Measurable Residual Disease Testing in Multiple Myeloma Following T-Cell Redirecting Therapies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Current Clinical Use of MRD Testing in MM
2.1. Formal Guidelines for MRD Testing
2.2. Prognostic Value of MRD Testing
Group | Comparison | HR: PFS | HR: OS | |
---|---|---|---|---|
MRD Studies | ||||
Cavo 2022 [20] | NDMM-TIE and RRMM | ≥CR + MRD-Neg vs. ≤VGPR or MRD Pos | 0.20 | - |
Munshi 2020 [19] | NDMM-TE | MRD Neg vs. Pos | 0.33 | 0.50 |
NDMM-TIE | MRD Neg vs. Pos | 0.32 | 0.40 | |
RRMM | MRD Neg vs. Pos | 0.34 | 0.28 | |
Non-MRD Studies | ||||
R-ISS [27] | NDMM | Standard vs. HRCA | 0.54 | 0.49 |
R-ISS (I vs. II) | 0.47 | 0.27 | ||
R-ISS (I vs. III) | 0.28 | 0.1 | ||
R2-ISS [28] | NDMM | R2-ISS (II vs. III) | 0.74 | 0.51 |
R2-ISS (II vs. IV) | 0.49 | 0.24 |
2.3. Notable Examples of MRD Testing
2.4. Technical and Logistical Considerations of MRD Testing
3. MRD Testing with CAR-T Therapy
Threshold | MRD Negative (%) | MRD Evaluable | ≥CR and MRD Negative (%) | Technique | Treated Patients | |||
---|---|---|---|---|---|---|---|---|
CAR-T | ||||||||
Idecabtagene Vicleucel | ||||||||
KarMMa-1 [53] | 10−5 | 33 (100) | 33 | 33 (100) | NGS/NGF | 128 | ||
KarMMa-3 [54] | 10−5 | 51 | - | - | NGS | 225 | ||
10−6 | 32 | - | - | NGS | ||||
Ciltacabtagene Autoleucel/LCAR-B38M | ||||||||
CARTITUDE-1 [55] | 10−5 | 56 (91) | 61 | - | NGS | 97 | ||
10−6 | 39 (75) | 52 | - | NGS | ||||
CARTITUDE-2 [56] | 10−5 | 7 (70) | 10 | 3 (43) | NGS | 20 | ||
CARTITUDE-4 [57] | 10−5 | 126 (88) | 144 | - | NGS | 176 | ||
CARTIFAN-1 [58] | 10−5 | 39 (98) | 40 | 35 (90) | NGF | 48 | ||
LEGEND-2 [59] | 10−4 | 50 (68) | 74 | 50 (68) | NGF | 74 | ||
BiAb | ||||||||
Talquetamab | 10−5 | 11 (69) | 16 | 11 (100) | NGF | 232 | ||
Teclistamab | 10−5 | 44 (81) | 54 | 30 (68) | NGS | 165 | ||
Elranatamab | ||||||||
MagnetisMM-1 [60] | 10−5 | 13 (100) | 13 | 9 (69) | NGS | 55 | ||
MagnetismM-3 [61] | 10−5 | 26 (90) | 29 | 26 (100) | NGS | 123 |
3.1. MRD Testing in Early Phase CAR-T Trials
3.2. MRD Testing in Landmark CAR-T Trials
3.3. Future of MRD Testing with CAR-T Therapies
4. Bispecific Antibodies (BiAbs)
4.1. MRD Testing in Early Phase BiAb Trials
4.2. Future of MRD Testing with BiAb Therapy
5. Timing of MRD Assessment
5.1. MRD Testing Timing for CAR-T Therapies
5.2. MRD Testing Timing for BiAb
6. Future Directions for MRD Testing Following TRT
7. Discussion
7.1. Proposed Framework
- Provide an informative early MRD status data point as early as 30–60 days following treatment.
- Align with testing conducted in most of the currently published TRT trials and take a step toward a widely standardized approach toward monitoring MRD.
- Provide objective response-mediated criteria for MRD testing following TRT that aligns with the strategy applied to MRD testing after other types of MM therapies.
7.2. MRD Testing for Patient Care
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Derman, B.A.; Fonseca, R. Measurable Residual Disease and Decision-Making in Multiple Myeloma. Hematol. Oncol. Clin. N. Am. 2024, 38, 477–495. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.-V.; et al. International Myeloma Working Group Consensus Criteria for Response and Minimal Residual Disease Assessment in Multiple Myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef] [PubMed]
- Wijnands, C.; Noori, S.; van de Donk, N.W.C.J.; VanDuijn, M.M.; Jacobs, J.F.M. Advances in Minimal Residual Disease Monitoring in Multiple Myeloma. Crit. Rev. Clin. Lab. Sci. 2023, 60, 518–534. [Google Scholar] [CrossRef]
- Medina-Herrera, A.; Sarasquete, M.E.; Jiménez, C.; Puig, N.; García-Sanz, R. Minimal Residual Disease in Multiple Myeloma: Past, Present, and Future. Cancers 2023, 15, 3687. [Google Scholar] [CrossRef]
- Bal, S.; Costa, L.J. Best Practices for the Assessment of Measurable Residual Disease (MRD) in Multiple Myeloma. Clin. Adv. Hematol. Oncol. HO 2020, 18 (Suppl. S1), 1–20. [Google Scholar]
- Romano, A.; Palumbo, G.A.; Parrinello, N.L.; Conticello, C.; Martello, M.; Terragna, C. Minimal Residual Disease Assessment Within the Bone Marrow of Multiple Myeloma: A Review of Caveats, Clinical Significance and Future Perspectives. Front. Oncol. 2019, 9, 699. [Google Scholar] [CrossRef]
- Zamagni, E.; Oliva, S.; Gay, F.; Capra, A.; Rota-Scalabrini, D.; D’Agostino, M.; Belotti, A.; Galli, M.; Racca, M.; Zambello, R.; et al. Impact of Minimal Residual Disease Standardised Assessment by FDG-PET/CT in Transplant-Eligible Patients with Newly Diagnosed Multiple Myeloma Enrolled in the Imaging Sub-Study of the FORTE Trial. eClinicalMedicine 2023, 60, 102017. [Google Scholar] [CrossRef]
- Wellman, T.J.; Mudd, S.R.; Godby, K.N.; Wooten, D.W.; Ross, J.A.; Bueno, O.F.; Wanik, D.; Divgi, C.R.; Comley, R.A.; Costa, L.J.; et al. Evaluation of a Semi-Automated Approach for FDG PET Image Analysis for Routine Clinical Application in Patients with Multiple Myeloma. Transl. Oncol. 2023, 37, 101767. [Google Scholar] [CrossRef] [PubMed]
- FDA News Release. Available online: https://www.fda.gov/news-events/press-announcements/fda-authorizes-first-next-generation-sequencing-based-test-detect-very-low-levels-remaining-cancer (accessed on 8 September 2024).
- clonoSEQ Technical Information. Available online: https://www.clonoseq.com/wp-content/uploads/2021/08/PNL-10027-03_clonoSEQ-Technical-Information.pdf (accessed on 8 September 2024).
- Kalina, T.; Flores-Montero, J.; van der Velden, V.H.J.; Martin-Ayuso, M.; Böttcher, S.; Ritgen, M.; Almeida, J.; Lhermitte, L.; Asnafi, V.; Mendonça, A.; et al. EuroFlow Standardization of Flow Cytometer Instrument Settings and Immunophenotyping Protocols. Leukemia 2012, 26, 1986–2010. [Google Scholar] [CrossRef]
- Lin, Y.; Qiu, L.; Usmani, S.; Joo, C.W.; Costa, L.; Derman, B.; Du, J.; Einsele, H.; de Larrea, C.F.; Hajek, R.; et al. Consensus Guidelines and Recommendations for the Management and Response Assessment of Chimeric Antigen Receptor T-Cell Therapy in Clinical Practice for Relapsed and Refractory Multiple Myeloma: A Report from the International Myeloma Working Group Immunotherapy Committee. Lancet Oncol. 2024, 25, e374–e387. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Multiple Myeloma V.4.2024. © National Comprehensive Cancer Network, Inc. 2024. All Rights Reserved. To View the Most Recent and Complete Version of the Guideline, Go Online to NCCN.org. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1445 (accessed on 8 September 2024).
- Dhakal, B.; Shah, N.; Kansagra, A.; Kumar, A.; Lonial, S.; Garfall, A.; Cowan, A.; Poudyal, B.S.; Costello, C.; Gay, F.; et al. ASTCT Clinical Practice Recommendations for Transplantation and Cellular Therapies in Multiple Myeloma. Transplant. Cell. Ther. 2022, 28, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Oncologic Drugs Advisory Commmittee (ODAC) Meeting 12 April 2024. Drug Topic: Use of Minimal Residual Disease (MRD) as an Endpoint in Multiple Myeloma Clinical Trials. Available online: https://www.fda.gov/media/177652/download (accessed on 8 September 2024).
- Landgren, O.; Prior, T.J.; Masterson, T.; Heuck, C.; Bueno, O.F.; Dash, A.B.; Einsele, H.; Goldschmidt, H.; Knop, S.; Li, C.; et al. EVIDENCE Meta-Analysis: Evaluating Minimal Residual Disease as an Intermediate Clinical End Point for Multiple Myeloma. Blood 2024, 144, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Paiva, B.; Zherniakova, A.; Nuñez-Córdoba, J.M.; Rodriguez-Otero, P.; Shi, Q.; Munshi, N.C.; Durie, B.G.M.; San-Miguel, J. Impact of Treatment Effect on MRD and PFS: An Aggregate Data Analysis from Randomized Clinical Trials in Multiple Myeloma. Blood Adv. 2024, 8, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Avet-Loiseau, H.; Rawstron, A.C.; Owen, R.G.; Child, J.A.; Thakurta, A.; Sherrington, P.; Samur, M.K.; Georgieva, A.; Anderson, K.C.; et al. Association of Minimal Residual Disease with Superior Survival Outcomes in Patients with Multiple Myeloma: A Meta-Analysis. JAMA Oncol. 2016, 3, 28. [Google Scholar] [CrossRef]
- Munshi, N.C.; Avet-Loiseau, H.; Anderson, K.C.; Neri, P.; Paiva, B.; Samur, M.; Dimopoulos, M.; Kulakova, M.; Lam, A.; Hashim, M.; et al. A Large Meta-Analysis Establishes the Role of MRD Negativity in Long-Term Survival Outcomes in Patients with Multiple Myeloma. Blood Adv. 2020, 4, 5988–5999. [Google Scholar] [CrossRef]
- Cavo, M.; San-Miguel, J.; Usmani, S.Z.; Weisel, K.; Dimopoulos, M.A.; Avet-Loiseau, H.; Paiva, B.; Bahlis, N.J.; Plesner, T.; Hungria, V.; et al. Prognostic Value of Minimal Residual Disease Negativity in Myeloma: Combined Analysis of POLLUX, CASTOR, ALCYONE, and MAIA. Blood 2022, 139, 835–844. [Google Scholar] [CrossRef]
- Avet-Loiseau, H.; Ludwig, H.; Landgren, O.; Paiva, B.; Morris, C.; Yang, H.; Zhou, K.; Ro, S.; Mateos, M.-V. Minimal Residual Disease Status as a Surrogate Endpoint for Progression-Free Survival in Newly Diagnosed Multiple Myeloma Studies: A Meta-Analysis. Clin. Lymphoma Myeloma Leuk. 2020, 20, e30–e37. [Google Scholar] [CrossRef]
- Landgren, O.; Devlin, S.; Boulad, M.; Mailankody, S. Role of MRD Status in Relation to Clinical Outcomes in Newly Diagnosed Multiple Myeloma Patients: A Meta-Analysis. Bone Marrow Transplant. 2016, 51, 1565–1568. [Google Scholar] [CrossRef]
- Turner, R.; Kalff, A.; Bergin, K.; Gorniak, M.; Fleming, S.; Spencer, A. The Utility of Euroflow MRD Assessment in Real-World Multiple Myeloma Practice. Front. Oncol. 2022, 12, 820605. [Google Scholar] [CrossRef]
- Perrot, A.; Lauwers-Cances, V.; Corre, J.; Robillard, N.; Hulin, C.; Chretien, M.-L.; Dejoie, T.; Maheo, S.; Stoppa, A.-M.; Pegourie, B.; et al. Minimal Residual Disease Negativity Using Deep Sequencing Is a Major Prognostic Factor in Multiple Myeloma. Blood 2018, 132, 2456–2464. [Google Scholar] [CrossRef]
- San-Miguel, J.; Avet-Loiseau, H.; Paiva, B.; Kumar, S.; Dimopoulos, M.A.; Facon, T.; Mateos, M.-V.; Touzeau, C.; Jakubowiak, A.; Usmani, S.Z.; et al. Sustained Minimal Residual Disease Negativity in Newly Diagnosed Multiple Myeloma and the Impact of Daratumumab in MAIA and ALCYONE. Blood 2022, 139, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Chokr, N.; Gomez-Arteaga, A. Measurable Residual Disease after CAR T-Cell Therapy. Semin. Hematol. 2023, 60, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report from International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, M.; Cairns, D.A.; Lahuerta, J.J.; Wester, R.; Bertsch, U.; Waage, A.; Zamagni, E.; Mateos, M.-V.; Dall’Olio, D.; van de Donk, N.W.C.J.; et al. Second Revision of the International Staging System (R2-ISS) for Overall Survival in Multiple Myeloma: A European Myeloma Network (EMN) Report Within the HARMONY Project. J. Clin. Oncol. 2022, 40, 3406–3418. [Google Scholar] [CrossRef]
- Costa, L.J.; Chhabra, S.; Medvedova, E.; Dholaria, B.R.; Schmidt, T.M.; Godby, K.N.; Silbermann, R.; Dhakal, B.; Bal, S.; Giri, S.; et al. Daratumumab, Carfilzomib, Lenalidomide, and Dexamethasone with Minimal Residual Disease Response-Adapted Therapy in Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. 2022, 40, 2901–2912. [Google Scholar] [CrossRef]
- Costa, L.J.; Chhabra, S.; Medvedova, E.; Dholaria, B.R.; Schmidt, T.M.; Godby, K.N.; Silbermann, R.; Dhakal, B.; Bal, S.; Giri, S.; et al. Minimal Residual Disease Response-Adapted Therapy in Newly Diagnosed Multiple Myeloma (MASTER): Final Report of the Multicentre, Single-Arm, Phase 2 Trial. Lancet Haematol. 2023, 10, e890–e901. [Google Scholar] [CrossRef]
- Sonneveld, P.; Dimopoulos, M.A.; Boccadoro, M.; Quach, H.; Ho, P.J.; Beksac, M.; Hulin, C.; Antonioli, E.; Leleu, X.; Mangiacavalli, S.; et al. Daratumumab, Bortezomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2023, 390, 301–313. [Google Scholar] [CrossRef]
- Krishnan, A.; Hoering, A.; Hari, P.; Sexton, R.; Orlowski, R.Z. Phase III Study of Daratumumab/Rhuph20 (Nsc-810307) + Lenalidomide or Lenalidomide As Post-Autologous Stem Cell Transplant Maintenance Therapy in Patients with Multiple Myeloma (Mm) Using Minimal Residual Disease to Direct Therapy Duration (DRAMMATIC Study): SWOG S1803. Blood 2020, 136, 21–22. [Google Scholar] [CrossRef]
- Puig, N.; Agulló, C.; Sanfeliciano, T.C.; Paiva, B.; Cedena, M.T.; Dachs, L.R.; García-Sanz, R.; Martínez-López, J.; Oriol, A.; Blanchard, M.J.; et al. Clinical Impact of Next Generation Flow in Bone Marrow Vs Qip-Mass Spectrometry in Peripheral Blood to Assess Minimal Residual Disease in Newly Diagnosed Multiple Myeloma Patients Receiving Maintenance as Part of the GEM2014MAIN Trial. Blood 2022, 140, 2098–2100. [Google Scholar] [CrossRef]
- Leypoldt, L.B.; Tichy, D.; Besemer, B.; Hänel, M.; Raab, M.S.; Mann, C.; Munder, M.; Reinhardt, H.C.; Nogai, A.; Görner, M.; et al. Isatuximab, Carfilzomib, Lenalidomide, and Dexamethasone for the Treatment of High-Risk Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. 2024, 42, 26–37. [Google Scholar] [CrossRef]
- Shah, N.; Patel, S.; Pei, H.; Qi, M.; Krevvata, M.; Lin, T.S.; Khare, V. Subcutaneous Daratumumab (DARA SC) plus Lenalidomide versus Lenalidomide Alone as Maintenance Therapy in Patients (Pts) with Newly Diagnosed Multiple Myeloma (NDMM) Who Are Minimal Residual Disease (MRD) Positive after Frontline Autologous Stem Cell Transplant (ASCT): The Phase 3 AURIGA Study. J. Clin. Oncol. 2021, 39, TPS8054. [Google Scholar] [CrossRef]
- Martin, T.; Dimopoulos, M.-A.; Mikhael, J.; Yong, K.; Capra, M.; Facon, T.; Hajek, R.; Špička, I.; Baker, R.; Kim, K.; et al. Isatuximab, Carfilzomib, and Dexamethasone in Patients with Relapsed Multiple Myeloma: Updated Results from IKEMA, a Randomized Phase 3 Study. Blood Cancer J. 2023, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Voorhees, P.M.; Sborov, D.W.; Laubach, J.; Kaufman, J.L.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D.; et al. Addition of Daratumumab to Lenalidomide, Bortezomib, and Dexamethasone for Transplantation-Eligible Patients with Newly Diagnosed Multiple Myeloma (GRIFFIN): Final Analysis of an Open-Label, Randomised, Phase 2 Trial. Lancet Haematol. 2023, 10, e825–e837. [Google Scholar] [CrossRef] [PubMed]
- Dytfeld, D.; Wróbel, T.; Jamroziak, K.; Kubicki, T.; Robak, P.; Walter-Croneck, A.; Czyż, J.; Tyczyńska, A.; Druzd-Sitek, A.; Giannopoulos, K.; et al. Carfilzomib, Lenalidomide, and Dexamethasone or Lenalidomide Alone as Maintenance Therapy after Autologous Stem-Cell Transplantation in Patients with Multiple Myeloma (ATLAS): Interim Analysis of a Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2023, 24, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Suzuki, K.; Plesner, T.; et al. Overall Survival with Daratumumab, Lenalidomide, and Dexamethasone in Previously Treated Multiple Myeloma (POLLUX): A Randomized, Open-Label, Phase III Trial. J. Clin. Oncol. 2023, 41, 1590–1599. [Google Scholar] [CrossRef]
- de Tute, R.M.; Pawlyn, C.; Cairns, D.A.; Davies, F.E.; Menzies, T.; Rawstron, A.; Jones, J.R.; Hockaday, A.; Henderson, R.; Cook, G.; et al. Minimal Residual Disease After Autologous Stem-Cell Transplant for Patients with Myeloma: Prognostic Significance and the Impact of Lenalidomide Maintenance and Molecular Risk. J. Clin. Oncol. 2022, 40, 2889–2900. [Google Scholar] [CrossRef]
- Avet-Loiseau, H.; San-Miguel, J.; Casneuf, T.; Iida, S.; Lonial, S.; Usmani, S.Z.; Spencer, A.; Moreau, P.; Plesner, T.; Weisel, K.; et al. Evaluation of Sustained Minimal Residual Disease Negativity with Daratumumab-Combination Regimens in Relapsed and/or Refractory Multiple Myeloma: Analysis of POLLUX and CASTOR. J. Clin. Oncol. 2021, 39, 1139–1149. [Google Scholar] [CrossRef]
- Martinez-Lopez, J.; Wong, S.W.; Shah, N.; Bahri, N.; Zhou, K.; Sheng, Y.; Huang, C.-Y.; Martin, T.; Wolf, J. Clinical Value of Measurable Residual Disease Testing for Assessing Depth, Duration, and Direction of Response in Multiple Myeloma. Blood Adv. 2020, 4, 3295–3301. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Zhang, R.; Li, J.; Chen, L.; Jin, Y. Real-World Prognostic Significance of Attaining Minimal Residual Disease Negativity in Newly Diagnosed Multiple Myeloma. Discov. Oncol. 2024, 15, 38. [Google Scholar] [CrossRef]
- Fonseca, R.; Miguel, J.S. Prognostic Factors and Staging in Multiple Myeloma. Hematol. Oncol. Clin. N. Am. 2007, 21, 1115–1140. [Google Scholar] [CrossRef]
- Cappell, K.M.; Kochenderfer, J.N. Long-Term Outcomes Following CAR T Cell Therapy: What We Know so Far. Nat. Rev. Clin. Oncol. 2023, 20, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, H.; Lan, H.; Wu, J.; Xiao, Y. CAR-T Cell Therapy in Multiple Myeloma: Current Limitations and Potential Strategies. Front. Immunol. 2023, 14, 1101495. [Google Scholar] [CrossRef] [PubMed]
- Manier, S.; Ingegnere, T.; Escure, G.; Prodhomme, C.; Nudel, M.; Mitra, S.; Facon, T. Current State and Next-Generation CAR-T Cells in Multiple Myeloma. Blood Rev. 2022, 54, 100929. [Google Scholar] [CrossRef]
- Sheykhhasan, M.; Ahmadieh-Yazdi, A.; Vicidomini, R.; Poondla, N.; Tanzadehpanah, H.; Dirbaziyan, A.; Mahaki, H.; Manoochehri, H.; Kalhor, N.; Dama, P. CAR T Therapies in Multiple Myeloma: Unleashing the Future. Cancer Gene Ther. 2024, 31, 667–686. [Google Scholar] [CrossRef]
- Miller, K.; Hashmi, H.; Rajeeve, S. Beyond BCMA: The next Wave of CAR T Cell Therapy in Multiple Myeloma. Front. Oncol. 2024, 14, 1398902. [Google Scholar] [CrossRef]
- Carvykti. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/carvykti (accessed on 8 September 2024).
- Abecama (Idecabtagene Vicleucel). Available online: https://www.fda.gov/vaccines-blood-biologics/abecma-idecabtagene-vicleucel (accessed on 8 September 2024).
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy Bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef]
- Rodriguez-Otero, P.; Ailawadhi, S.; Arnulf, B.; Patel, K.; Cavo, M.; Nooka, A.K.; Manier, S.; Callander, N.; Costa, L.J.; Vij, R.; et al. Ide-Cel or Standard Regimens in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 388, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.; Usmani, S.Z.; Berdeja, J.G.; Agha, M.; Cohen, A.D.; Hari, P.; Avigan, D.; Deol, A.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, an Anti–B-Cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for Relapsed/Refractory Multiple Myeloma: CARTITUDE-1 2-Year Follow-Up. J. Clin. Oncol. 2023, 41, 1265–1274. [Google Scholar] [CrossRef]
- Cohen, A.D.; Mateos, M.-V.; Cohen, Y.C.; Rodriguez-Otero, P.; Paiva, B.; van de Donk, N.W.C.J.; Martin, T.G.; Suvannasankha, A.; Braganca, K.C.D.; Corsale, C.; et al. Efficacy and Safety of Cilta-Cel in Patients with Progressive MM after Exposure to Other BCMA-Targeting Agents. Blood 2022, 141, 219–230. [Google Scholar] [CrossRef]
- San-Miguel, J.; Dhakal, B.; Yong, K.; Spencer, A.; Anguille, S.; Mateos, M.-V.; de Larrea, C.F.; Martínez-López, J.; Moreau, P.; Touzeau, C.; et al. Cilta-Cel or Standard Care in Lenalidomide-Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 389, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Mi, J.-Q.; Zhao, W.; Jing, H.; Fu, W.; Hu, J.; Chen, L.; Zhang, Y.; Yao, D.; Chen, D.; Schecter, J.M.; et al. Phase II, Open-Label Study of Ciltacabtagene Autoleucel, an Anti–B-Cell Maturation Antigen Chimeric Antigen Receptor–T-Cell Therapy, in Chinese Patients with Relapsed/Refractory Multiple Myeloma (CARTIFAN-1). J. Clin. Oncol. 2023, 41, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, B.-Y.; Yu, S.-H.; Chen, S.-J.; Yang, S.-S.; Liu, R.; Chen, L.-J.; Hou, J.; Chen, Z.; Zhao, W.-H.; et al. Long-Term Remission and Survival in Patients with Relapsed or Refractory Multiple Myeloma after Treatment with LCAR-B38M CAR T Cells: 5-Year Follow-up of the LEGEND-2 Trial. J. Hematol. Oncol. 2024, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- Bahlis, N.J.; Costello, C.L.; Raje, N.S.; Levy, M.Y.; Dholaria, B.; Solh, M.; Tomasson, M.H.; Damore, M.A.; Jiang, S.; Basu, C.; et al. Elranatamab in Relapsed or Refractory Multiple Myeloma: The MagnetisMM-1 Phase 1 Trial. Nat. Med. 2023, 29, 2570–2576. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Tomasson, M.H.; Arnulf, B.; Bahlis, N.J.; Prince, H.M.; Niesvizky, R.; Rodrίguez-Otero, P.; Martinez-Lopez, J.; Koehne, G.; Touzeau, C.; et al. Elranatamab in Relapsed or Refractory Multiple Myeloma: Phase 2 MagnetisMM-3 Trial Results. Nat. Med. 2023, 29, 2259–2267. [Google Scholar] [CrossRef]
- Equecabtagene Autoleucel Injection Approved with Conditions by China NMPA. Available online: https://english.nmpa.gov.cn/2023-06/30/c_940315.htm (accessed on 8 September 2024).
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma (CARTITUDE-1): A Phase 1b/2 Open-Label Study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef]
- Paiva, B.; Manrique, I.; Rytlewski, J.; Campbell, T.; Kazanecki, C.C.; Martin, N.; Anderson, L.D.; Berdeja, J.G.; Lonial, S.; Raje, N.S.; et al. Time-Dependent Prognostic Value of Serological and Measurable Residual Disease Assessments after Idecabtagene Vicleucel. Blood Cancer Discov. 2023, 4, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Chari, A.; Minnema, M.C.; Berdeja, J.G.; Oriol, A.; van de Donk, N.W.C.J.; Rodríguez-Otero, P.; Askari, E.; Mateos, M.-V.; Costa, L.J.; Caers, J.; et al. Talquetamab, a T-Cell–Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N. Engl. J. Med. 2022, 387, 2232–2244. [Google Scholar] [CrossRef]
- Moreau, P.; Garfall, A.L.; van de Donk, N.W.C.J.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A.; et al. Teclistamab in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef]
- Zhao, W.-H.; Liu, J.; Wang, B.-Y.; Chen, Y.-X.; Cao, X.-M.; Yang, Y.; Zhang, Y.-L.; Wang, F.-X.; Zhang, P.-Y.; Lei, B.; et al. A Phase 1, Open-Label Study of LCAR-B38M, a Chimeric Antigen Receptor T Cell Therapy Directed against B Cell Maturation Antigen, in Patients with Relapsed or Refractory Multiple Myeloma. J. Hematol. Oncol. 2018, 11, 141. [Google Scholar] [CrossRef]
- Minakata, D.; Ishida, T.; Ando, K.; Suzuki, R.; Tanaka, J.; Hagiwara, S.; Ananthakrishnan, R.; Kuwayama, S.; Nishio, M.; Kanda, Y.; et al. Phase 2 Results of Idecabtagene Vicleucel (Ide-Cel, Bb2121) in Japanese Patients with Relapsed and Refractory Multiple Myeloma. Int. J. Hematol. 2023, 117, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Keam, S.J. Equecabtagene Autoleucel: First Approval. Mol. Diagn. Ther. 2023, 27, 781–787. [Google Scholar] [CrossRef]
- Wang, D.; Wang, J.; Hu, G.; Wang, W.; Xiao, Y.; Cai, H.; Jiang, L.; Meng, L.; Yang, Y.; Zhou, X.; et al. A Phase I Study of a Novel Fully Human BCMA-Targeting CAR (CT103A) in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2021, 137, 2890–2901. [Google Scholar] [CrossRef]
- Li, C.; Wang, D.; Song, Y.; Huang, H.; Li, J.; Chen, B.; Liu, J.; Dong, Y.; Hu, K.; Liu, P.; et al. CT103A, a Novel Fully Human BCMA-Targeting CAR-T Cells, in Patients with Relapsed/Refractory Multiple Myeloma: Updated Results of Phase 1b/2 Study (FUMANBA-1). J. Clin. Oncol. 2023, 41, 8025. [Google Scholar] [CrossRef]
- Jagannath, S.; Lin, Y.; Goldschmidt, H.; Reece, D.; Nooka, A.; Senin, A.; Rodriguez-Otero, P.; Powles, R.; Matsue, K.; Shah, N.; et al. KarMMa-RW: Comparison of Idecabtagene Vicleucel with Real-World Outcomes in Relapsed and Refractory Multiple Myeloma. Blood Cancer J. 2021, 11, 116. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Weisel, K.; Martin, T.; Berdeja, J.G.; Jakubowiak, A.; Stewart, A.K.; Jagannath, S.; Lin, Y.; Diels, J.; Ghilotti, F.; et al. Adjusted Comparison of Outcomes between Patients from CARTITUDE-1 versus Multiple Myeloma Patients with Prior Exposure to Proteasome Inhibitors, Immunomodulatory Drugs and Anti-CD38 Antibody from the Prospective, Multinational LocoMMotion Study of Real-World Clinical Practice. Haematologica 2022, 108, 2192–2204. [Google Scholar] [CrossRef]
- Ferment, B.; Lambert, J.; Caillot, D.; Lafon, I.; Karlin, L.; Lazareth, A.; Touzeau, C.; Leleu, X.; Moya, N.; Harel, S.; et al. French Early Nationwide Idecabtagene Vicleucel Chimeric Antigen Receptor T-cell Therapy Experience in Patients with Relapsed/Refractory Multiple Myeloma (FENIX): A Real-world IFM Study from the DESCAR-T Registry. Br. J. Haematol. 2024. [Google Scholar] [CrossRef]
- Zanwar, S.; Sidana, S.; Shune, L.; Puglianini, O.C.; Pasvolsky, O.; Gonzalez, R.; Dima, D.; Afrough, A.; Kaur, G.; Davis, J.A.; et al. Impact of Extramedullary Multiple Myeloma on Outcomes with Idecabtagene Vicleucel. J. Hematol. Oncol. 2024, 17, 42. [Google Scholar] [CrossRef]
- Zanwar, S.; Ho, M.; Lin, Y.; Kapoor, P.; Binder, M.; Buadi, F.K.; Dispenzieri, A.; Dingli, D.; Fonder, A.; Gertz, M.A.; et al. Natural History, Predictors of Development of Extramedullary Disease, and Treatment Outcomes for Patients with Extramedullary Multiple Myeloma. Am. J. Hematol. 2023, 98, 1540–1549. [Google Scholar] [CrossRef]
- Que, Y.; Xu, M.; Xu, Y.; Almeida, V.D.F.; Zhu, L.; Wang, Z.; Wang, Y.; Liu, X.; Jiang, L.; Wang, D.; et al. Anti-BCMA CAR-T Cell Therapy in Relapsed/Refractory Multiple Myeloma Patients with Extramedullary Disease: A Single Center Analysis of Two Clinical Trials. Front. Immunol. 2021, 12, 755866. [Google Scholar] [CrossRef]
- Mailankody, S.; Devlin, S.M.; Landa, J.; Nath, K.; Diamonte, C.; Carstens, E.J.; Russo, D.; Auclair, R.; Fitzgerald, L.; Cadzin, B.; et al. GPRC5D-Targeted CAR T Cells for Myeloma. N. Engl. J. Med. 2022, 387, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Baz, R.C.; Orlowski, R.Z.; Anderson, L.D.; Ma, H.; Shrewsbury, A.; Croghan, K.A.; Bilgi, M.; Kansagra, A.; Kapoor, P.; et al. Results from Lummicar-2: A Phase 1b/2 Study of Fully Human B-Cell Maturation Antigen-Specific CAR T Cells (CT053) in Patients with Relapsed and/or Refractory Multiple Myeloma. Blood 2020, 136, 28–29. [Google Scholar] [CrossRef]
- Fu, C.; Chen, W.; Cai, Z.; Yan, L.; Wang, H.; Shang, J.; Wu, Y.; Yan, S.; Gao, W.; Shi, X.; et al. Three-Year Follow-up on Efficacy and Safety Results from Phase 1 Lummicar Study 1 of Zevorcabtagene Autoleucel in Chinese Patients with Relapsed or Refractory Multiple Myeloma. Blood 2023, 142, 4845. [Google Scholar] [CrossRef]
- Colonna, L.; Navarro, G.; Devries, T.; Beckett, V.; Amsberry, A.; Radhakrishnan, A.; Piasecki, J.; Heipel, M.; Li, Y.; Kavita, U.; et al. Orvacabtagene Autoleucel (Orva-Cel; JCARH125): A Fully Human BCMA-Targeted Second-Generation CAR T Cell Product Characterized by a Predominant Central Memory Phenotype with High in Vitro and In Vivo Proliferative Potential and Sustained In Vivo Persistence. Blood 2020, 136, 11–12. [Google Scholar] [CrossRef]
- Mailankody, S.; Jakubowiak, A.J.; Htut, M.; Costa, L.J.; Lee, K.; Ganguly, S.; Kaufman, J.L.; Siegel, D.S.D.; Bensinger, W.; Cota, M.; et al. Orvacabtagene Autoleucel (Orva-Cel), a B-Cell Maturation Antigen (BCMA)-Directed CAR T Cell Therapy for Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Update of the Phase 1/2 EVOLVE Study (NCT03430011). J. Clin. Oncol. 2020, 38, 8504. [Google Scholar] [CrossRef]
- Costa, L.J.; Kumar, S.K.; Atrash, S.; Liedtke, M.; Kaur, G.; Derman, B.A.; Bergsagel, P.L.; Mailankody, S.; McCarthy, P.L.; Limones, J.; et al. Results from the First Phase 1 Clinical Study of the B-Cell Maturation Antigen (BCMA) Nex T Chimeric Antigen Receptor (CAR) T Cell Therapy CC-98633/BMS-986354 in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2022, 140, 1360–1362. [Google Scholar] [CrossRef]
- Sun, W.; Liang, A.-B.; Huang, H.; Huang, X.-J. Strategies to Optimize Chimeric Antigen Receptor T-Cell Therapy in Hematologic Malignancies: Chinese Experience. Haematologica 2023, 108, 2011–2028. [Google Scholar] [CrossRef]
- Garfall, A.L.; Stadtmauer, E.A.; Hwang, W.-T.; Lacey, S.F.; Melenhorst, J.J.; Krevvata, M.; Carroll, M.P.; Matsui, W.H.; Wang, Q.; Dhodapkar, M.V.; et al. Anti-CD19 CAR T Cells with High-Dose Melphalan and Autologous Stem Cell Transplantation for Refractory Multiple Myeloma. JCI Insight 2018, 3, e120505. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Yan, L.; Shang, J.; Kang, L.; Yan, Z.; Jin, S.; Zhu, M.; Chang, H.; Gong, F.; Zhou, J.; et al. Anti-CD19 and Anti-BCMA CAR T Cell Therapy Followed by Lenalidomide Maintenance after Autologous Stem-cell Transplantation for High-risk Newly Diagnosed Multiple Myeloma. Am. J. Hematol. 2022, 97, 537–547. [Google Scholar] [CrossRef]
- Mei, H.; Li, C.; Jiang, H.; Zhao, X.; Huang, Z.; Jin, D.; Guo, T.; Kou, H.; Liu, L.; Tang, L.; et al. A Bispecific CAR-T Cell Therapy Targeting BCMA and CD38 in Relapsed or Refractory Multiple Myeloma. J. Hematol. Oncol. 2021, 14, 161. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Wu, J.; Shi, Z.; Gao, Y.; Song, W.; Li, J.; Li, Z.; Zhang, M. A Second-generation CD38-CAR-T Cell for the Treatment of Multiple Myeloma. Cancer Med. 2023, 12, 10804–10815. [Google Scholar] [CrossRef] [PubMed]
- Neri, P.; Leblay, N.; Lee, H.; Gulla, A.; Bahlis, N.J.; Anderson, K.C. Just Scratching the Surface: Novel Treatment Approaches for Multiple Myeloma Targeting Cell Membrane Proteins. Nat. Rev. Clin. Oncol. 2024, 21, 590–609. [Google Scholar] [CrossRef] [PubMed]
- Omer, M.H.; Shafqat, A.; Ahmad, O.; Alkattan, K.; Yaqinuddin, A.; Damlaj, M. Bispecific Antibodies in Hematological Malignancies: A Scoping Review. Cancers 2023, 15, 4550. [Google Scholar] [CrossRef]
- Oriol, A. Long-Term Follow-up from the Phase 1/2 MajesTEC-1 Trial of Teclistamab in Patients with Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2024, 42, 7540. [Google Scholar]
- Rasche, L.; Schinke, C.; Touzeau, C.; Minnema, M.C.; van de Donk, N.W.; Rodríguez-Otero, P.; Mateos, M.V.; Ye, J.C.; Vishwamitra, D.; Singh, I.; et al. Long-Term Efficacy and Safety Results from the Phase 1/2 MonumenTAL-1 Study of Talquetamab, a GPRC5D×CD3 Bispecific Antibody, in Patients with Relapsed/Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2024, 24, S561–S562. [Google Scholar] [CrossRef]
- Bumma, N.; Richter, J.; Jagannath, S.; Lee, H.C.; Hoffman, J.E.; Suvannasankha, A.; Zonder, J.A.; Shah, M.R.; Lentzsch, S.; Baz, R.; et al. Linvoseltamab for Treatment of Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2024, 42, 2702–2712. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Bumma, N.; Richter, J.R.; Dhodapkar, M.V.; Hoffman, J.E.; Suvannasankha, A.; Zonder, J.A.; Shah, M.R.; Lentzsch, S.; Maly, J.J.; et al. LINKER-MM1 Study: Linvoseltamab (REGN5458) in Patients with Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2023, 41, 8006. [Google Scholar] [CrossRef]
- Kumar, S.; Bachier, C.R.; Cavo, M.; Corradini, P.; Delforge, M.; Janowski, W.; Lesokhin, A.M.; Mina, R.; Paris, L.; Rosiñol, L.; et al. CAMMA 2: A Phase I/II Trial Evaluating the Efficacy and Safety of Cevostamab in Patients with Relapsed/Refractory Multiple Myeloma (RRMM) Who Have Triple-Class Refractory Disease and Have Received a Prior Anti-B-Cell Maturation Antigen (BCMA) Agent. J. Clin. Oncol. 2023, 41, TPS8064. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Richter, J.; Trudel, S.; Cohen, A.D.; Spencer, A.; Forsberg, P.A.; Laubach, J.P.; Thomas, S.K.; Bahlis, N.J.; Costa, L.J.; et al. Enduring Responses after 1-Year, Fixed-Duration Cevostamab Therapy in Patients with Relapsed/Refractory Multiple Myeloma: Early Experience from a Phase I Study. Blood 2022, 140, 4415–4417. [Google Scholar] [CrossRef]
- Mol, I.; Hu, Y.; LeBlanc, T.W.; Cappelleri, J.C.; Chu, H.; Nador, G.; Aydin, D.; Schepart, A.; Hlavacek, P. A Matching-Adjusted Indirect Comparison of the Efficacy of Elranatamab versus Physician’s Choice of Treatment in Patients with Triple-Class Exposed/Refractory Multiple Myeloma. Curr. Med. Res. Opin. 2024, 40, 199–207. [Google Scholar] [CrossRef]
- Moreau, P.; Mateos, M.-V.; Garcia, M.E.G.; Einsele, H.; Stefano, V.D.; Karlin, L.; Lindsey-Hill, J.; Besemer, B.; Vincent, L.; Kirkpatrick, S.; et al. Comparative Effectiveness of Teclistamab Versus Real-World Physician’s Choice of Therapy in LocoMMotion and MoMMent in Triple-Class Exposed Relapsed/Refractory Multiple Myeloma. Adv. Ther. 2024, 41, 696–715. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.-V.; Chari, A.; Usmani, S.Z.; Goldschmidt, H.; Weisel, K.; Qi, K.; Londhe, A.; Nair, S.; Lin, X.; Pei, L.; et al. Comparative Efficacy of Teclistamab Versus Physician’s Choice of Therapy in the Long-Term Follow-up of APOLLO, POLLUX, CASTOR, and EQUULEUS Clinical Trials in Patients with Triple-Class Exposed Relapsed or Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2023, 23, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Riedhammer, C.; Bassermann, F.; Besemer, B.; Bewarder, M.; Brunner, F.; Carpinteiro, A.; Einsele, H.; Faltin, J.; Frenking, J.; Gezer, D.; et al. Real-World Analysis of Teclistamab in 123 RRMM Patients from Germany. Leukemia 2024, 38, 365–371. [Google Scholar] [CrossRef]
- Mohan, M.; Shah, N.; Luan, D.; Monge, J.; Forsberg, M.; Bhatlapenumarthi, V.; Balev, M.; Patwari, A.; Cheruvalath, H.; Bhutani, D.; et al. Teclistamab in Relapsed Refractory Multiple Myeloma: Multi-Institutional Real-World Study. Blood 2023, 142, 545. [Google Scholar] [CrossRef]
- D’Souza, A.; Shah, N.; Rodriguez, C.; Voorhees, P.M.; Weisel, K.; Bueno, O.F.; Pothacamury, R.K.; Freise, K.J.; Yue, S.; Ross, J.A.; et al. A Phase I First-in-Human Study of ABBV-383, a B-Cell Maturation Antigen × CD3 Bispecific T-Cell Redirecting Antibody, in Patients with Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2022, 40, 3576–3586. [Google Scholar] [CrossRef]
- Harrison, S.J.; Minnema, M.C.; Lee, H.C.; Spencer, A.; Kapoor, P.; Madduri, D.; Larsen, J.; Ailawadhi, S.; Kaufman, J.L.; Raab, M.S.; et al. A Phase 1 First in Human (FIH) Study of AMG 701, an Anti-B-Cell Maturation Antigen (BCMA) Half-Life Extended (HLE) BiTE® (Bispecific T-Cell Engager) Molecule, in Relapsed/Refractory (RR) Multiple Myeloma (MM). Blood 2020, 136, 28–29. [Google Scholar] [CrossRef]
- Topp, M.S.; Duell, J.; Zugmaier, G.; Attal, M.; Moreau, P.; Langer, C.; Krönke, J.; Facon, T.; Salnikov, A.V.; Lesley, R.; et al. Anti–B-Cell Maturation Antigen BiTE Molecule AMG 420 Induces Responses in Multiple Myeloma. J. Clin. Oncol. 2020, 38, 775–783. [Google Scholar] [CrossRef]
- Wong, S.W.; Bar, N.; Paris, L.; Hofmeister, C.C.; Hansson, M.; Santoro, A.; Mateos, M.-V.; Rodríguez-Otero, P.; Lund, J.; Encinas, C.; et al. Alnuctamab (ALNUC; BMS-986349; CC-93269), a B-Cell Maturation Antigen (BCMA) x CD3 T-Cell Engager (TCE), in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Results from a Phase 1 First-in-Human Clinical Study. Blood 2022, 140, 400–402. [Google Scholar] [CrossRef]
- Szlasa, W.; Dybko, J. Current Status of Bispecific Antibodies and CAR-T Therapies in Multiple Myeloma. Int. Immunopharmacol. 2024, 134, 112043. [Google Scholar] [CrossRef]
- Martino, M.; Gamberi, B.; Antonioli, E.; Aquino, S.; Pepa, R.D.; Malerba, L.; Mangiacavalli, S.; Pezzatti, S.; Bringhen, S.; Zamagni, E. Anti-BCMA CAR-T Cell-Based Therapies and Bispecific Antibodies in the Immunotherapy Era: Are We Ready for This? Expert Rev. Hematol. 2024. ahead-of-print. [Google Scholar] [CrossRef]
- Cohen, Y.C.; Morillo, D.; Gatt, M.E.; Sebag, M.; Kim, K.; Min, C.-K.; Oriol, A.; Ocio, E.M.; Yoon, S.-S.; Mateos, M.-V.; et al. First Results from the RedirecTT-1 Study with Teclistamab (Tec) + Talquetamab (Tal) Simultaneously Targeting BCMA and GPRC5D in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM). J. Clin. Oncol. 2023, 41, 8002. [Google Scholar] [CrossRef]
- Matous, J.; Biran, N.; Perrot, A.; Berdeja, J.G.; Dorritie, K.; Elssen, J.V.; Searle, E.; Touzeau, C.; Anguille, S.; Vishwamitra, D.; et al. Talquetamab + Pomalidomide in Patients with Relapsed/Refractory Multiple Myeloma: Safety and Preliminary Efficacy Results from the Phase 1b MonumenTAL-2 Study. Blood 2023, 142, 1014. [Google Scholar] [CrossRef]
- Pouleau, B.; Estoppey, C.; Suere, P.; Nallet, E.; Laurendon, A.; Monney, T.; Ferreira, D.P.; Drake, A.; Carretero-Iglesia, L.; Macoin, J.; et al. Preclinical Characterization of ISB 1342, a CD38 × CD3 T-Cell Engager for Relapsed/Refractory Multiple Myeloma. Blood 2023, 142, 260–273. [Google Scholar] [CrossRef]
- Wang, B.-Y.; Zhao, W.-H.; Liu, J.; Chen, Y.-X.; Cao, X.-M.; Yang, Y.; Zhang, Y.-L.; Wang, F.-X.; Zhang, P.-Y.; Lei, B.; et al. Long-Term Follow-up of a Phase 1, First-in-Human Open-Label Study of LCAR-B38M, a Structurally Differentiated Chimeric Antigen Receptor T (CAR-T) Cell Therapy Targeting B-Cell Maturation Antigen (BCMA), in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2019, 134, 579. [Google Scholar] [CrossRef]
- Xu, J.; Chen, L.-J.; Yang, S.-S.; Sun, Y.; Wu, W.; Liu, Y.-F.; Xu, J.; Zhuang, Y.; Zhang, W.; Weng, X.-Q.; et al. Exploratory Trial of a Biepitopic CAR T-Targeting B Cell Maturation Antigen in Relapsed/Refractory Multiple Myeloma. Proc. Natl. Acad. Sci. USA 2019, 116, 9543–9551. [Google Scholar] [CrossRef]
- Dhodapkar, K.M.; Cohen, A.D.; Kaushal, A.; Garfall, A.L.; Manalo, R.J.; Carr, A.R.; McCachren, S.S.; Stadtmauer, E.A.; Lacey, S.F.; Melenhorst, J.J.; et al. Changes in Bone Marrow Tumor and Immune Cells Correlate with Durability of Remissions Following BCMA CAR T Therapy in Myeloma. Blood Cancer Discov. 2022, 3, 490–501. [Google Scholar] [CrossRef]
- Bansal, R.; Baksh, M.; Larsen, J.T.; Hathcock, M.A.; Dingli, D.; Stewart, A.K.; Kapoor, P.; Kourelis, T.; Hayman, S.R.; Warsame, R.M.; et al. Prognostic Value of Early Bone Marrow MRD Status in CAR-T Therapy for Myeloma. Blood Cancer J. 2023, 13, 47. [Google Scholar] [CrossRef]
- Li, C.; Wang, D.; Fang, B.; Song, Y.; Huang, H.; Li, J.; Zou, D.; Chen, B.; Liu, J.; Dong, Y.; et al. Updated Results of Fumanba-1: A Phase 1b/2 Study of a Novel Fully Human B-Cell Maturation Antigen-Specific CAR T Cells (CT103A) in Patients with Relapsed and/or Refractory Multiple Myeloma. Blood 2022, 140, 7435–7436. [Google Scholar] [CrossRef]
- Oekelen, O.V.; Nath, K.; Mouhieddine, T.H.; Farzana, T.; Aleman, A.; Melnekoff, D.T.; Ghodke-Puranik, Y.; Shah, G.L.; Lesokhin, A.; Giralt, S.; et al. Interventions and Outcomes of Patients with Multiple Myeloma Receiving Salvage Therapy after BCMA-Directed CAR T Therapy. Blood 2023, 141, 756–765. [Google Scholar] [CrossRef]
- Miao, X.; Wu, L.S.; Lin, S.X.W.; Xu, Y.; Chen, Y.; Iwaki, Y.; Kobos, R.; Stephenson, T.; Kemmerer, K.; Uhlar, C.M.; et al. Population Pharmacokinetics and Exposure–Response with Teclistamab in Patients with Relapsed/Refractory Multiple Myeloma: Results from MajesTEC-1. Target. Oncol. 2023, 18, 667–684. [Google Scholar] [CrossRef]
- Dhakal, B.; Sharma, S.; Balcioglu, M.; Shchegrova, S.; Malhotra, M.; Zimmermann, B.; Billings, P.R.; Harrington, A.; Sethi, H.; Aleshin, A.; et al. Assessment of Molecular Residual Disease Using Circulating Tumor DNA to Identify Multiple Myeloma Patients at High Risk of Relapse. Front. Oncol. 2022, 12, 786451. [Google Scholar] [CrossRef]
- Zerdan, M.B.; Kassab, J.; Saba, L.; Haroun, E.; Zerdan, M.B.; Allam, S.; Nasr, L.; Macaron, W.; Mammadli, M.; Moussa, S.A.; et al. Liquid Biopsies and Minimal Residual Disease in Lymphoid Malignancies. Front. Oncol. 2023, 13, 1173701. [Google Scholar] [CrossRef]
- Monick, S.; Rosenthal, A. Circulating Tumor DNA as a Complementary Prognostic Biomarker during CAR-T Therapy in B-Cell Non-Hodgkin Lymphomas. Cancers 2024, 16, 1881. [Google Scholar] [CrossRef]
- Guerrero, C.; Puig, N.; Cedena, M.-T.; Goicoechea, I.; Perez, C.; Garces, J.-J.; Botta, C.; Calasanz, M.-J.; Gutierrez, N.C.; Martin-Ramos, M.-L.; et al. A Machine Learning Model Based on Tumor and Immune Biomarkers to Predict Undetectable MRD and Survival Outcomes in Multiple Myeloma. Clin. Cancer Res. 2022, 28, 2598–2609. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, R.; Arribas, M.; Wiedmeier-Nutor, J.E.; Kusne, Y.N.; Vélez, M.G.; Kosiorek, H.E.; Butterfield, R.J.; Kirsch, I.R.; Mikhael, J.R.; Stewart, A.K.; et al. Integrated Analysis of next Generation Sequencing Minimal Residual Disease (MRD) and PET Scan in Transplant Eligible Myeloma Patients. Blood Cancer J. 2023, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Puig, N.; Contreras, M.-T.; Agulló, C.; Martínez-López, J.; Oriol, A.; Blanchard, M.-J.; Ríos, R.; Martín, J.; Iñigo, M.-B.; Sureda, A.; et al. Mass Spectrometry vs Immunofixation for Treatment Monitoring in Multiple Myeloma. Blood Adv. 2022, 6, 3234–3239. [Google Scholar] [CrossRef]
- Dispenzieri, A.; Krishnan, A.; Arendt, B.; Blackwell, B.; Wallace, P.K.; Dasari, S.; Vogl, D.T.; Efebera, Y.; Fei, M.; Geller, N.; et al. Mass-Fix Better Predicts for PFS and OS than Standard Methods among Multiple Myeloma Patients Participating on the STAMINA Trial (BMT CTN 0702 /07LT). Blood Cancer J. 2022, 12, 27. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, J.; Wang, B.; Zhang, Y.; Xu, Y.; Wang, X.; Jia, Y.; Meng, X.; Wang, X.; Fan, X.; et al. Serum Soluble BCMA Can Be Used to Monitor Relapse of Multiple Myeloma Patients after Chimeric Antigen Receptor T-Cell Immunotherapy. Curr. Res. Transl. Med. 2023, 71, 103378. [Google Scholar] [CrossRef]
- Samur, M.K.; Fulciniti, M.; Samur, A.A.; Bazarbachi, A.H.; Tai, Y.-T.; Prabhala, R.; Alonso, A.; Sperling, A.S.; Campbell, T.; Petrocca, F.; et al. Biallelic Loss of BCMA as a Resistance Mechanism to CAR T Cell Therapy in a Patient with Multiple Myeloma. Nat. Commun. 2021, 12, 868. [Google Scholar] [CrossRef]
- Costa, B.A.; Ortiz, R.J.; Lesokhin, A.M.; Richter, J. Soluble B-cell Maturation Antigen in Multiple Myeloma. Am. J. Hematol. 2024, 99, 727–738. [Google Scholar] [CrossRef]
- Wong, S.W.; Shah, N.; Ledergor, G.; Martin, T.; Wolf, J.; Shui, A.M.; Huang, C.-Y.; Martinez-Lopez, J. Early Dynamics and Depth of Response in Multiple Myeloma Patients Treated with BCMA CAR-T Cells. Front. Oncol. 2021, 11, 783703. [Google Scholar] [CrossRef] [PubMed]
- Goicoechea, I.; Puig, N.; Cedena, M.-T.; Burgos, L.; Cordón, L.; Vidriales, M.-B.; Flores-Montero, J.; Gutierrez, N.C.; Calasanz, M.-J.; Ramos, M.-L.M.; et al. Deep MRD Profiling Defines Outcome and Unveils Different Modes of Treatment Resistance in Standard- and High-Risk Myeloma. Blood 2021, 137, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, R. Assessment of MRD in Patients with Hematologic Malignancies: Clinical Insights. Clin. Adv. Hematol. Oncol. HO 2020, 18 (Suppl. S9), 7–10. [Google Scholar]
- Martin, T.G.; Moreau, P.; Usmani, S.Z.; Garfall, A.; Mateos, M.-V.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Rosinol, L.; Chari, A.; et al. Teclistamab Improves Patient-Reported Symptoms and Health-Related Quality of Life in Relapsed or Refractory Multiple Myeloma: Results from the Phase 2 MajesTEC-1 Study. Clin. Lymphoma Myeloma Leuk. 2024, 24, 194–202. [Google Scholar] [CrossRef]
- Dieterle, M.P.; Mostufi-Zadeh-Haghighi, G.; Kus, J.W.; Wippel, C.; Brugger, Z.; Miething, C.; Wäsch, R.; Engelhardt, M. Safe and Successful Teclistamab Treatment in Very Elderly Multiple Myeloma (MM) Patients: A Case Report and Experience from a Total of Three Octogenarians. Ann. Hematol. 2023, 102, 3639–3641. [Google Scholar] [CrossRef]
- Davis, J.A.; Dima, D.; Ahmed, N.; DeJarnette, S.; McGuirk, J.; Jia, X.; Raza, S.; Khouri, J.; Valent, J.; Anwer, F.; et al. Impact of Frailty on Outcomes After CAR T-Cell Therapy for Patients with Relapsed/Refractory Multiple Myeloma. Transplant. Cell. Ther. 2024, 30, 298–305. [Google Scholar] [CrossRef]
- Nawas, M.T.; Shah, G.L.; Feldman, D.R.; Ruiz, J.D.; Robilotti, E.V.; Aslam, A.A.; Dundas, M.; Kamboj, M.; Barker, J.N.; Cho, C.; et al. Cellular Therapy During COVID-19: Lessons Learned and Preparing for Subsequent Waves. Transplant. Cell. Ther. 2021, 27, 438.e1–438.e6. [Google Scholar] [CrossRef]
- Holthof, L.C.; van der Schans, J.J.; Katsarou, A.; Poels, R.; Gelderloos, A.T.; Drent, E.; van Hal-van Veen, S.E.; Li, F.; Zweegman, S.; van de Donk, N.W.C.J.; et al. Bone Marrow Mesenchymal Stromal Cells Can Render Multiple Myeloma Cells Resistant to Cytotoxic Machinery of CAR T Cells through Inhibition of Apoptosis. Clin. Cancer Res. 2021, 27, 3793–3803. [Google Scholar] [CrossRef]
- Garfall, A.L.; Dancy, E.K.; Cohen, A.D.; Hwang, W.-T.; Fraietta, J.A.; Davis, M.M.; Levine, B.L.; Siegel, D.L.; Stadtmauer, E.A.; Vogl, D.T.; et al. T-Cell Phenotypes Associated with Effective CAR T-Cell Therapy in Postinduction vs Relapsed Multiple Myeloma. Blood Adv. 2019, 3, 2812–2815. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, K.G.; Fonseca, R. Measurable Residual Disease Testing in Multiple Myeloma Following T-Cell Redirecting Therapies. Cancers 2024, 16, 3288. https://doi.org/10.3390/cancers16193288
Shim KG, Fonseca R. Measurable Residual Disease Testing in Multiple Myeloma Following T-Cell Redirecting Therapies. Cancers. 2024; 16(19):3288. https://doi.org/10.3390/cancers16193288
Chicago/Turabian StyleShim, Kevin Guanwen, and Rafael Fonseca. 2024. "Measurable Residual Disease Testing in Multiple Myeloma Following T-Cell Redirecting Therapies" Cancers 16, no. 19: 3288. https://doi.org/10.3390/cancers16193288
APA StyleShim, K. G., & Fonseca, R. (2024). Measurable Residual Disease Testing in Multiple Myeloma Following T-Cell Redirecting Therapies. Cancers, 16(19), 3288. https://doi.org/10.3390/cancers16193288