K.; Agrawal, N.; Sokoll, L.; Szabo, S.A.; et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2008, 14, 985–990. [Google Scholar] [CrossRef]
- Villaflor, V.; Won, B.; Nagy, R.; Banks, K.; Lanman, R.B.; Talasaz, A.; Salgia, R. Biopsy-free circulating tumor DNA assay identifies actionable mutations in lung cancer. Oncotarget 2016, 7, 66880–66891. [Google Scholar] [CrossRef]
- Helzer, K.T.; Sharifi, M.N.; Sperger, J.M.; Shi, Y.; Annala, M.; Bootsma, M.L.; Reese, S.R.; Taylor, A.; Kaufmann, K.R.; Krause, H.K.; et al. Fragmentomic analysis of circulating tumor DNA-targeted cancer panels. Ann. Oncol. 2023, 34, 813–825. [Google Scholar] [CrossRef]
- Martínez-Sáez, O.; Pascual, T.; Brasó-Maristany, F.; Chic, N.; González-Farré, B.; Sanfeliu, E.; Rodríguez, A.; Martínez, D.; Galván, P.; Rodríguez, A.B.; et al. Circulating tumor DNA dynamics in advanced breast cancer treated with CDK4/6 inhibition and endocrine therapy. NPJ Breast Cancer 2021, 7, 8. [Google Scholar] [CrossRef]
- Bidard, F.C.; Kaklamani, V.G.; Neven, P.; Streich, G.; Montero, A.J.; Forget, F.; Mouret-Reynier, M.A.; Sohn, J.H.; Taylor, D.; Harnden, K.K.; et al. Elacestrant (oral selective estrogen receptor degrader) Versus Standard Endocrine Therapy for Estrogen Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Results from the Randomized Phase III EMERALD Trial. J. Clin. Oncol. 2022, 40, 3246–3256. [Google Scholar] [CrossRef]
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef]
- Dawson, S.-J.; Tsui, D.W.; Murtaza, M.; Biggs, H.; Rueda, O.M.; Chin, S.-F.; Dunning, M.J.; Gale, D.; Forshew, T.; Mahler-Araujo, B.; et al. Analysis of Circulating Tumor DNA to Monitor Metastatic Breast Cancer. N. Engl. J. Med. 2013, 368, 1199–1209. [Google Scholar] [CrossRef]
- Ciruelos, E.M.; Loibl, S.; Mayer, I.A.; Campone, M.; Rugo, H.S.; Arnedos, M.; Iwata, H.; Conte, P.F.; André, F.; Reising, A.; et al. Abstract PD2-06: Clinical outcomes of alpelisib plus fulvestrant in hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer with PIK3CA alterations detected in plasma ctDNA by next-generation sequencing: Biomarker analysis from the SOLAR-1 study. Cancer Res. 2021, 81, PD2-06. [Google Scholar]
- Huang, Z.H.; Li, L.H.; Hua, D. Quantitative analysis of plasma circulating DNA at diagnosis and during follow-up of breast cancer patients. Cancer Lett. 2006, 243, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Mata, D.A.; Lee, J.K.; Shanmugam, V.; Marcus, C.B.; Schrock, A.B.; Williams, E.A.; Ritterhouse, L.L.; Hickman, R.A.; Janovitz, T.; Patel, N.R.; et al. Liquid biopsy-based circulating tumour (ct)DNA analysis of a spectrum of myeloid and lymphoid malignancies yields clinically actionable results. Histopathology 2024, 84, 1224–1237. [Google Scholar] [CrossRef]
- Keller, L.; Belloum, Y.; Wikman, H.; Pantel, K. Clinical relevance of blood-based ctDNA analysis: Mutation detection and beyond. Br. J. Cancer 2021, 124, 345–358. [Google Scholar] [CrossRef]
- Bidard, F.C.; Hardy-Bessard, A.C.; Dalenc, F.; Bachelot, T.; Pierga, J.Y.; de la Motte Rouge, T.; Sabatier, R.; Dubot, C.; Frenel, J.S.; Ferrero, J.M.; et al. Switch to fulvestrant and palbociclib versus no switch in advanced breast cancer with rising ESR1 mutation during aromatase inhibitor and palbociclib therapy (PADA-1): A randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2022, 23, 1367–1377. [Google Scholar] [CrossRef]
- Coombes, R.C.; Page, K.; Salari, R.; Hastings, R.K.; Armstrong, A.C.; Ahmed, S.; Ali, S.; Cleator, S.J.; Kenny, L.M.; Stebbing, J.; et al. Personalized Detection of Circulating Tumor DNA Antedates Breast Cancer Metastatic Recurrence. Clin. Cancer Res. 2019, 25, 4255–4263. [Google Scholar] [CrossRef]
- Hilke, F.J.; Muyas, F.; Admard, J.; Kootz, B.; Nann, D.; Welz, S.; Rieß, O.; Zips, D.; Ossowski, S.; Schroeder, C.; et al. Dynamics of cell-free tumour DNA correlate with treatment response of head and neck cancer patients receiving radiochemotherapy. Radiother. Oncol. 2020, 151, 182–189. [Google Scholar] [CrossRef]
- Wan, J.C.; Heider, K.; Gale, D.; Murphy, S.; Fisher, E.; Mouliere, F.; Ruiz-Valdepenas, A.; Santonja, A.; Morris, J.; Chandrananda, D.; et al. ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci. Transl. Med. 2020, 12, eaaz8084. [Google Scholar] [CrossRef]
- Kurtz, D.M.; Soo, J.; Keh, L.C.T.; Alig, S.; Chabon, J.J.; Sworder, B.J.; Schultz, A.; Jin, M.C.; Scherer, F.; Garofalo, A.; et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat. Biotechnol. 2021, 39, 1537–1547. [Google Scholar] [CrossRef]
- Pascual, J.; Attard, G.; Bidard, F.-C.; Curigliano, G.; De Mattos-Arruda, L.; Diehn, M.; Italiano, A.; Lindberg, J.; Merker, J.D.; Montagut, C.; et al. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2022, 33, 750–768. [Google Scholar] [CrossRef]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014, 6, 224ra24. [Google Scholar] [CrossRef] [PubMed]
- Siravegna, G.; Mussolin, B.; Buscarino, M.; Corti, G.; Cassingena, A.; Crisafulli, G.; Ponzetti, A.; Cremolini, C.; Amatu, A.; Lauricella, C.; et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat. Med. 2015, 21, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Herzog, S.K.; Fuqua, S.A.W. ESR1 mutations and therapeutic resistance in metastatic breast cancer: Progress and remaining challenges. Br. J. Cancer 2022, 126, 174–186. [Google Scholar] [CrossRef]
- Venetis, K.; Pepe, F.; Pescia, C.; Cursano, G.; Criscitiello, C.; Frascarelli, C.; Mane, E.; Russo, G.; Salimbeni, B.T.; Troncone, G.; et al. ESR1 mutations in HR+/HER2-metastatic breast cancer: Enhancing the accuracy of ctDNA testing. Cancer Treat. Rev. 2023, 121, 102642. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Toi, M.; Neven, P.; Sohn, J.; Grischke, E.-M.; Llombart-Cussac, A.; Soliman, H.; Wang, H.; Wijayawardana, S.; Jansen, V.M.; et al. Clinical Significance of PIK3CA and ESR1 Mutations in Circulating Tumor DNA: Analysis from the MONARCH 2 Study of Abemaciclib plus Fulvestrant. Clin. Cancer Res. 2022, 28, 1500–1506. [Google Scholar] [CrossRef]
- Raez, L.E.; Brice, K.; Dumais, K.; Lopez-Cohen, A.; Wietecha, D.; Izquierdo, P.A.; Santos, E.S.; Powery, H.W. Liquid Biopsy Versus Tissue Biopsy to Determine Front Line Therapy in Metastatic Non-Small Cell Lung Cancer (NSCLC). Clin. Lung Cancer 2023, 24, 120–129. [Google Scholar] [CrossRef]
- Vlataki, K.; Antonouli, S.; Kalyvioti, C.; Lampri, E.; Kamina, S.; Mauri, D.; Harissis, H.V.; Magklara, A. Circulating Tumor DNA in the Management of Early-Stage Breast Cancer. J. R. Soc. Med. 2023, 12, 1573. [Google Scholar] [CrossRef]
- Riva, F.; Bidard, F.-C.; Houy, A.; Saliou, A.; Madic, J.; Rampanou, A.; Hego, C.; Milder, M.; Cottu, P.; Sablin, M.-P.; et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin. Chem. 2017, 63, 691–699. [Google Scholar] [CrossRef]
- Rothé, F.; Silva, M.J.; Venet, D.; Campbell, C.; Bradburry, I.; Rouas, G.; De Azambuja, E.; Maetens, M.; Fumagalli, D.; Rodrik-Outmezguine, V.; et al. Precision medicine and imaging circulating tumor DNA in HER2-amplified breast cancer: A translational research substudy of the NeoALTTO Phase III Trial. Clin. Cancer Res. 2019, 25, 3581–3588. [Google Scholar] [CrossRef]
- Cavallone, L.; Aguilar-Mahecha, A.; Lafleur, J.; Brousse, S.; Aldamry, M.; Roseshter, T.; Lan, C.; Alirezaie, N.; Bareke, E.; Majewski, J.; et al. Prognostic and predictive value of circulating tumor DNA during neoadjuvant chemotherapy for triple negative breast cancer. Sci. Rep. 2020, 10, 14704. [Google Scholar] [CrossRef]
- Magbanua, M.J.M.; Swigart, L.B.; Wu, H.T.; Hirst, G.L.; Yau, C.; Wolf, D.M.; Tin, A.; Salari, R.; Shchegrova, S.; Pawar, H.; et al. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann. Oncol. 2021, 32, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Sant, M.; Bernat-Peguera, A.; Felip, E.; Margelí, M. Role of ctDNA in Breast Cancer. Cancers 2022, 14, 310. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, A.; Gonzalez, N.S.; Pimentel, I.; Suñol, A.; Zamora, E.; Ortiz, C.; Espinosa-Bravo, M.; Peg, V.; Vivancos, A.; Saura, C.; et al. Prognostic value of ctDNA detection in patients with early breast cancer undergoing neoadjuvant therapy: A systematic review and meta-analysis. Cancer Treat. Rev. 2022, 104, 102362. [Google Scholar] [CrossRef] [PubMed]
- Nader-Marta, G.; Monteforte, M.; Agostinetto, E.; Cinquini, M.; Martins-Branco, D.; Langouo, M.; Llombart-Cusac, A.; Cortés, J.; Ignatiadis, M.; Torri, V.; et al. Circulating tumor DNA for predicting recurrence in patients with operable breast cancer: A systematic review and meta-analysis. ESMO Open 2024, 9, 102390. [Google Scholar] [CrossRef]
- Radovich, M.; Jiang, G.; Hancock, B.A.; Chitambar, C.; Nanda, R.; Falkson, C.; Lynce, F.C.; Gallagher, C.; Isaacs, C.; Blaya, M.; et al. Association of Circulating Tumor DNA and Circulating Tumor Cells after Neoadjuvant Chemotherapy with Disease Recurrence in Patients with Triple-Negative Breast Cancer: Preplanned Secondary Analysis of the BRE12-158 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1410–1415. [Google Scholar] [CrossRef]
- Ortolan, E.; Appierto, V.; Silvestri, M.; Miceli, R.; Veneroni, S.; Folli, S.; Pruneri, G.; Vingiani, A.; Belfiore, A.; Cappelletti, V.; et al. Blood-based genomics of triple-negative breast cancer progression in patients treated with neoadjuvant chemotherapy. ESMO Open 2021, 6, 100086. [Google Scholar] [CrossRef]
- Gao, L.; Medford, A.; Spring, L.; Bar, Y.; Hu, B.; Jimenez, R.; Isakoff, S.J.; Bardia, A.; Peppercorn, J. Searching for the “Holy Grail” of breast cancer recurrence risk: A narrative review of the hunt for a better biomarker and the promise of circulating tumor DNA (ctDNA). Breast Cancer Res. Treat. 2024, 205, 211–226. [Google Scholar] [CrossRef]
- Razavi, P.; Li, B.T.; Brown, D.N.; Jung, B.; Hubbell, E.; Shen, R.; Abida, W.; Juluru, K.; De Bruijn, I.; Hou, C.; et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat. Med. 2019, 25, 1928–1937. [Google Scholar] [CrossRef]
- Zhou, J.; Mo, H.; Hu, D.; Zhao, X.; Zhou, H.; Pan, J. Association of ctDNA detection and recurrence assessment in patients with neoadjuvant treatment. Cancer Med. 2023, 12, 19794–19806. [Google Scholar] [CrossRef]
- La Rocca, E.; De Santis, M.C.; Silvestri, M.; Ortolan, E.; Valenti, M.; Folli, S.; de Braud, F.G.; Bianchi, G.V.; Scaperrotta, G.P.; Apolone, G.; et al. Early stage breast cancer follow-up in real-world clinical practice: The added value of cell free circulating tumor DNA. J. Cancer Res. Clin. Oncol. 2022, 148, 1543–1550. [Google Scholar] [CrossRef]
- Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Owens, L.; Gulati, R.; Etzioni, R. Stage Shift as an Endpoint in Cancer Screening Trials: Implications for Evaluating Multicancer Early Detection Tests. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.C.; Oxnard, G.R.; Klein, E.A.; Swanton, C.; Seiden, M.V. CCGA Consortium. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol. 2020, 31, 745–759. [Google Scholar] [CrossRef]
- Keup, C.; Kimmig, R.; Kasimir-Bauer, S. The Diversity of Liquid Biopsies and Their Potential in Breast Cancer Management. Cancers 2023, 15, 5463. [Google Scholar] [CrossRef]
- Rodriguez, B.J.; Córdoba, G.D.; Aranda, A.G.; Álvarez, M.; Vicioso, L.; Pérez, C.L.; Hernando, C.; Bermejo, B.; Parreño, A.J.; Lluch, A.; et al. Detection of TP53 and PIK3CA mutations in circulating tumor DNA using next-generation sequencing in the screening process for early breast cancer diagnosis. J. Clin. Med. 2019, 8, 1183. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.; Wei, W.; You, Z.; Ou, X.; Sun, M.; Yin, Y.; Tang, X.; Zhao, Z.; Hu, C.; et al. Parallel analyses of somatic mutations in plasma circulating tumor DNA (ctDNA) and matched tumor tissues in early-stage breast cancer. Clin. Cancer Res. 2019, 25, 6546–6553. [Google Scholar] [CrossRef]
Approach | Untargeted Approaches | Targeted Approaches | Personalized Targeting |
---|---|---|---|
Method | WGS/WES | qPCR/dPCR/NGS | dPCR |
Material for ctDNA analysis | Blood | Blood | Blood |
Match tumor samples | Not required | Not required | Required |
Amount of ctDNA needed | High | Low | Low |
Sensitivity | Low | Very high | High |
Costs per patient | High | Low | Medium |
Targetable mutations | High | Single or few | Medium |
Study Name | NCT-Number | Phase | Stage | Inclusion Criteria | Intervention | Country/ Region |
---|---|---|---|---|---|---|
A Prospective, Phase II Trial Using ctDNA to Initiate Post-operation Boost Therapy After Adjuvant Chemotherapy in TNBC (Artemis) | NCT04803539 | II/III | EBC | TNBC, Stadium II-III | Capecitabin + Camrelizumab + Apatinib | China |
Atezolizumab + Sacituzumab Govitecan to Prevent Recurrence in TNBC (ASPRIA) | NCT04434040 | II | EBC | TNBC, non-PCR (in the breast or lymph nodes) + circulating tumor DNA in the blood | Atezolizumab + Sacitzumab Govitecan | United States |
Kadcyla And Neratinib for Interception of HER2+ Breast Cancer With Molecular Residual Disease (KAN-HER2 MRD) | NCT05388149 | II | EBC | HER2-positive, non-PCR, MRD after 2–6 cycles of adjuvant T-DM1 | Neratinib (together with T-DM1) | Canada |
Circulating Tumor DNA Enriched, Genomically Directed Post-neoadjuvant Trial for Patients With Residual Triple Negative Breast Cancer (PERSEVERE) * | NCT04849364 | II | EBC | TNBC, non-PCR | Depending on mutation + Capecitabin | United States |
Tirzepatide in Patients With Obesity or Overweight Who Have High Risk Early Breast Cancer and Are ctDNA+ | NCT06517212 | II | EBC | ER+ > 10%, HER2-, node-positive, body mass index > 27 kg/m2, ctDNA-positive | Tirzepatide | United States |
Efficacy and Safety Comparison of Niraparib to Placebo in Participants With Human Epidermal Growth Factor 2 Negative (HER2-) Breast Cancer Susceptibility Gene Mutation (BRCAmut) or Triple-Negative Breast Cancer (TNBC) With Molecular Disease (ZEST) * | NCT04915755 | III | EBC | TNBC with presence of ctDNA or tumor BRCA mutation | Niraparib | United States |
A Trial Using ctDNA Blood Tests to Detect Cancer Cells After Standard Treatment to Trigger Additional Treatment in Early Stage Triple Negative Breast Cancer Patients (c-TRAK-TN) ** | NCT03145961 | II | EBC/FU | TNBC/moderate or high risk | Pembrolizumab, if ctDNA is detected within 12 months during FU | United Kingdom |
DNA-Guided Second Line Adjuvant Therapy For High Residual Risk, Stage II-III, Hormone Receptor Positive, HER2 Negative Breast Cancer (DARE) | NCT04567420 | II | FU | ER+/HER- high risk | Fulvestrant + Palbociclib | United States |
CDK 4/6 Inhibitor, Ribociclib, With Adjuvant Endocrine Therapy for ER-positive Breast Cancer (LEADER) | NCT03285412 | II | FU | ER+/HER2- high risk, detectable ctDNA | Endocrine Therapy + Ribociclib | United States |
A Randomized Secondary Adjuvant Treatment Intervention Study Comparing Trastuzumab-Deruxtecan to SOC Therapy in EBC Patients with Molecular Relapse (SURVIVE HERoes) * | NCT06643585 | III | FU | HER2 positive or HER2 low, positive ctDNA result obtained in the SURVIVE study | Trastuzumab Deruxtecan | Germany |
A Trial of Early Detection of Molecular Relapse With Circulating Tumour DNA Tracking and Treatment With Palbociclib Plus Fulvestrant Versus Standard Endocrine Therapy in Patients With ER Positive HER2 Negative Breast Cancer (TRAK-ER) | NCT04985266 | II | FU | ER+/HER2- high risk, detectable ctDNA | Fulvestrant + Palbociclib | France |
Elacestrant for Treating ER+/HER2- Breast Cancer Patients With ctDNA Relapse (TREAT ctDNA) (TREAT ctDNA) | NCT05512364 | III | FU | ER+/HER2- high risk, ctDNA positive | Elacestrant | Belgium |
Levels of Circulating Tumor DNA as a Predictive Marker for Early Switch in Treatment for Patients With Metastatic (Stage IV) Breast Cancer | NCT05826964 | II | MBC | ER+, HER2- metastatic breast cancer | Aromatase inhibitor vs. + CDK 4/6 inhibitor versus Fulvestrant + CDK 4/6 inhibitor | United States |
Fulvestrant, Ipatasertib and CDK4/6 Inhibition in Metastatic ER+/HER2- Breast Cancer Patients Without ctDNA Suppression | NCT04920708 | II | MBC | ER+, HER2- metastatic breast cancer | Palbociclib and Fulvestrant and Ipatasertib vs. Palbociclib + and Fulvestrant | United Kingdom |
Effect of Capivasertib on ctDNA in ER Positive Breast Cancer | NCT06613516 | II | MBC | ER +/HER2- metastatic breast cancer | Cabivasertib | United Kingdom |
Liquid vs. Tissue Biopsy Concordance in Samples of 1st Suspected BCa Recurrence/Metastasis and Evaluation of DefineMBC Comprehensive Cancer Profiling Liquid Biopsy LDT | NCT04962529 | Observational trial | MBC | Progressive metastatic breast cancer | Tissue biopsy vs. liquid biopsy | United States |
Trastuzumab Deruxtecan (T-DXd): Tailoring Treatment and Companion Diagnostics (CDx) by Liquid Biopsy | NCT05919212 | Exploratory study | MBC | HER2+ metastatic breast cancer | Liquid biopsy of HER2 status | Italy |
Fulvestrant and everolimus efficacy after CDK4/6 inhibitor: a prospective study with circulating tumor DNA analysis | NCT02866149 | Exploratory study | MBC | ER+/HER2- metastatic breast cancer, pre-treatment with CDK 4/6 inhibitor | Fulvestrant and Everolimus | France |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tegeler, C.M.; Hartkopf, A.D.; Banys-Paluchowski, M.; Krawczyk, N.; Fehm, T.; Jaeger, B.A.S. Circulating Tumor DNA in Early and Metastatic Breast Cance—Current Role and What Is Coming Next. Cancers 2024, 16, 3919. https://doi.org/10.3390/cancers16233919
Tegeler CM, Hartkopf AD, Banys-Paluchowski M, Krawczyk N, Fehm T, Jaeger BAS. Circulating Tumor DNA in Early and Metastatic Breast Cance—Current Role and What Is Coming Next. Cancers. 2024; 16(23):3919. https://doi.org/10.3390/cancers16233919
Chicago/Turabian StyleTegeler, Christian Martin, Andreas Daniel Hartkopf, Maggie Banys-Paluchowski, Natalia Krawczyk, Tanja Fehm, and Bernadette Anna Sophia Jaeger. 2024. "Circulating Tumor DNA in Early and Metastatic Breast Cance—Current Role and What Is Coming Next" Cancers 16, no. 23: 3919. https://doi.org/10.3390/cancers16233919
APA StyleTegeler, C. M., Hartkopf, A. D., Banys-Paluchowski, M., Krawczyk, N., Fehm, T., & Jaeger, B. A. S. (2024). Circulating Tumor DNA in Early and Metastatic Breast Cance—Current Role and What Is Coming Next. Cancers, 16(23), 3919. https://doi.org/10.3390/cancers16233919