High Expression of MRPL23 Is Associated with Poor Survival in Clear-Cell Renal Cell Carcinoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Tissue Specimens
2.2. Tissue Microarrays (TMA) and Immunohistochemical Staining
2.3. Evaluation of Immunohistochemistry Staining
2.4. In Silico Analysis of TCGA Data
2.5. Statistical Analysis
3. Results
3.1. Assessment of MRPL23 Protein Expression in ccRCC and Adjacent Non-Tumorous Tissues Using Immunohistochemistry
3.2. Assessment of MRPL23 mRNA Expression in ccRCC and Adjacent Non-Tumorous Tissues Using TCGA Data
3.3. Survival Outcomes Based on Protein Expression Levels of MRPL23 in ccRCC Patients
3.4. Survival Outcomes Based on mRNA Expression Levels of MRPL23 in ccRCC Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.R.; Fu, M.; Song, Y.Q.; Li, S.L.; Ge, X.Y. Long non-coding RNA MRPL23-AS1 suppresses anoikis in salivary adenoid cystic carcinoma in vitro. Oral. Dis. 2023, 29, 1588–1601. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, L.; He, S.; Guan, B.; He, A.; Yang, K.; Gong, Y.; Li, X.; Zhou, L. Identification of immune-related LncRNA for predicting prognosis and immunotherapeutic response in bladder cancer. Aging 2020, 12, 23306–23325. [Google Scholar] [CrossRef]
- Chen, C.W.; Fu, M.; Du, Z.H.; Zhao, F.; Yang, W.W.; Xu, L.H.; Li, S.L.; Ge, X.Y. Long Noncoding RNA MRPL23-AS1 Promotes Adenoid Cystic Carcinoma Lung Metastasis. Cancer Res. 2020, 80, 2273–2285. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S.; Tang, L.; Ge, J.; Lu, X. Long non-coding RNA (LncRNA) MRPL23-AS1 promotes tumor progression and carcinogenesis in osteosarcoma by activating Wnt/β-catenin signaling via inhibiting microRNA miR-30b and upregulating myosin heavy chain 9 (MYH9). Bioengineered 2021, 12, 162–171. [Google Scholar] [CrossRef]
- Ye, J.; Li, H.; Wei, J.; Luo, Y.; Liu, H.; Zhang, J.; Luo, X. Risk Scoring System based on lncRNA Expression for Predicting Survival in Hepatocellular Carcinoma with Cirrhosis. Asian Pac. J. Cancer Prev. 2020, 21, 1787–1795. [Google Scholar] [CrossRef]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Cheong, A.; Lingutla, R.; Mager, J. Expression analysis of mammalian mitochondrial ribosomal protein genes. Gene Expr. Patterns. 2020, 38, 119147. [Google Scholar] [CrossRef]
- Zhong, X.; He, Z.; Fan, Y.; Yin, L.; Hong, Z.; Tong, Y.; Bi, Q.; Zhu, S. Multi-omics analysis of MRPL-13 as a tumor-promoting marker from pan-cancer to lung adenocarcinoma. Aging 2023, 15, 10640–10680. [Google Scholar] [CrossRef] [PubMed]
- Lyng, H.; Brøvig, R.S.; Svendsrud, D.H.; Holm, R.; Kaalhus, O.; Knutstad, K.; Oksefjell, H.; Sundfør, K.; Kristensen, G.B.; Stokke, T. Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer. BMC Genom. 2006, 20, 268. [Google Scholar] [CrossRef]
- Fu, Q.; Hong, R.; Zhou, H.; Li, Y.; Liu, X.; Gong, J.; Wang, X.; Chen, J.; Ran, H.; Wang, L.; et al. Proteomics reveals MRPL4 as a high-risk factor and a potential diagnostic biomarker for prostate cancer. Proteomics 2022, 22, e2200081. [Google Scholar] [CrossRef]
- Hou, W.; Chen, J.; Wang, Y. MRPL35 Induces Proliferation, Invasion, and Glutamine Metabolism in NSCLC Cells by Upregulating SLC7A5 Expression. Clin. Respir. J. 2024, 18, e13799. [Google Scholar] [CrossRef] [PubMed]
- Ózsvári, B.; Sotgia, F.; Lisanti, M.P. First-in-class candidate therapeutics that target mitochondria and effectively prevent cancer cell metastasis: Mitoriboscins and TPP compounds. Aging 2020, 12, 10162–10179. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, S.; Qin, W.; Wang, Y.; Li, L.; Li, Q.; Yuan, X. A Novel RNA Binding Protein-Related Prognostic Signature for Hepatocellular Carcinoma. Front. Oncol. 2020, 10, 580513. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Chou, H.C.; Lyu, P.C.; Yin, H.S.; Huang, F.L.; Chang, W.S.; Fan, C.Y.; Tu, I.F.; Lai, T.C.; Lin, S.T.; et al. Mitochondrial proteomics analysis of tumorigenic and metastatic breast cancer markers. Funct. Integr. Genom. 2011, 11, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Amunts, A.; Brown, A.; Toots, J.; Scheres, S.H.W.; Ramakrishnan, V. The structure of the human mitochondrial ribosome. Science 2015, 348, 95–98. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (NCBI). MRPL23 Mitochondrial Ribosomal Protein L23 [Homo sapiens (Human)]—Gene—NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=6150 (accessed on 14 November 2024).
- Eggermann, T.; Brioude, F.; Russo, S.; Lombardi, M.P.; Bliek, J.; Maher, E.R.; Larizza, L.; Prawitt, D.; Netchine, I.; Gonzales, M.; et al. Prenatal molecular testing for Beckwith-Wiedemann and Silver-Russell syndromes: A challenge for molecular analysis and genetic counseling. Eur. J. Hum. Genet. 2016, 24, 784–793. [Google Scholar] [CrossRef]
- Kwiatkowski, M.; Krajewski, A.; Durślewicz, J.; Buchholz, K.; Grzanka, D.; Gagat, M.; Zabrzyński, J.; Klimaszewska-Wiśniewska, A. Overexpression of cyclin F/CCNF as an independent prognostic factor for poor survival in clear cell renal cell carcinoma. Sci. Rep. 2024, 14, 9280. [Google Scholar] [CrossRef]
- Durślewicz, J.; Klimaszewska-Wiśniewska, A.; Antosik, P.; Grzanka, D. Low Expression of MATR3 Is Associated with Poor Survival in Clear Cell Renal Cell Carcinoma. Biomedicines 2023, 11, 326. [Google Scholar] [CrossRef]
- Ogłuszka, M.; Orzechowska, M.; Jędroszka, D.; Witas, P.; Bednarek, A.K. Evaluate Cutpoints: Adaptable continuous data distribution system for determining survival in Kaplan-Meier estimator. Comput. Methods Programs Biomed. 2019, 177, 133–139. [Google Scholar] [CrossRef]
- Ntoufa, S.; Gerousi, M.; Laidou, S.; Psomopoulos, F.; Tsiolas, G.; Moysiadis, T.; Papakonstantinou, N.; Mansouri, L.; Anagnostopoulos, A.; Stavrogianni, N.; et al. RPS15 mutations rewire RNA translation in chronic lymphocytic leukemia. Blood Adv. 2021, 5, 2788–2792. [Google Scholar] [CrossRef]
- Edvardsson, V.O.; Sahota, A.; Palsson, R. Adenine Phosphoribosyltransferase Deficiency. In GeneReviews; University of Washington, Seattle: Seattle, WA, USA, 2012. [Google Scholar]
- Jiang, M.C.; Ni, J.J.; Cui, W.Y.; Wang, B.Y.; Zhuo, W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am. J. Cancer Res. 2019, 9, 1354–1366. [Google Scholar] [PubMed]
- Schmitt, A.M.; Garcia, J.T.; Hung, T.; Flynn, R.A.; Shen, Y.; Qu, K.; Payumo, A.Y.; Peres-da-Silva, A.; Broz, D.K.; Baum, R.; et al. An inducible long noncoding RNA amplifies DNA damage signaling. Nat. Genet. 2016, 48, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Chen, J.; Yang, L.; Ouyang, Q.; Li, J.; Lao, L.; Zhao, J.; Liu, J.; Lu, Y.; Xing, Y.; et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat. Immunol. 2018, 19, 1112–1125. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xiao, Z.D.; Han, L.; Zhang, J.; Lee, S.W.; Wang, W.; Lee, H.; Zhuang, L.; Chen, J.; Lin, H.K.; et al. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat. Cell Biol. 2016, 18, 431–442. [Google Scholar] [CrossRef]
- Yuan, J.H.; Yang, F.; Wang, F.; Ma, J.Z.; Guo, Y.J.; Tao, Q.F.; Liu, F.; Pan, W.; Wang, T.T.; Zhou, C.C.; et al. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014, 25, 666–681. [Google Scholar] [CrossRef]
- Borah, A.; Raveendran, S.; Rochani, A.; Maekawa, T.; Kumar, D.S. Targeting self-renewal pathways in cancer stem cells: Clinical implications for cancer therapy. Oncogenesis 2015, 4, e177. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, Y.; Wu, J.; Huang, G.; Liu, B.; Ye, B.; Du, Y.; Gao, G.; Tian, Y.; He, L.; et al. LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat. Commun. 2016, 7, 13608. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Liu, L.; Wang, Q.; Li, S.; Chen, D.; Hu, Z.; Yu, T.; Ding, J.; Li, J.; et al. Long noncoding RNA TSLNC8 is a tumor suppressor that inactivates the interleukin-6/STAT3 signaling pathway. Hepatology 2018, 67, 171–187. [Google Scholar] [CrossRef]
Variables | Number (%) | MRPL23 | ||
---|---|---|---|---|
High | Low | p-Value | ||
n = 50 | n = 49 | |||
Gender | ||||
Females | 31 (31.31%) | 17 (54.84%) | 14 (45.16%) | 0.6658 |
Males | 68 (68.69%) | 33 (48.53%) | 35 (51.47%) | |
Age | ||||
≤65 | 58 (58.59%) | 26 (44.83%) | 32 (55.17%) | 0.2223 |
>65 | 41 (41.41%) | 24 (58.54%) | 17 (41.46%) | |
Grade | ||||
G1 | 25 (25.25%) | 11 (44.00%) | 14 (56.00%) | 0.1345 |
G2 | 64 (64.65%) | 31 (48.44%) | 33 (51.56%) | |
G3 | 10 (10.10%) | 8 (80.00%) | 2 (20.00%) | |
pT status | ||||
Tx | 1 (1.01%) | |||
T1 | 28 (28.28%) | 16 (57.14%) | 12 (42.86%) | 0.5286 |
T2 | 28 (28.28%) | 11 (39.29%) | 17 (60.71%) | |
T3 | 40 (40.40%) | 22 (55.00%) | 18 (45.00%) | |
T4 | 2 (2.02%) | 1 (50.00%) | 1 (50.00%) | |
cN status | ||||
N0 | 92 (92.93%) | 45 (48.91%) | 47 (51.09%) | 0.436 |
N1 | 7 (7.07%) | 5 (71.43%) | 2 (28.57%) |
MRPL23 | ||||
---|---|---|---|---|
Variables | + | − | p-Value | |
n = 240 | n = 235 | |||
Gender | ||||
Females | 163 (34.32%) | 70 (42.94%) | 93 (57.06%) | 0.0203 |
Males | 312 (65.68%) | 170 (54.49%) | 142 (45.51%) | |
Age | ||||
≤60 | 239 (50.32%) | 119 (49.79%) | 120 (50.21%) | 0.7833 |
>60 | 236 (49.68%) | 121 (51.27%) | 115 (48.74%) | |
Grade | ||||
G1 | 11 (2.32%) | 4 (36.36%) | 7 (63.64%) | 0.0079 |
G2 | 203 (42.74%) | 86 (42.36%) | 117 (57.64%) | |
G3 | 189 (39.79%) | 106 (56.08%) | 83 (43.92%) | |
G4 | 72 (15.16%) | 44 (61.11%) | 28 (38.89%) | |
pT status | ||||
T1 | 237 (49.89%) | 94 (39.66%) | 143 (60.34%) | <0.0001 |
T2 | 61 (12.84%) | 37 (60.66%) | 24 (39.34%) | |
T3 and T4 | 177 (37.26%) | 109 (63.74%) | 62 (36.26%) | |
pN status | ||||
Nx | 235 (49.47%) | |||
N0 | 225 (47.37%) | 109 (48.44%) | 116 (51.56%) | 0.4334 |
N1 | 15 (3.16%) | 9 (60.00%) | 6 (40.00%) | |
Stage | ||||
I | 234 (49.26%) | 93 (39.74%) | 141 (60.26%) | <0.0001 |
II | 50 (10.53%) | 26 (52.00%) | 24 (48.00%) | |
III | 119 (25.05%) | 75 (63.03%) | 44 (36.97%) | |
IV | 72 (15.16%) | 46 (63.89%) | 26 (36.11%) |
Univariate Analysis | Multivariate Analysis | |||||||
---|---|---|---|---|---|---|---|---|
Variable | HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||
MRPL23 | 1.81 | 1.18 | 2.77 | 0.01 | 1.66 | 1.07 | 2.56 | 0.02 |
gender | 0.56 | 0.36 | 0.87 | 0.01 | 0.58 | 0.37 | 0.91 | 0.02 |
age | 1.62 | 1.07 | 2.47 | 0.02 | 1.27 | 0.82 | 1.98 | 0.28 |
Grade | 2.90 | 1.48 | 5.68 | 0.002 | 2.53 | 1.26 | 5.07 | 0.01 |
pT | 1.14 | 0.75 | 1.73 | 0.54 | - | - | - | - |
cN | 3.77 | 1.68 | 8.47 | 0.001 | 3.69 | 1.62 | 8.41 | 0.002 |
Univariate Analysis | Multivariate Analysis | |||||||
---|---|---|---|---|---|---|---|---|
Variable | HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||
MRPL23 | 1.56 | 1.13 | 2.15 | 0.01 | 1.18 | 0.85 | 1.64 | 0.32 |
gender | 0.95 | 0.68 | 1.31 | 0.73 | - | - | - | - |
age | 1.01 | 1.00 | 1.02 | 0.08 | - | - | - | - |
Grade | 1.36 | 0.98 | 1.87 | 0.06 | 1.18 | 0.85 | 1.63 | 0.33 |
pT | 3.18 | 2.31 | 4.38 | <0.0001 | - | - | - | - |
pN | 3.61 | 1.91 | 6.82 | 0.0001 | - | - | - | - |
TNM stage | 3.60 | 2.59 | 5.02 | <0.0001 | 3.43 | 2.44 | 4.81 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podemska, E.; Borowczak, J.; Łukasik, D.; Grzanka, D.; Durślewicz, J. High Expression of MRPL23 Is Associated with Poor Survival in Clear-Cell Renal Cell Carcinoma. Cancers 2024, 16, 3909. https://doi.org/10.3390/cancers16233909
Podemska E, Borowczak J, Łukasik D, Grzanka D, Durślewicz J. High Expression of MRPL23 Is Associated with Poor Survival in Clear-Cell Renal Cell Carcinoma. Cancers. 2024; 16(23):3909. https://doi.org/10.3390/cancers16233909
Chicago/Turabian StylePodemska, Edyta, Jędrzej Borowczak, Damian Łukasik, Dariusz Grzanka, and Justyna Durślewicz. 2024. "High Expression of MRPL23 Is Associated with Poor Survival in Clear-Cell Renal Cell Carcinoma" Cancers 16, no. 23: 3909. https://doi.org/10.3390/cancers16233909
APA StylePodemska, E., Borowczak, J., Łukasik, D., Grzanka, D., & Durślewicz, J. (2024). High Expression of MRPL23 Is Associated with Poor Survival in Clear-Cell Renal Cell Carcinoma. Cancers, 16(23), 3909. https://doi.org/10.3390/cancers16233909