Improved Outcomes in Myelofibrosis after Allogeneic Stem-Cell Transplantation in the Era of Ruxolitinib Pretreatment and Intensified Conditioning Regimen—Single-Center Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistics
3. Results
3.1. Patients and Disease Characteristics at Timepoint of Transplantation—Entire Cohort
3.2. Patients and Disease Characteristics at Timepoint of Transplantation—Comparison of the Two Subcollectives
3.3. Transplant Characteristics—Entire Cohort and Comparison of the Two Subcollectives
3.4. Transplant Outcome—Entire Cohort and Comparison of the Two Subcollectives
3.5. TBI or Sequential Conditioning—Subgroup Analysis of Outcomes
3.6. Multivariate Analysis
3.6.1. Logistic Regression Analyses
3.6.2. Cox Regression Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Afzal, A.; Oh, S.T. Prognostication in Philadelphia Chromosome Negative Myeloproliferative Neoplasms: A Review of the Recent Literature. Curr. Hematol. Malig. Rep. 2017, 12, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Mesa, R.A.; Li, C.Y.; Ketterling, R.P.; Schroeder, G.S.; Knudson, R.A.; Tefferi, A. Leukemic transformation in myelofibrosis with myeloid metaplasia: A single-institution experience with 91 cases. Blood 2005, 105, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Barosi, G.; Mesa, R.A.; Thiele, J.; Cervantes, F.; Campbell, P.J.; Verstovsek, S.; Dupriez, B.; Levine, R.L.; Passamonti, F.; Gotlib, J.; et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: A consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia 2008, 22, 437–438. [Google Scholar] [CrossRef]
- Cervantes, F.; Dupriez, B.; Pereira, A.; Passamonti, F.; Reilly, J.T.; Morra, E.; Vannucchi, A.M.; Mesa, R.A.; Demory, J.-L.; Barosi, G.; et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009, 113, 2895–2901. [Google Scholar] [CrossRef]
- Passamonti, F.; Cervantes, F.; Vannucchi, A.M.; Morra, E.; Rumi, E.; Pereira, A.; Guglielmelli, P.; Pungolino, E.; Caramella, M.; Maffioli, M.; et al. A dynamic prognostic model to predict survival in primary myelofibrosis: A study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010, 115, 1703–1708. [Google Scholar] [CrossRef]
- Gangat, N.; Caramazza, D.; Vaidya, R.; George, G.; Begna, K.; Schwager, S.; Van Dyke, D.; Hanson, C.; Wu, W.; Pardanani, A.; et al. DIPSS plus: A refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J. Clin. Oncol. 2011, 29, 392–397. [Google Scholar] [CrossRef]
- Vannucchi, A.M.; Lasho, T.L.; Guglielmelli, P.; Biamonte, F.; Pardanani, A.; Pereira, A.; Finke, C.; Score, J.; Gangat, N.; Mannarelli, C.; et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013, 27, 1861–1869. [Google Scholar] [CrossRef]
- Passamonti, F.; Giorgino, T.; Mora, B.; Guglielmelli, P.; Rumi, E.; Maffioli, M.; Rambaldi, A.; Caramella, M.; Komrokji, R.; Gotlib, J.; et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia 2017, 31, 2726–2731. [Google Scholar] [CrossRef]
- Guglielmelli, P.; Lasho, T.L.; Rotunno, G.; Mudireddy, M.; Mannarelli, C.; Nicolosi, M.; Pacilli, A.; Pardanani, A.; Rumi, E.; Rosti, V.; et al. MIPSS70: Mutation-Enhanced International Prognostic Score System for Transplantation-Age Patients With Primary Myelofibrosis. J. Clin. Oncol. 2018, 36, 310–318. [Google Scholar] [CrossRef]
- Tefferi, A.; Guglielmelli, P.; Lasho, T.L.; Gangat, N.; Ketterling, R.P.; Pardanani, A.; Vannucchi, A.M. MIPSS70+ Version 2.0: Mutation and Karyotype-Enhanced International Prognostic Scoring System for Primary Myelofibrosis. J. Clin. Oncol. 2018, 36, 1769–1770. [Google Scholar] [CrossRef]
- Gagelmann, N.; Ditschkowski, M.; Bogdanov, R.; Bredin, S.; Robin, M.; Cassinat, B.; Shahswar, R.; Thol, F.; Heuser, M.; Socié, G.; et al. Comprehensive clinical-molecular transplant scoring system for myelofibrosis undergoing stem cell transplantation. Blood 2019, 133, 2233–2242. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, F.; Mora, B. Myelofibrosis. Blood 2023, 141, 1954–1970. [Google Scholar] [CrossRef] [PubMed]
- Kröger, N.; Bacigalupo, A.; Barbui, T.; Ditschkowski, M.; Gagelmann, N.; Griesshammer, M.; Gupta, V.; Hamad, N.; Harrison, C.; Hernandez-Boluda, J.C.; et al. Indication and management of allogeneic haematopoietic stem-cell transplantation in myelofibrosis: Updated recommendations by the EBMT/ELN International Working Group. Lancet Haematol. 2024, 11, e62–e74. [Google Scholar] [CrossRef] [PubMed]
- Chatain, N.; Koschmieder, S.; Jost, E. Role of Inflammatory Factors during Disease Pathogenesis and Stem Cell Transplantation in Myeloproliferative Neoplasms. Cancers 2020, 12, 2250. [Google Scholar] [CrossRef] [PubMed]
- Hasselbalch, H.C. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: Is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood 2012, 119, 3219–3225. [Google Scholar] [CrossRef]
- Lundberg, P.; Karow, A.; Nienhold, R.; Looser, R.; Hao-Shen, H.; Nissen, I.; Girsberger, S.; Lehmann, T.; Passweg, J.; Stern, M.; et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 2014, 123, 2220–2228. [Google Scholar] [CrossRef]
- Fleischman, A.G. Inflammation as a Driver of Clonal Evolution in Myeloproliferative Neoplasm. Mediat. Inflamm. 2015, 2015, 606819. [Google Scholar] [CrossRef]
- Cervantes, F.; Pereira, A. Does ruxolitinib prolong the survival of patients with myelofibrosis? Blood 2017, 129, 832–837. [Google Scholar] [CrossRef]
- Verstovsek, S.; Mesa, R.A.; Gotlib, J.; Gupta, V.; DiPersio, J.F.; Catalano, J.V.; Deininger, M.W.; Miller, C.B.; Silver, R.T.; Talpaz, M.; et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J. Hematol. Oncol. 2017, 10, 55. [Google Scholar] [CrossRef]
- Verstovsek, S.; Gotlib, J.; Mesa, R.A.; Vannucchi, A.M.; Kiladjian, J.J.; Cervantes, F.; Harrison, C.N.; Paquette, R.; Sun, W.; Naim, A.; et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J. Hematol. Oncol. 2017, 10, 156. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Kröger, N.; Aschan, J.; Xu, W.; Leber, B.; Dalley, C.; Sabloff, M.; Lipton, J.H.; Messner, H.; Brune, M. A retrospective comparison of conventional intensity conditioning and reduced-intensity conditioning for allogeneic hematopoietic cell transplantation in myelofibrosis. Bone Marrow Transplant. 2009, 44, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Kröger, N.; Holler, E.; Kobbe, G.; Bornhäuser, M.; Schwerdtfeger, R.; Baurmann, H.; Nagler, A.; Bethge, W.; Stelljes, M.; Uharek, L.; et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: A prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood 2009, 114, 5264–5270. [Google Scholar] [CrossRef] [PubMed]
- Robin, M.; Porcher, R.; Orvain, C.; Bay, J.O.; Barraco, F.; Huynh, A.; Charbonnier, A.; Forcade, E.; Chantepie, S.; Bulabois, C.; et al. Ruxolitinib before allogeneic hematopoietic transplantation in patients with myelofibrosis on behalf SFGM-TC and FIM groups. Bone Marrow Transplant. 2021, 56, 1888–1899. [Google Scholar] [CrossRef] [PubMed]
- Kröger, N.; Wolschke, C.; Gagelmann, N. How I treat transplant-eligible patients with myelofibrosis. Blood 2023, 142, 1683–1696. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Schmid, C.; Schleuning, M.; Ledderose, G.; Tischer, J.; Kolb, H.-J. Sequential Regimen of Chemotherapy, Reduced-Intensity Conditioning for Allogeneic Stem-Cell Transplantation, and Prophylactic Donor Lymphocyte Transfusion in High-Risk Acute Myeloid Leukemia and Myelodysplastic Syndrome. J. Clin. Oncol. 2005, 23, 5675–5687. [Google Scholar] [CrossRef]
- Przepiorka, D.; Weisdorf, D.; Martin, P.; Klingemann, H.G.; Beatty, P.; Hows, J.; Thomas, E.D. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995, 15, 825–828. [Google Scholar]
- Shulman, H.M.; Sullivan, K.M.; Weiden, P.L.; McDonald, G.B.; Striker, G.E.; Sale, G.E.; Hackman, R.; Tsoi, M.S.; Storb, R.; Thomas, E.D. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am. J. Med. 1980, 69, 204–217. [Google Scholar] [CrossRef]
- Filipovich, A.H.; Weisdorf, D.; Pavletic, S.; Socie, G.; Wingard, J.R.; Lee, S.J.; Martin, P.; Chien, J.; Przepiorka, D.; Couriel, D.; et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol. Blood Marrow Transplant. 2005, 11, 945–956. [Google Scholar] [CrossRef]
- Mesa, R.A.; Silverstein, M.N.; Jacobsen, S.J.; Wollan, P.C.; Tefferi, A. Population-based incidence and survival figures in essential thrombocythemia and agnogenic myeloid metaplasia: An Olmsted County Study, 1976–1995. Am. J. Hematol 1999, 61, 10–15. [Google Scholar] [CrossRef]
- Kunte, S.; Rybicki, L.; Viswabandya, A.; Tamari, R.; Bashey, A.; Keyzner, A.; Iqbal, M.; Grunwald, M.R.; Dholaria, B.; Elmariah, H.; et al. Allogeneic blood or marrow transplantation with haploidentical donor and post-transplantation cyclophosphamide in patients with myelofibrosis: A multicenter study. Leukemia 2022, 36, 856–864. [Google Scholar] [CrossRef] [PubMed]
- McLornan, D.; Szydlo, R.; Koster, L.; Chalandon, Y.; Robin, M.; Wolschke, C.; Beelen, D.; Socié, G.; Bornhäuser, M.; Angelucci, E.; et al. Myeloablative and Reduced-Intensity Conditioned Allogeneic Hematopoietic Stem Cell Transplantation in Myelofibrosis: A Retrospective Study by the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 2019, 25, 2167–2171. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Boluda, J.C.; Pereira, A.; Kröger, N.; Beelen, D.; Robin, M.; Bornhäuser, M.; Angelucci, E.; Vitek, A.; Blau, I.W.; Niittyvuopio, R.; et al. Determinants of survival in myelofibrosis patients undergoing allogeneic hematopoietic cell transplantation. Leukemia 2021, 35, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Malone, A.K.; Hari, P.N.; Ahn, K.W.; Hu, Z.H.; Gale, R.P.; Ballen, K.K.; Hamadani, M.; Olavarria, E.; Gerds, A.T.; et al. Reduced-intensity hematopoietic cell transplantation for patients with primary myelofibrosis: A cohort analysis from the center for international blood and marrow transplant research. Biol. Blood Marrow Transplant. 2014, 20, 89–97. [Google Scholar] [CrossRef]
- Robin, M.; Chevret, S.; Koster, L.; Wolschke, C.; Yakoub-Agha, I.; Bourhis, J.H.; Chevallier, P.; Cornelissen, J.J.; Reményi, P.; Maertens, J.; et al. Antilymphocyte globulin for matched sibling donor transplantation in patients with myelofibrosis. Haematologica 2019, 104, 1230–1236. [Google Scholar] [CrossRef]
- Kröger, N.; Solano, C.; Wolschke, C.; Bandini, G.; Patriarca, F.; Pini, M.; Nagler, A.; Selleri, C.; Risitano, A.; Messina, G.; et al. Antilymphocyte Globulin for Prevention of Chronic Graft-versus-Host Disease. N. Engl. J. Med. 2016, 374, 43–53. [Google Scholar] [CrossRef]
- Kröger, N.; Sbianchi, G.; Sirait, T.; Wolschke, C.; Beelen, D.; Passweg, J.; Robin, M.; Vrhovac, R.; Helbig, G.; Sockel, K.; et al. Impact of prior JAK-inhibitor therapy with ruxolitinib on outcome after allogeneic hematopoietic stem cell transplantation for myelofibrosis: A study of the CMWP of EBMT. Leukemia 2021, 35, 3551–3560. [Google Scholar] [CrossRef]
- Bewersdorf, J.P.; Sheth, A.H.; Vetsa, S.; Grimshaw, A.; Giri, S.; Podoltsev, N.A.; Gowda, L.; Tamari, R.; Tallman, M.S.; Rampal, R.K.; et al. Outcomes of Allogeneic Hematopoietic Cell Transplantation in Patients With Myelofibrosis-A Systematic Review and Meta-Analysis. Transplant. Cell Ther. 2021, 27, 873.e1–e13. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Atenafu, E.G.; Messner, H.A.; Craddock, K.J.; Brandwein, J.M.; Lipton, J.H.; Minden, M.D.; Schimmer, A.D.; Schuh, A.C.; Yee, K.W.; et al. Treatment outcomes following leukemic transformation in Philadelphia-negative myeloproliferative neoplasms. Blood 2013, 121, 2725–2733. [Google Scholar] [CrossRef]
- Tefferi, A.; Mudireddy, M.; Mannelli, F.; Begna, K.H.; Patnaik, M.M.; Hanson, C.A.; Ketterling, R.P.; Gangat, N.; Yogarajah, M.; De Stefano, V.; et al. Blast phase myeloproliferative neoplasm: Mayo-AGIMM study of 410 patients from two separate cohorts. Leukemia 2018, 32, 1200–1210. [Google Scholar] [CrossRef] [PubMed]
- Potter, V.; Gras, L.; Koster, L.; Kroger, N.; Sockel, K.; Ganser, A.; Finke, J.; Labussiere-Wallet, H.; Peffault de Latour, R.; Koc, Y.; et al. Sequential vs myeloablative vs reduced intensity conditioning for patients with myelodysplastic syndromes with an excess of blasts at time of allogeneic haematopoietic cell transplantation: A retrospective study by the chronic malignancies working party of the EBMT. Bone Marrow Transplant. 2024, 59, 224–231. [Google Scholar] [PubMed]
- Shanavas, M.; Messner, H.A.; Atenafu, E.G.; Kim, D.H.; Kuruvilla, J.; Lipton, J.H.; Uhm, J.; Seftel, M.; Alam, N.; Gupta, V. Allogeneic hematopoietic cell transplantation for myelofibrosis using fludarabine, intravenous busulfan- and low-dose TBI-based conditioning. Bone Marrow Transplant. 2014, 49, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
- Freyer, C.W.; Babushok, D.V.; Frey, N.V.; Gill, S.I.; Loren, A.W.; Luger, S.M.; Maity, A.; Martin, M.E.; Plastaras, J.P.; Porter, D.L.; et al. Low-Dose Total Body Irradiation Added to Fludarabine and Busulfan Reduced-Intensity Conditioning Reduces Graft Failure in Patients with Myelofibrosis. Transplant. Cell Ther. 2022, 28, 590–596. [Google Scholar] [CrossRef]
Variable | Entire Cohort | Subcollectives by Time of Transplant | ||
n = 36 # | 2001–2015 n = 15 | 2016–2022 n = 21 | p-Value | |
Age, years, median (range) | 60.06 (40.4; 74.9) | 58.4 (43.6; 66.2) | 62.7 (40.4; 74.9) | 0.27 |
Gender, m (%) | 25 (69.44) | 10 (66.67) | 15 (71.43) | >0.99 |
Interval initial diagnosis to transplantation, months, median (range) | 12.4 (4.2; 394.9) | 12.8 (4.6; 95.3) | 12.0 (4.2; 394.9) | 0.49 |
PMF or MDS/MPN with MF n (%) | 21 (58.33) | 7 (46.67) | 14 (66.67) | 0.23 |
secondary MF | 11 (30.56) | 7 (46.67) | 4 (19.05) | |
excess of blasts/blast crisis | 4 (11.11) | 1 (6.67) | 3 (14.29) | |
Chronic phase, n (%) | 32 (88.89) | 14 (93.33) | 18 (85.71) | 0.75 |
accelerated | 2 (5.56) | 0 | 2 (9.52) | |
blast crisis | 2 (5.56) | 1 (6.67) | 1 (4.76) | |
Hb, mg/dL, median (quartiles) | 9.40 (8.05; 11.15) | 9.40 (7.40; 12.70) | 9.40 (8.40; 11.10) | 0.93 |
WBC, G/L, median (quartiles) | 7.90 (4.75; 12.50) | 5.50 (3.30; 18.60) | 8.90 (5.20; 12.30) | 0.62 |
PLT, G/L, median (quartiles) | 119.50 (59.50; 224.50) | 137.0 (86.0; 206.0) | 94.0 (40.0; 282.0) | 0.40 |
LDH, U/L, median (quartiles) | 647.0 (444.5; 850.5) | 536.0 (383.0; 737.0) | 737.0 (558.0; 886.0) | 0.10 |
Cytogenetics (Tx) unfavorable *, n (%), 26 pat. | 6 (23.08) | 2 (20.0) | 4 (25) | 0.77 |
Driver mutations | 0.69 | |||
JAK2, n (%) | 21 (58.33) | 10 (66.67) | 11 (52.38) | |
CALR, n (%) | 9 (25.00) | 2 (13.33) | 7 (33.33) | |
MPL, n (%) | 4 (11.11) | 2 (13.33) | 2 (9.52) | |
TN **, n (%) | 2 (5.56) | 1 (6.67) | 1 (4.76) | |
Allele burden, % (quartiles), 27 pat. | 31.0 (20.0; 53.0) | 29.85 (18.0; 53.0) | 33.0 (22.0; 52.0) | 0.85 |
Non-driver mutations, ≥3, n (%), 33 pat. | 10 (30.3) | 5 (35.71) | 5 (26.32) | 0.70 |
HMR *** ≥1, n (%), 34 pat. | 18 (52.94) | 6 (42.86) | 12 (60.0) | 0.49 |
Spleen length, cm, median (quartiles), 34 pat. | 18 (15.0; 21.0) | 18 (15.0; 25.0) | 18 (15.0; 21.0) | 0.54 |
Spleen at Tx ≥ 22 cm, n (%), 34 pat. | 8 (23.53) | 5 (33.33) | 3 (15.79) | 0.42 |
Reticulin fibrosis, grade 0 or 1, 2 or 3, n (%), 29 pat. | 5 (17.24)/24 (82.76) | 3 (33.33)/6 (66.67) | 2 (10.0)/18 (90.0) | 0.29 |
Osteosclerosis, grade 0 or 1 vs. 2 or 3, n (%), 29 pat. | 16 (55.2)/13 (44.8) | 7 (77.8)/2 (22.2) | 9 (45.0)/11 (55.0) | 0.13 |
DIPSS, low/intermediate 1 or intermediate 2/high, n (%) | 12 (33.33)/24 (66.67) | 3 (20.0)/12 (80.0) | 9 (42.86)/12 (57.14) | 0.28 |
DIPSS-plus, low/intermediate 1 or intermediate 2/high, n (%), 29 pat. | 3 (10.34)/26 (89.66) | 0/12 (100) | 3 (17.65)/14 (82.35) | 0.25 |
MIPSS70 plus, low/intermediate or high/very high, n (%), 24 pat. | 4 (16.67)/20 (83.33) | 1 (10.0)/9 (90.0) | 3 (21.43)/11 (78.57) | 0.62 |
MTSS, low/intermediate or high/very high, n (%), 33 pat. | 21 (63.64)/12 (36.36) | 8 (57.14)/6 (42.86) | 13 (68.42)/6 (31.58) | 0.72 |
HCT-CI, ≥3, n (%), 33 pat. | 8 (22.22) | 3 (20.0) | 5 (23.81) | >0.99 |
Ruxolitinib 3 months prior to Tx, n (%) | 18 (50) | 2 (13.33) | 16 (76.19) | <0.001 |
RBC transfusion dependency prior Tx, n (%) | 15 (41.67) | 6 (40.0) | 9 (42.86) | >0.99 |
PLT transfusion dependency prior Tx, n (%) | 4 (11.11) | 1 (6.67) | 3 (14.29) | 0.63 |
Variable | Entire Cohort, n = 36 | Subcollectives by Time of Transplant | ||
---|---|---|---|---|
2001–2015 n = 15 | 2016–2022 n = 21 | p-Value | ||
Sex mismatched female donor, n (%) | 12 (33.33) | 5 (33.33) | 7 (33.33) | >0.99 |
CMV-positive recipient, n (%) | 14 (38.89) | 4 (26.67) | 10 (47.62) | 0.30 |
Reduced-toxicity/myeloablative conditioning (RTC) | 13 (36.11) | 3 (20.0) | 10 (47.62) | <0.001 |
Reduced-intensity conditioning (RIC) | 23 (63.89) | 12 (80.0) | 11 (52.38) | |
TBI-based conditioning | 8 (22.22) | 0 | 8 (38.09) | |
Sequential conditioning | 17 (47.22) | 1 (6.66) | 16 (76.19) | |
Donor type, MUD, n (%) | 12 (33.33) | 5 (33.33) | 7 (33.33) | 0.009 |
Donor type, MMUD, n (%) | 4 (11.11) | 4 (26.67) | 0 | |
Donor type, MRD, n (%) | 13 (36.11) | 6 (40.0) | 7 (33.33) | |
Donor type, Haplo, n (%) | 7 (19.4) | 0 | 7 (33.33) | |
Stem-cell source PB/ BM, n (%) | 35 (97.22)/1 (2.78) | 15(100)/0 | 20 (95.24)/1 (4.76) | >0.99 |
CD34 × 106/kg BW, median (quartiles) | 6.01 (4.86; 7.97) | 5.04 (4.81; 7.32) | 7.06 (5.0; 8.0) | 0.26 |
GVHD prophylaxis, CSA/MMF, n (%) | 26 (72.2) | 13 (86.67) | 13 (61.9) | 0.03 |
GVHD prophylaxis, CSA/MTX, n (%) | 3 (8.33) | 2 (13.33) | 1 (4.76) | |
GVHD prophylaxis, ptCy/Tac/MMF, n (%) | 7 (19.4) | 0 | 7 (33.33) |
Variable | Entire Cohort, n = 36 # | Subcollectives at Time of Transplantation | ||
---|---|---|---|---|
2001–2015 n = 15 | 2016–2022 n = 21 | p-Value | ||
Follow-up, months (quartiles) | 31.8 (7.2; 61.3) | 10.3 (2.8; 36.8) | 29.5 (14.5; 43.0) | 0.14 |
ANC > 0.5 G/L, n (%) | 34 (94.44) | 14 (93.33) | 20 (95.24) | >0.99 |
PLT > 20 G/L, n (%) | 32 (88.89) | 13 (86.67) | 19 (90.48) | >0.99 |
Time to ANC > 0.5 G/L, days, quartiles | 18.0 (16.0; 26.5) | 17.0 (15.0; 30.0) | 19.0 (16.0; 22.0) | 0.97 |
Time to PLT > 20 G/L, days (quartiles), 35 pat. | 21.0 (16.0; 35.0) | 21.5 (17.0; 31.0) | 21.0 (16.0; 46.0) | 0.99 |
PLT transfusion independency day 100, n (%), 34 pat. | 31 (91.18) | 12 (85.71) | 19.0 (95.0) | 0.56 |
RBC transfusion independency day 100, n (%) | 29 (80.56) | 11 (73.33) | 18 (85.71) | 0.42 |
Delta Spleen length (6 mo-Tx, Tx = 100%),% (quartiles), 22 pat. | −17.95 (−27.48; −11.72) | −17.95 (−22.27; −14.78) | −20.28 (−29.59; −11.39) | 0.67 |
Delta Spleen length (12 mo-Tx, Tx = 100%), % (quartiles), 16 pat. | −25.48 (−31.44; −16.91) | −25.0 (−30.98; −21.6) | −27.32 (−31.91; −15.08) | 0.54 |
Spleen length at 6 mo, decrease >25% or unchanged, n (%); 22 pat. | 8 (36.36)/14 (63.64) | 2 (20.0)/8 (80.0) | 6 (50)/6 (50) | 0.20 |
Spleen length at 12 mo, decrease >25% or unchanged, n (%); 16 pat. | 8 (50.0)/8 (50.0) | 3 (42.86)/4 (57.14)/0 | 5 (55.56)/4 (44.44)/0 | >0.99 |
Delta Allele burden,%, 6 mo-Tx (Tx = 100%), median (quartiles), 17 pat. | −96.86 (−97.8; −90.32) | −97.47 (−98.32; −93.59) | −96.25 (−97.63; −88.48) | 0.30 |
Delta Allele burden, %, 12 mo-Tx (Tx = 100%), median (quartiles), 13 pat. | −97.63 (−98.09; −95.91) | −98.09 (−98.55; −90.32) | −97.45 (−97.91; −95.91) | 0.57 |
Allele Burden Responder I, 6 mo, n (%), 17 pat. | 15 (88.24) | 4 (100) | 11 (84.62) | >0.99 |
Allele Burden Responder II, 6 mo, n (%), 17 pat. | 15 (88.24) | 4 (100) | 11 (84.62) | >0.99 |
Allele Burden Responder I, 12 mo, n (%), 13 pat. | 12 (92.31) | 3 (100) | 9 (90.0) | >0.99 |
Allele Burden Responder II, 12 mo, n (%), 13 pat. | 12 (92.31) | 3 (100) | 9 (90.0) | >0.99 |
Reticulinfibrosis improvement at 6 mo (0 + 1 points /2 + 3 points) *, 18 pat. | 13 (72.22)/5 (27.78) | 1 (33.33)/2 (66.67) | 12 (80.0)/3 (20.0) | 0.17 |
Reticulinfibrosis improvement at 12 mo (0 + 1 points/ 2 + 3 points) *, 14 pat. | 6 (42.86)/8 (57.14) | 1 (50.0)/1 (50.0) | 5 (41.67)/7 (58.33) | >0.99 |
aGVHD (2–4, 3–4), n (%) | 25 (69.44) | 11 (73.33) | 14 (66.67) | 0.73 |
cGVHD (no or limited vs. extensive), n (%) | 24 (66.67)/12 (33.33) | 10 (66.67)/5 (33.33) | 14 (66.67)/7 (33.33) | 0.81 |
Death, n (%) | 15 (41.67) | 11 (73.33) | 4 (19.05) | 0.07 |
Non- relapse Death, n (%) | 13 (36.11) | 10 (66.66) | 3 (14.29) | 0.03 |
Time Tx to non-relapse death, days (quartiles), 13 pat. | 84.0 (51.0; 228.0) | 165.0 (55.0; 1486.0) | 51.0 (12.0; 70.0) | 0.11 |
Time to Death, days (quartiles), 15 pat. | 123.0 (51.0; 1486.0) | 207.0 (55.0; 233.0) | 60.5 (31.5; 375.5) | 0.23 |
Relapse/ PD, n (%) | 2 (5.56) | 1 (6.67) | 1 (4.76) | >0.99 |
Time to relapse/PD, days, median (quartiles), 3 pat. | 493.5 (155.0; 832.0) | 832.0 | 155.0 | >0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machherndl-Spandl, S.; Hannouf, S.; Nikoloudis, A.; Zach, O.; Strassl, I.; Kaynak, E.; Webersinke, G.; Gruber-Rossipal, C.; Rumpold, H.; Schimetta, W.; et al. Improved Outcomes in Myelofibrosis after Allogeneic Stem-Cell Transplantation in the Era of Ruxolitinib Pretreatment and Intensified Conditioning Regimen—Single-Center Analysis. Cancers 2024, 16, 3257. https://doi.org/10.3390/cancers16193257
Machherndl-Spandl S, Hannouf S, Nikoloudis A, Zach O, Strassl I, Kaynak E, Webersinke G, Gruber-Rossipal C, Rumpold H, Schimetta W, et al. Improved Outcomes in Myelofibrosis after Allogeneic Stem-Cell Transplantation in the Era of Ruxolitinib Pretreatment and Intensified Conditioning Regimen—Single-Center Analysis. Cancers. 2024; 16(19):3257. https://doi.org/10.3390/cancers16193257
Chicago/Turabian StyleMachherndl-Spandl, Sigrid, Sarah Hannouf, Alexander Nikoloudis, Otto Zach, Irene Strassl, Emine Kaynak, Gerald Webersinke, Christine Gruber-Rossipal, Holger Rumpold, Wolfgang Schimetta, and et al. 2024. "Improved Outcomes in Myelofibrosis after Allogeneic Stem-Cell Transplantation in the Era of Ruxolitinib Pretreatment and Intensified Conditioning Regimen—Single-Center Analysis" Cancers 16, no. 19: 3257. https://doi.org/10.3390/cancers16193257
APA StyleMachherndl-Spandl, S., Hannouf, S., Nikoloudis, A., Zach, O., Strassl, I., Kaynak, E., Webersinke, G., Gruber-Rossipal, C., Rumpold, H., Schimetta, W., Clausen, J., & Buxhofer-Ausch, V. (2024). Improved Outcomes in Myelofibrosis after Allogeneic Stem-Cell Transplantation in the Era of Ruxolitinib Pretreatment and Intensified Conditioning Regimen—Single-Center Analysis. Cancers, 16(19), 3257. https://doi.org/10.3390/cancers16193257