Long-Term Randomized Controlled Trials of Diet Intervention Reports and Their Impact on Cancer: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Weight Loss and Altered Macronutrient Diets
2.1. Low Calorie Diet (LCD)
2.2. Low Fat Isocaloric Diet
2.3. Mediterranean (MedD) Isocaloric Diet
3. What Predicts Long-Term Dietary Adherence?
4. Systematic Review Methodology
5. Results
6. Discussion
7. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Authors’ Disclaimer
References
- Rock, C.L.; Thomson, C.; Gansler, T.; Gapstur, S.M.; McCullough, M.L.; Patel, A.V.; Andrews, K.S.; Bandera, E.V.; Spees, C.K.; Robien, K.; et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA Cancer J. Clin. 2020, 70, 245–271. [Google Scholar] [CrossRef] [PubMed]
- Kohler, L.N.; Garcia, D.O.; Harris, R.B.; Oren, E.; Roe, D.J.; Jacobs, E.T. Adherence to Diet and Physical Activity Cancer Prevention Guidelines and Cancer Outcomes: A Systematic Review. Cancer Epidemiol. Biomark. Prev. 2016, 25, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.L.; Meller, S. Can we say what diet is best for health? Annu. Rev. Public Health 2014, 35, 83–103. [Google Scholar] [CrossRef] [PubMed]
- Pi-Sunyer, X. The medical risks of obesity. Postgrad. Med. 2009, 121, 21–33. [Google Scholar] [CrossRef]
- Machado, P.; McNaughton, S.A.; Livingstone, K.M.; Hadjikakou, M.; Russell, C.; Wingrove, K.; Sievert, K.; Dickie, S.; Woods, J.; Baker, P.; et al. Measuring Adherence to Sustainable Healthy Diets: A Scoping Review of Dietary Metrics. Adv. Nutr. 2023, 14, 147–160. [Google Scholar] [CrossRef]
- Ravussin, E.; Redman, L.M.; Rochon, J.; Das, S.K.; Fontana, L.; Kraus, W.E.; Romashkan, S.; Williamson, D.A.; Meydani, S.N.; Villareal, D.T.; et al. A 2-Year Randomized Controlled Trial of Human Caloric Restriction: Feasibility and Effects on Predictors of Health Span and Longevity. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Chlebowski, R.T.; Aragaki, A.K.; Anderson, G.L.; Pan, K.; Neuhouser, M.L.; Manson, J.E.; Thomson, C.A.; Mossavar-Rahmani, Y.; Lane, D.S.; Johnson, K.C.; et al. Dietary Modification and Breast Cancer Mortality: Long-Term Follow-Up of the Women’s Health Initiative Randomized Trial. J. Clin. Oncol. 2020, 38, 1419–1428. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E. The role of the Mediterranean diet on weight loss and obesity-related diseases. Rev. Endocr. Metab. Disord. 2020, 21, 315–327. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to Mediterranean Diet and Risk of Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef]
- Downer, M.K.; Gea, A.; Stampfer, M.; Sanchez-Tainta, A.; Corella, D.; Salas-Salvado, J.; Ros, E.; Estruch, R.; Fito, M.; Gomez-Gracia, E.; et al. Predictors of short- and long-term adherence with a Mediterranean-type diet intervention: The PREDIMED randomized trial. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 67. [Google Scholar] [CrossRef]
- Zazpe, I.; Estruch, R.; Toledo, E.; Sanchez-Tainta, A.; Corella, D.; Bullo, M.; Fiol, M.; Iglesias, P.; Gomez-Gracia, E.; Aros, F.; et al. Predictors of adherence to a Mediterranean-type diet in the PREDIMED trial. Eur. J. Nutr. 2010, 49, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Beresford, S.A.; Johnson, K.C.; Ritenbaugh, C.; Lasser, N.L.; Snetselaar, L.G.; Black, H.R.; Anderson, G.L.; Assaf, A.R.; Bassford, T.; Bowen, D.; et al. Low-fat dietary pattern and risk of colorectal cancer: The Women’s Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 2006, 295, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Black, H.S.; Thornby, J.I.; Wolf, J.E., Jr.; Goldberg, L.H.; Herd, J.A.; Rosen, T.; Bruce, S.; Tschen, J.A.; Scott, L.W.; Jaax, S.; et al. Evidence that a low-fat diet reduces the occurrence of non-melanoma skin cancer. Int. J. Cancer 1995, 62, 165–169. [Google Scholar] [CrossRef]
- Black, H.S. Influence of dietary factors on actinically-induced skin cancer. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1998, 422, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Botteri, E.; de Lange, T.; Tonstad, S.; Berstad, P. Exploring the effect of a lifestyle intervention on cancer risk: 43-year follow-up of the randomized Oslo diet and antismoking study. J. Intern. Med. 2018, 284, 282–291. [Google Scholar] [CrossRef]
- Boyd, N.F.; Cousins, M.; Beaton, M.; Fishell, E.; Wright, B.; Fish, E.; Kriukov, V.; Lockwood, G.; Tritchler, D.; Hanna, W.; et al. Clinical trial of low-fat, high-carbohydrate diet in subjects with mammographic dysplasia: Report of early outcomes. JNCI J. Natl. Cancer Inst. 1988, 80, 1244–1248. [Google Scholar] [CrossRef]
- Boyd, N.F.; Lockwood, G.A.; Greenberg, C.V.; Martin, L.J.; Tritchler, D.L. Effects of a low-fat high-carbohydrate diet on plasma sex hormones in premenopausal women: Results from a randomized controlled trial. Canadian Diet and Breast Cancer Prevention Study Group. Br. J. Cancer 1997, 76, 127–135. [Google Scholar] [CrossRef]
- Brown, J.C.; Sturgeon, K.; Sarwer, D.B.; Troxel, A.B.; DeMichele, A.M.; Denlinger, C.S.; Schmitz, K.H. The effects of exercise and diet on sex steroids in breast cancer survivors. Endocr. Relat. Cancer 2022, 29, 485–493. [Google Scholar] [CrossRef]
- Bruno, E.; Krogh, V.; Gargano, G.; Grioni, S.; Bellegotti, M.; Venturelli, E.; Panico, S.; Santucci de Magistris, M.; Bonanni, B.; Zagallo, E.; et al. Adherence to Dietary Recommendations after One Year of Intervention in Breast Cancer Women: The DIANA-5 Trial. Nutrients 2021, 13, 2990. [Google Scholar] [CrossRef]
- Byrd, D.A.; Gomez, M.; Hogue, S.; Murphy, G.; Sampson, J.N.; Vogtmann, E.; Albert, P.; Freedman, N.D.; Sinha, R.; Loftfield, E. Circulating Bile Acids and Adenoma Recurrence in the Context of Adherence to a High-Fiber, High-Fruit and Vegetable, and Low-Fat Dietary Intervention. Clin. Transl. Gastroenterol. 2022, 13, e00533. [Google Scholar] [CrossRef]
- Caan, B.J.; Aragaki, A.; Thomson, C.A.; Stefanick, M.L.; Chlebowski, R.; Hubbell, F.A.; Tinker, L.; Vitolins, M.; Rajkovic, A.; Bueche, M.; et al. Vasomotor symptoms, adoption of a low-fat dietary pattern, and risk of invasive breast cancer: A secondary analysis of the Women’s Health Initiative randomized controlled dietary modification trial. J. Clin. Oncol. 2009, 27, 4500–4507. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.L.; Foster-Schubert, K.E.; Alfano, C.M.; Wang, C.C.; Wang, C.Y.; Duggan, C.R.; Mason, C.; Imayama, I.; Kong, A.; Xiao, L.; et al. Reduced-calorie dietary weight loss, exercise, and sex hormones in postmenopausal women: Randomized controlled trial. J. Clin. Oncol. 2012, 30, 2314–2326. [Google Scholar] [CrossRef] [PubMed]
- Chlebowski, R.T.; Blackburn, G.L.; Thomson, C.A.; Nixon, D.W.; Shapiro, A.; Hoy, M.K.; Goodman, M.T.; Giuliano, A.E.; Karanja, N.; McAndrew, P.; et al. Dietary fat reduction and breast cancer outcome: Interim efficacy results from the Women’s Intervention Nutrition Study. J. Natl. Cancer Inst. 2006, 98, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Chlebowski, R.T.; Aragaki, A.K.; Anderson, G.L.; Thomson, C.A.; Manson, J.E.; Simon, M.S.; Howard, B.V.; Rohan, T.E.; Snetselar, L.; Lane, D.; et al. Low-Fat Dietary Pattern and Breast Cancer Mortality in the Women’s Health Initiative Randomized Controlled Trial. J. Clin. Oncol. 2017, 35, 2919–2926. [Google Scholar] [CrossRef] [PubMed]
- Chlebowski, R.T.; Anderson, G.L.; Manson, J.E.; Prentice, R.L.; Aragaki, A.K.; Snetselaar, L.; Beresford, S.A.A.; Kuller, L.H.; Johnson, K.; Lane, D.; et al. Low-Fat Dietary Pattern and Cancer Mortality in the Women’s Health Initiative (WHI) Randomized Controlled Trial. JNCI Cancer Spectr. 2018, 2, pky065. [Google Scholar] [CrossRef]
- Chlebowski, R.T.; Aragaki, A.K.; Anderson, G.L.; Simon, M.S.; Manson, J.E.; Neuhouser, M.L.; Pan, K.; Stefanic, M.L.; Rohan, T.E.; Lane, D.; et al. Association of Low-Fat Dietary Pattern with Breast Cancer Overall Survival: A Secondary Analysis of the Women’s Health Initiative Randomized Clinical Trial. JAMA Oncol. 2018, 4, e181212. [Google Scholar] [CrossRef]
- de Lorgeril, M.; Salen, P.; Martin, J.-L.; Monjaud, I.; Boucher, P.; Mamelle, N. Mediterranean Dietary Pattern in a Randomized Trial: Prolonged Survival and Possible Reduced Cancer Rate. Arch. Intern. Med. 1998, 158, 1181–1187. [Google Scholar] [CrossRef]
- Duggan, C.; de Dieu Tapsoba, J.; Mason, C.; Imayama, I.; Korde, L.; Wang, C.Y.; McTiernan, A. Effect of Vitamin D3 Supplementation in Combination with Weight Loss on Inflammatory Biomarkers in Postmenopausal Women: A Randomized Controlled Trial. Cancer Prev. Res. 2015, 8, 628–635. [Google Scholar] [CrossRef]
- Duggan, C.; Tapsoba Jde, D.; Wang, C.Y.; McTiernan, A. Dietary Weight Loss and Exercise Effects on Serum Biomarkers of Angiogenesis in Overweight Postmenopausal Women: A Randomized Controlled Trial. Cancer Res. 2016, 76, 4226–4235. [Google Scholar] [CrossRef]
- Duggan, C.; Tapsoba, J.D.; Shivappa, N.; Harris, H.R.; Hébert, J.R.; Wang, C.Y.; McTiernan, A. Changes in Dietary Inflammatory Index Patterns with Weight Loss in Women: A Randomized Controlled Trial. Cancer Prev. Res. 2021, 14, 85–94. [Google Scholar] [CrossRef]
- Emond, J.A.; Patterson, R.E.; Natarajan, L.; Laughlin, G.A.; Gold, E.B.; Pierce, J.P. Sex hormone concentrations and the risk of breast cancer recurrence in postmenopausal women without hot flashes. Cancer Epidemiol. Biomark. Prev. 2011, 20, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Flood, A.; Mai, V.; Pfeiffer, R.; Kahle, L.; Remaley, A.T.; Rosen, C.J.; Lanza, E.; Schatzkin, A. The effects of a high-fruit and -vegetable, high-fiber, low-fat dietary intervention on serum concentrations of insulin, glucose, IGF-I and IGFBP-3. Eur. J. Clin. Nutr. 2008, 62, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Villareal, D.T.; Das, S.K.; Smith, S.R.; Meydani, S.N.; Pittas, A.G.; Klein, S.; Bhapkar, M.; Rochon, J.; Ravussin, E.; et al. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: A randomized clinical trial. Aging Cell 2016, 15, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Gamba, C.S.; Stefanick, M.L.; Shikany, J.M.; Larson, J.; Linos, E.; Sims, S.T.; Marshall, J.; Van Horn, L.; Zeitouni, N.; Tang, J.Y. Low-fat diet and skin cancer risk: The women’s health initiative randomized controlled dietary modification trial. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Gann, P.H.; Chatterton, R.T.; Gapstur, S.M.; Liu, K.; Garside, D.; Giovanazzi, S.; Thedford, K.; Van Horn, L. The effects of a low-fat/high-fiber diet on sex hormone levels and menstrual cycling in premenopausal women: A 12-month randomized trial (the diet and hormone study). Cancer 2003, 98, 1870–1879. [Google Scholar] [CrossRef]
- Habermann, N.; Makar, K.W.; Abbenhardt, C.; Xiao, L.; Wang, C.Y.; Utsugi, H.K.; Alfano, C.M.; Campbell, K.L.; Duggan, C.; Foster-Schubert, K.E.; et al. No effect of caloric restriction or exercise on radiation repair capacity. Med. Sci. Sports Exerc. 2015, 47, 896–904. [Google Scholar] [CrossRef]
- Imayama, I.; Ulrich, C.M.; Alfano, C.M.; Wang, C.; Xiao, L.; Wener, M.H.; Campbell, K.L.; Duggan, C.; Foster-Schubert, K.E.; Kong, A.; et al. Effects of a caloric restriction weight loss diet and exercise on inflammatory biomarkers in overweight/obese postmenopausal women: A randomized controlled trial. Cancer Res. 2012, 72, 2314–2326. [Google Scholar] [CrossRef]
- Jiao, L.; Chen, L.; White, D.L.; Tinker, L.; Chlebowski, R.T.; Van Horn, L.V.; Richardson, P.; Lane, D.; Sangi-Haghpeykar, H.; El-Serag, H.B. Low-fat Dietary Pattern and Pancreatic Cancer Risk in the Women’s Health Initiative Dietary Modification Randomized Controlled Trial. J. Natl. Cancer Inst. 2018, 110, 49–56. [Google Scholar] [CrossRef]
- Lanza, E.; Yu, B.; Murphy, G.; Albert, P.S.; Caan, B.; Marshall, J.R.; Lance, P.; Paskett, E.D.; Weissfeld, J.; Slattery, M.; et al. The polyp prevention trial continued follow-up study: No effect of a low-fat, high-fiber, high-fruit, and -vegetable diet on adenoma recurrence eight years after randomization. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1745–1752. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, L.L.; Li, J.W.; Jin, Y.S.; An, R.H. A Randomized Study on the Effect of Metformin Combined with Intensive-Exercise Diet Therapy on Glucose and Lipid Metabolism and Islet Function in Patients with Renal Cell Carcinoma and Diabetes. Dis. Markers 2022, 2022, 7383745. [Google Scholar] [CrossRef]
- Martin, L.J.; Li, Q.; Melnichouk, O.; Greenberg, C.; Minkin, S.; Hislop, G.; Boyd, N.F. A randomized trial of dietary intervention for breast cancer prevention. Cancer Res. 2011, 71, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Masala, G.; Bendinelli, B.; Della Bella, C.; Assedi, M.; Tapinassi, S.; Ermini, I.; Occhini, D.; Castaldo, M.; Saieva, C.; Caini, S.; et al. Inflammatory marker changes in a 24-month dietary and physical activity randomised intervention trial in postmenopausal women. Sci. Rep. 2020, 10, 21845. [Google Scholar] [CrossRef] [PubMed]
- Mason, C.; Xiao, L.; Duggan, C.; Imayama, I.; Foster-Schubert, K.E.; Kong, A.; Campbell, K.L.; Wang, C.Y.; Alfano, C.M.; Blackburn, G.L.; et al. Effects of dietary weight loss and exercise on insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in postmenopausal women: A randomized controlled trial. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1457–1463. [Google Scholar] [CrossRef]
- McKeown-Eyssen, G.E.; Bright-See, E.; Bruce, W.R.; Jazmaji, V.; Cohen, L.B.; Pappas, S.C.; Saibil, F.G. A randomized trial of a low fat high fibre diet in the recurrence of colorectal polyps. Toronto Polyp Prevention Group. J. Clin. Epidemiol. 1994, 47, 525–536. [Google Scholar] [CrossRef]
- Pan, K.; Luo, J.; Aragaki, A.K.; Chlebowski, R.T. Weight loss, diet composition and breast cancer incidence and outcome in postmenopausal women. Oncotarget 2019, 10, 3088–3092. [Google Scholar] [CrossRef]
- Pan, K.; Aragaki, A.K.; Neuhouser, M.L.; Simon, M.S.; Luo, J.; Caan, B.; Snetselaar, L.; Mortimer, J.E.; Manson, J.E.; Kroenke, C.; et al. Low-fat dietary pattern and breast cancer mortality by metabolic syndrome components: A secondary analysis of the Women’s Health Initiative (WHI) randomised trial. Br. J. Cancer 2021, 125, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Peila, R.; Chlebowski, R.; Manson, J.E.; Crane, T.E.; Lane, D.S.; Saquib, N.; Shadyab, A.H.; Tabung, F.K.; Barac, A.; Zhang, Z.; et al. Low-Fat Dietary Modification and Risk of Ductal Carcinoma In Situ of the Breast in the Women’s Health Initiative Dietary Modification Trial. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1753–1756. [Google Scholar] [CrossRef]
- Pierce, J.P.; Natarajan, L.; Caan, B.J.; Parker, B.A.; Greenberg, E.R.; Flatt, S.W.; Rock, C.L.; Kealey, S.; Al-Delaimy, W.K.; Bardwell, W.A.; et al. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: The Women’s Healthy Eating and Living (WHEL) randomized trial. JAMA 2007, 298, 289–298. [Google Scholar] [CrossRef]
- Prentice, R.L.; Caan, B.; Chlebowski, R.T.; Patterson, R.; Kuller, L.H.; Ockene, J.K.; Margolis, K.L.; Limacher, M.C.; Manson, J.E.; Parker, L.M.; et al. Low-Fat Dietary Pattern and Risk of Invasive Breast CancerThe Women’s Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 2006, 295, 629–642. [Google Scholar] [CrossRef]
- Prentice, R.L.; Thomson, C.A.; Caan, B.; Hubbell, F.A.; Anderson, G.L.; Beresford, S.A.; Pettinger, M.; Lane, D.S.; Lessin, L.; Yasmeen, S.; et al. Low-fat dietary pattern and cancer incidence in the Women’s Health Initiative Dietary Modification Randomized Controlled Trial. J. Natl. Cancer Inst. 2007, 99, 1534–1543. [Google Scholar] [CrossRef]
- Prentice, R.L.; Aragaki, A.K.; Howard, B.V.; Chlebowski, R.T.; Thomson, C.A.; Van Horn, L.; Tinker, L.F.; Manson, J.E.; Anderson, G.L.; Kuller, L.E.; et al. Low-Fat Dietary Pattern among Postmenopausal Women Influences Long-Term Cancer, Cardiovascular Disease, and Diabetes Outcomes. J. Nutr. 2019, 149, 1565–1574. [Google Scholar] [CrossRef]
- Rana, B.K.; Flatt, S.W.; Health, D.D.; Pakiz, B.; Quintana, E.L.; Natarajan, L.; Rock, C.L. The IL-6 Gene Promoter SNP and Plasma IL-6 in Response to Diet Intervention. Nutrients 2017, 9, 552. [Google Scholar] [CrossRef] [PubMed]
- Reeves, M.M.; Terranova, C.O.; Winkler, E.A.H.; McCarthy, N.; Hickman, I.J.; Ware, R.S.; Lawler, S.P.; Eakin, E.G.; Demark-Wahnefried, W. Effect of a Remotely Delivered Weight Loss Intervention in Early-Stage Breast Cancer: Randomized Controlled Trial. Nutrients 2021, 13, 4091. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.L.; Flatt, S.W.; Thomson, C.A.; Stefanick, M.L.; Newman, V.A.; Jones, L.A.; Natarajan, L.; Ritenbaugh, C.; Hollenbach, K.A.; Pierce, J.P.; et al. Effects of a high-fiber, low-fat diet intervention on serum concentrations of reproductive steroid hormones in women with a history of breast cancer. J. Clin. Oncol. 2004, 22, 2379–2387. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.L.; Flatt, S.W.; Pakiz, B.; Quintana, E.L.; Heath, D.D.; Rana, B.K.; Natarajan, L. Effects of diet composition on weight loss, metabolic factors and biomarkers in a 1-year weight loss intervention in obese women examined by baseline insulin resistance status. Metabolism 2016, 65, 1605–1613. [Google Scholar] [CrossRef]
- Rohan, T.E.; Negassa, A.; Caan, B.; Chlebowski, R.T.; Curb, J.D.; Ginsberg, M.; Lane, D.S.; Neuhouser, M.L.; Shikany, J.M.; Wassertheil-Smoller, S.; et al. Low-fat dietary pattern and risk of benign proliferative breast disease: A randomized, controlled dietary modification trial. Cancer Prev. Res. 2008, 1, 275–284. [Google Scholar] [CrossRef]
- Sansbury, L.B.; Wanke, K.; Albert, P.S.; Kahle, L.; Schatzkin, A.; Lanza, E. The effect of strict adherence to a high-fiber, high-fruit and -vegetable, and low-fat eating pattern on adenoma recurrence. Am. J. Epidemiol. 2009, 170, 576–584. [Google Scholar] [CrossRef]
- Schatzkin, A.; Lanza, E.; Corle, D.; Lance, P.; Iber, F.; Caan, B.; Shike, M.; Weissfeld, J.; Burt, R.; Cooper, M.R.; et al. Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. Polyp Prevention Trial Study Group. N. Engl. J. Med. 2000, 342, 1149–1155. [Google Scholar] [CrossRef]
- Thomson, C.A.; Van Horn, L.; Caan, B.J.; Aragaki, A.K.; Chlebowski, R.T.; Manson, J.E.; Rohan, T.E.; Tinker, L.F.; Kuller, L.H.; Hou, L.; et al. Cancer incidence and mortality during the intervention and postintervention periods of the Women’s Health Initiative dietary modification trial. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2924–2935. [Google Scholar] [CrossRef]
- Toledo, E.; Salas-Salvadó, J.; Donat-Vargas, C.; Buil-Cosiales, P.; Estruch, R.; Ros, E.; Corella, D.; Fitó, M.; Hu, F.B.; Arós, F.; et al. Mediterranean Diet and Invasive Breast Cancer Risk Among Women at High Cardiovascular Risk in the PREDIMED Trial: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1752–1760. [Google Scholar] [CrossRef]
- Vitale, S.; Palumbo, E.; Polesel, J.; Hebert, J.R.; Shivappa, N.; Montagnese, C.; Porciello, G.; Calabrese, I.; Luongo, A.; Prete, M.; et al. One-year nutrition counselling in the context of a Mediterranean diet reduced the dietary inflammatory index in women with breast cancer: A role for the dietary glycemic index. Food Funct. 2023, 14, 1560–1572. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, G.; Buffington, C. Early weight loss outcomes from a newly established hospital-affiliated specialized obesity care delivery model in Central Florida. Int. J. Obes. 2019, 43, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Moss, S.A.; Serbetci, D.; O’Brien, K.; Alexi, N. The Validated Features of Psychological Interventions for Weight Loss: An Integration. Behav. Med. 2022, 48, 147–161. [Google Scholar] [CrossRef]
- Williamson, D.A.; Anton, S.D.; Han, H.; Champagne, C.M.; Allen, R.; Leblanc, E.; Ryan, D.H.; Rood, J.; McManus, K.; Laranjo, N.; et al. Early behavioral adherence predicts short and long-term weight loss in the POUNDS LOST study. J. Behav. Med. 2010, 33, 305–314. [Google Scholar] [CrossRef]
- Unick, J.L.; Neiberg, R.H.; Hogan, P.E.; Cheskin, L.J.; Dutton, G.R.; Jeffery, R.; Nelson, J.A.; Pi-Sunyer, X.; West, D.S.; Wing, R.R.; et al. Weight change in the first 2 months of a lifestyle intervention predicts weight changes 8 years later. Obesity 2015, 23, 1353–1356. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement:an updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, J.R.; Pingault, J.B.; Schoeler, T.; Sallis, H.M.; Munafo, M.R. Protecting against researcher bias in secondary data analysis: Challenges and potential solutions. Eur. J. Epidemiol. 2022, 37, 1–10. [Google Scholar] [CrossRef]
- National Cancer Institute. SEER: Cancer Stat Facts: Cancer of Any Site. Available online: https://seer.cancer.gov/statfacts/html/all.html (accessed on 19 September 2024).
- National Cancer Institute. Cancer Statistics. Available online: https://www.cancer.gov/about-cancer/understanding/statistics#:~:text=The%20cancer%20mortality%20rate%20is,on%202017%E2%80%932019%20data). (accessed on 19 September 2024).
- Rubin, J.B.; Lagas, J.S.; Broestl, L.; Sponagel, J.; Rockwell, N.; Rhee, G.; Rosen, S.F.; Chen, S.; Klein, R.S.; Imoukhuede, P.; et al. Sex differences in cancer mechanisms. Biol. Sex Differ. 2020, 11, 17. [Google Scholar] [CrossRef]
- Unger, J.M.; Vaidya, R.; Albain, K.S.; LeBlanc, M.; Minasian, L.M.; Gotay, C.C.; Henry, N.L.; Fisch, M.J.; Lee, S.M.; Blanke, C.D.; et al. Sex Differences in Risk of Severe Adverse Events in Patients Receiving Immunotherapy, Targeted Therapy, or Chemotherapy in Cancer Clinical Trials. J. Clin. Oncol. 2022, 40, 1474–1486. [Google Scholar] [CrossRef]
- Kammula, A.V.; Schaffer, A.A.; Rajagopal, P.S.; Kurzrock, R.; Ruppin, E. Outcome differences by sex in oncology clinical trials. Nat. Commun. 2024, 15, 2608. [Google Scholar] [CrossRef]
- Jackson, S.S.; Pfeiffer, R.M.; Hsieh, M.C.; Li, J.; Madeleine, M.M.; Pawlish, K.S.; Zeng, Y.; Yu, K.J.; Engels, E.A. Sex differences in cancer incidence among solid organ transplant recipients. J. Natl. Cancer Inst. 2024, 116, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Hendryx, M.; Manson, J.E.; Figueiredo, J.C.; LeBlanc, E.S.; Barrington, W.; Rohan, T.E.; Howard, B.V.; Reding, K.; Ho, G.Y.; et al. Intentional Weight Loss and Obesity-Related Cancer Risk. JNCI Cancer Spectr. 2019, 3, pkz054. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Luo, Y.; Dai, H.; Deng, Z. Effects of Bariatric Surgery on Cancer Risk: Evidence from Meta-analysis. Obes. Surg. 2020, 30, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Sjoholm, K.; Carlsson, L.M.S.; Svensson, P.A.; Andersson-Assarsson, J.C.; Kristensson, F.; Jacobson, P.; Peltonen, M.; Taube, M. Association of Bariatric Surgery with Cancer Incidence in Patients with Obesity and Diabetes: Long-term Results from the Swedish Obese Subjects Study. Diabetes Care 2022, 45, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, L.M.S.; Sjoholm, K.; Jacobson, P.; Andersson-Assarsson, J.C.; Svensson, P.A.; Taube, M.; Carlsson, B.; Peltonen, M. Life Expectancy after Bariatric Surgery in the Swedish Obese Subjects Study. N. Engl. J. Med. 2020, 383, 1535–1543. [Google Scholar] [CrossRef]
- Ryan, D.H.; Lingvay, I.; Deanfield, J.; Kahn, S.E.; Barros, E.; Burguera, B.; Colhoun, H.M.; Cercato, C.; Dicker, D.; Horn, D.B.; et al. Long-term weight loss effects of semaglutide in obesity without diabetes in the SELECT trial. Nat. Med. 2024, 30, 2049–2057. [Google Scholar] [CrossRef]
- Pagano, S.L.; Appelhans, B.M. A call for an end to the diet debates. JAMA 2013, 310, 687–688. [Google Scholar]
- Nordmann, A.J.; Nordmann, A.; Briel, M.; Keller, U.; Yancy, W.S., Jr.; Brehm, B.J.; Bucher, H.C. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: A meta-analysis of randomized controlled trials. Arch. Intern. Med. 2006, 166, 285–293. [Google Scholar] [CrossRef]
- Yancy, W.S., Jr.; McVay, M.A.; Brinkworth, G.D. Adherence to diets for weight loss. JAMA 2013, 310, 2676. [Google Scholar] [CrossRef]
- Jamshed, H.; Steger, F.L.; Bryan, D.R.; Richman, J.S.; Warriner, A.H.; Hanick, C.J.; Martin, C.K.; Salvy, S.J.; Peterson, C.M. Effectiveness of Early Time-Restricted Eating for Weight Loss, Fat Loss, and Cardiometabolic Health in Adults with Obesity: A Randomized Clinical Trial. JAMA Intern. Med. 2022, 182, 953–962. [Google Scholar] [CrossRef]
1st Author | Year | Study | Number Subjects | Subjects | Diet Type, Other Interventions 1,2 | Study Length | 1o Outcome | 1o or 2o Study | Finding | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Male (M) | Female (F) | ISO vs. LCD | Intervention Nutrient Composition | ||||||||
Beresford [12] | 2006 | WHI-DMT | 0 | 48,835 | post | ISO | LFD: 20% fat | avg 8.1 y | BC and CRC incidence | 1 | did not lower CRC incidence |
Black [13] | 1995 | LFD vs. control | 66 | 35 | non-melanoma skin cancer (NMSC) | ISO | LFD: 20% fat | 2 y | New NMSC | 1 | fewer new NMSC LFD group in last 8 months |
Black [14] | 1998 | LFD vs. control in AK or skin ca | 70 | 45 | skin CA patients | ISO | LFD: 20% fat | 2 y | New AK and NMSC | 2 | LCD group saw fewer AK overall, and fewer new NMSC in last 8 months |
Botteri [15] | 2018 | low chol/low cal/stop smoking | 1216 | 0 | hi CAD risk men | LCD | ↓ saturated fat, stop smoking | 5 y | CV mortality | 2 | lower cancer risk HR = 0.69 at 25 years, but not beyond |
Boyd [16] | 1988 | dense breasts | 0 | 295 | dense breasts | ISO | LFD: 15% fat | 1 y | ∆ Breast density | 1 | no change in breast density |
Boyd [17] | 1997 | LFD | 0 | 220 | pre with dense breasts | ISO | LFD: 15% fat | 2 y | Sex hormone levels | 2 | lower estradiol, progesterone in LFD group |
Brown [18] | 2022 | LCD/EX/both/control | 0 | 269 | BC survivors, BMI > 25 kg/m2 | LCD | LCD: goal 10% ↓ weight | 1 y | Sex hormone levels | 1 | no ∆ with diet, EX, or both vs. control |
Bruno [19] | 2021 | MedD in BC survival/high metab risk | 0 | 1344 | BC survivors | LCD | LCD, low meat protein & fat | 1 y | Adherence to MedD with improve metabolic syndrome parameters | 1 | improvement in metabolic syndrome parameters, weight loss related to MedD adherence |
Byrd [20] | 2022 | PPT | 218 | 150 | hx CR adenomas | ISO | LFD: 20% fat | 4 y | Adenoma recurrence | 2 | High baseline bile acids associated with recurrence, no effect of diet |
Caan [21] | 2009 | WHI diet modification trial | 0 | 48,835 | post | ISO | LFD: 20% fat | avg 8.1 y | Risk BC based on hot flashes (HF) | 2 | HF predicted lower risk of BC among Tx group (HR = 0.27) |
Campbell [22] | 2012 | LCD/EX/both/control | 0 | 439 | post: BMI > 25 kg/m2 | LCD | LCD: goal 10% ↓ weight | 1 y | intervention in sex hormones | 1 | wt loss ↓ estrogens and testosterone |
Chlebowski [23] | 2006 | WHI nutrition study | 0 | 2437 | BC survivors | ISO | LFD: 20% fat | 5 y | BC recurrence | 1 | may lower recurrence (p = 0.077 log rank, p = 0.034 Cox model) |
Chlebowski [24] | 2017 | WHI-DMT | 0 | 48,835 | post | ISO | LFD: 20% fat | 8.5 y median | BC and CRC incidence | 2 | lower risk of dying from BC HR = 0.65 |
Chlebowski [25] | 2018a | WHI-DMT | 0 | 48,835 | post | ISO | LFD: 20% fat | 8.5 y median | BC and CRC incidence | 2 | increased BC survival with LFD after a diagnosis of BC |
Chlebowski [26] | 2018b | WHI-DMT | 48,835 | post | ISO | LFD: 20% fat | 2 | among women who developed BC, lower risk of dying overall (from any cause) after 17.7 yrs median follow-up | |||
Chlebowski [7] | 2020 | WHI-DMT | 0 | 48,835 | post | ISO | LFD: 20% fat | 8.5 y median | BC and CRC incidence | 2 | if developed BC, lower risk of dying overali and from BC after 19.6 y median follow-up |
deLorgeril [27] | 1998 | Lyon Heart Diet | 392 | 203 | CV disease | ISO | MedD | 4 y | Cardiac mortality | 2 | ↓ total mortality (HR = 0.56), lower cancers(HR = 0.61) |
Duggan [28] | 2015 | LCD + vitD3 vs. LCD + placebo | 0 | 218 | post/BMI ≥ 25 kg/m2/low vitD | LCD | LCD: goal 10% ↓ weight | 1 y | Inflamm biomarkers | 1 | lower IL-6 with both wt loss ≥ 5% and vitD3 supplementation |
Duggan [29] | 2016 | LCD/EX/both/control | 0 | 439 | post/BMI ≥ 25 kg/m2 | LCD | LCD: goal 10% ↓ weight | 1 y | Angiogenesis biomarkers | 2 | weight loss associated with ↓ PAI-1, PEDF, VEGF |
Duggan [30] | 2021 | LCD/EX/both/control | 0 | 438 | post/BMI ≥ 25 kg/m2 | LCD | LCD: goal 10% ↓ weight | 1 y | DII (inflammatory index) and energy-adj DIII (E-DII) biomark | 2 | LCD and LCD + EX had lower E-DII v. contr, include ghrelin, VEGF, RBC count. |
Emond [31] | 2011 | WHEL study | 0 | 447 | post BC suvivor w/o hot flashes | ISO | LFD:15–20% fat | 7.3 y mean | BC recurrence | 2 | lower BC if no HF at baseline due to lowering of testosterone (total and bioavailable) |
Flood [32] | 2008 | PPT if serum available for biomarker analysis | 534 | 216 | Recent CR adenoma | ISO | LFD: 20% fat | 4 y | Polyp recurrence | 2 | no effect on IGF-1, insulin, IGFBP-3; lower glucose if lean |
Fontana [33] | 2016 | CALERIE study | 218 total; M/F unclear | BMI 22–27.8 kg/m2, 20–50 yo | LCD | LCD: goal 25% ↓ weight | 2 y | Cardiometabolic effects | 2 | IGFBP-1 increased, IGF-1, cortisol unchanged | |
Gamba [34] | 2013 | WHI-DMT | 0 | 48,835 | LFD | ISO | LFD | 8.1 y median | BC and CRC incidence | 2 | skin CA risk: no effect on melanoma or NMSC risk |
Gann [35] | 2003 | LFD, hi fiber | 0 | 213 | 20–40 yo, healthy | ISO | LFD: 20% fat | 1 y | Sex hormone levels | 1 | nonsignificant lowering of E2 |
Habermann [36] | 2015 | NEW study | 0 | 439 | post: BMI > 25 kg/m2 | LCD | LCD: goal 10% ↓ weight | 1 y | Sex hormone levels | 2 | no ∆ in DNA repair capacity |
Imayama [37] | 2012 | NEW study | 0 | 439 | post: BMI > 25 kg/m2 | LCD | LCD: goal 10% ↓ weight | 1 y | Inflamm biomarkers | 2 | LCD and LCD + EX groups lowered IL-6, CRP, serum amyloid, especially if ≥5% wt loss |
Jiao [38] | 2018 | WHI diet mod trial | 0 | 46,200 | post | ISO | LFD: 20% fat | 8.5 y median | BC and CRC incidence | 2 | ↓ pancreas cancer risk if BMI > 25 kg/m2 |
Lanza [39] | 2007 | PPT Continued Follow-up Study | 529 | 272 | hx CR adenomas | ISO | LFD: 20% fat | 8 y | Polyp recurrence | 2 | no effect on adenoma recurrence |
Liu [40] | 2022 | metformin vs. metformin + ex + diet | 72 | 48 | renal cell ca + DM | ISO | custom diet | 1 y | Glucose and lipid metabolism, progression-free survival | 1 | improved glucose and lipid metabolism, better PFS |
Martin [41] | 2011 | LFD | 0 | 4690 | hi mammo density | ISO | LFD: 15% fat | 10 y mean | Invasive BC | 1 | no effect on BC risk |
Masala [42] | 2020 | plant based diet/EX/both/control | 0 | 234 | post, high breast density | ISO | low saturated fat | 2 y | Inflamm biomarkers | 1 | ↓ IL-1α and IL-6 with EX or EX + diet vs. control |
Mason [43] | 2013 | NEW study | 0 | 439 | post/BMI ≥ 25 kg/m2 | LCD | LCD: goal 10% ↓weight | 1 y | Intervention in sex hormones | 2 | no ∆ in IGF-1 or IGFBP-3, but IGF-1/IGFBP-3 ratio ↑ in LCD and LCD + EX group vs. control |
McKeown-Eyssen [44] | 1994 | LFD hi fiber v. control | 110 | 91 | history CR polyps | ISO | LFD: 20% fat | 2 y | Polyp recurrence | 1 | no impact on polyp recurrence |
Pan [45] | 2019 | WHI-DMT | 0 | 48,835 | post | ISO | LFD: 20% fat | 11.4 y mean | BC and CRC incidence | 2 | lower BC mortality in treatment arm |
Pan [46] | 2021 | WH-DMT | 0 | 48,835 | LFD | ISO | LFD: 20% fat | 8.5 y median | BC and CRC incidence | 2 | LFD lowered BC mortality more in participants with 3–4 (vs. fewer) metabolic syndrome components |
Peila [47] | 2021 | WHI-DMT | 0 | 48,835 | LFD | ISO | LFD: 20% fat | 18.7 y median | BC and CRC incidence | 2 | no impact on DCIS risk |
Pierce [48] | 2007 | WHEL study | 3088 | LFD | ISO | LFD: 15–20% fat | 6 y | Invasive BC, new or recurrent | 1 | no impact | |
Prentice [49] | 2006 | WHI-DMT | 0 | 48,835 | LFD | ISO | LFD: 20% fat | 8.1 y mean | BC and CRC incidence | 1 | non-significant trend to lower BC risk |
Prentice [50] | 2007 | WHI-DMT | 0 | 48,835 | LFD | ISO | LFD: 20% fat | 8.1 y mean | BC and CRC incidence | 2 | ↓ ovarian cancer risk after ≥4 years on study |
Prentice [51] | 2019 | WHI-DMT | 0 | 48,835 | LFD | ISO | LFD: 20% fat | 8.5 y median | BC and CRC incidence | 1 | after 19.6 yr f/u, lower mortality from BC mortality |
Rana [52] | 2017 | 3 arm study, all LCD | 0 | 242 | post: BMI > 25 kg/m2 | LCD | LFD, HFD, or walnut rich diet | 1 y | Biomarkers of BC | 1 | IL-6 snp rs1800795 is not related to when IL-6 change occurs |
Reeves [53] | 2021 | LCD | 0 | 159 | BC survivors | LCD | LCD: 5–10% ↓weight | 1.5 y | Biomarkers of BC | 1 | improved metabolic syndrome components |
Rock [54] | 2004 | WHEL subgroup study | 0 | 291 | BC survivors | ISO | LFD: 15–20% fat | 1 y | BC recurrence | 2 | ↓ E2 |
Rock [55] | 2016 | LFD/hi fat/walnut rich, hi fat | 0 | 245 | BMI > 25 kg/m2 | LCD | LFD vs. high fat vs. walnut high fat | 1 y | Metabolic factors | 1 | all groups had ↓ CRP and IL-6 |
Rohan [56] | 2008 | WHI-DMT | 0 | 48,835 | LFD | ISO | LFD: 20% fat | 7.7 y mean | BC and CRC incidence | 2 | benign breast disease not changed |
Sansbury [57] | 2009 | PPT | 1229 | 676 | LFD, focus on adherence | ISO | LFD: 20% fat | 4 y | Adenoma recurrence | 2 | ↓ adenoma recurrence among dietary “super compliers” |
Schatzkin [58] | 2000 | PPT | 1229 | 676 | LFD, hi fiber, vegetables, fruit | ISO | LFD: 20% fat | 4 y | Adenoma recurrence | 1 | LFD did not alter adenoma recurrence |
Thomson [59] | 2014 | WHI-DMT | 0 | 48,835 | LFD | ISO | LFD: 20% fat | 8.3 y mean | BC and CRC incidence | 2 | no change in overall BC or CRC risk or mortality, though lower risk of ER+/PR− BC |
Toledo [60] | 2015 | Predimed trial | 0 | 4282 | women 60–80 hi CVD risk | ISO | MedD, olive oil/MedD, nuts/control | 4.8 y mean | CVD impact | 2 | ↓ (HR = 0.32) BC incidence for MedD c ex virg olive oil, HR = 0.59 vs. control |
Vitale [61] | 2023 | Dedica trial: MedD | 0 | 223 | BC survivors | ISO | MedD/MedD + EX + vitamin D | 2.7 y | DII impact | 1 | ↑ MedD adherence & ↓ glycemic index each ↓ lowered DII; may impact cancer prognosis & survival |
Primary Reports | |||||
---|---|---|---|---|---|
Isocaloric Studies | Low-Calorie Diet Studies | ||||
Y | N | Total (%) | Y | N | Total (%) |
5 | 8 | 13 (38) | 5 | 2 | 7 (71) |
Secondary Reports | |||||
Isocaloric Studies | Low-Calorie Diet Studies | ||||
Y | N | Total (%) | Y | N | Total (%) |
16 | 6 | 22 (73) | 6 | 1 | 6 (86) |
Breast Cancer (BC) | Healthy Women 1 | Colorectal Cancer | |
---|---|---|---|
6 | 9 | 1 | |
Skin Cancer | Colorectal Polyps | Renal Cell Cancer | Total |
1 | 2 | 1 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sauter, E.R.; Butera, G.; Agurs-Collins, T. Long-Term Randomized Controlled Trials of Diet Intervention Reports and Their Impact on Cancer: A Systematic Review. Cancers 2024, 16, 3296. https://doi.org/10.3390/cancers16193296
Sauter ER, Butera G, Agurs-Collins T. Long-Term Randomized Controlled Trials of Diet Intervention Reports and Their Impact on Cancer: A Systematic Review. Cancers. 2024; 16(19):3296. https://doi.org/10.3390/cancers16193296
Chicago/Turabian StyleSauter, Edward R., Gisela Butera, and Tanya Agurs-Collins. 2024. "Long-Term Randomized Controlled Trials of Diet Intervention Reports and Their Impact on Cancer: A Systematic Review" Cancers 16, no. 19: 3296. https://doi.org/10.3390/cancers16193296
APA StyleSauter, E. R., Butera, G., & Agurs-Collins, T. (2024). Long-Term Randomized Controlled Trials of Diet Intervention Reports and Their Impact on Cancer: A Systematic Review. Cancers, 16(19), 3296. https://doi.org/10.3390/cancers16193296