Unique Gene Expression Profiles within South Africa Are Associated with Varied Chemotherapeutic Responses in Conventional Osteosarcoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. RNA Extraction and cDNA Synthesis
- (a)
- Washing: All specimens (tumour and normal tissue) contained in an Eppendorf tube were washed using 300 μL of phosphate-buffered saline (PBS). Five millimetres of tissues were placed into a PBS tube and vortexed for 60 s. The supernatant was then discarded. Then, 250 μL of PBS was added to the Eppendorf tube, and the steps were repeated. The tissues were then cut into small pieces and placed in 100 μL PBS.
- (b)
- Extraction process: We transferred the emulsified tissue and PBS into a clean 1.5 mL Eppendorf tube and added 100 μL of QuickExtract RNA Extraction Kit (LGC Biosearch Technologies, Oxford, UK). The mixture was vortexed for 2 min. The tube was then centrifuged for 2 min at 14,000 rpm. The supernatant was removed and transferred to a clean 96-well plate. We used an ND8000 nanodrop (Thermofisher, Waltham, MA, USA) to determine the concentration of RNA within our extracted samples. Thereafter, RNA was standardised to 50 ng/uL.
- (c)
- cDNA synthesis: We used the Vilo superscriPT cDNA synthesis kit (Thermofisher, USA) to synthesise cDNA. Briefly, a single reaction was made up using 4 μL of 5× VILOTM Reaction Mix (Thermofisher Scientific, Carlsbad, CA, USA), 2 μL of 10× SuperScriptTM Enzyme Mix, and 8 μL of standardised RNA. Thereafter, the reaction mix was incubated at 25 °C for 10 min, followed by 42 °C for 60 min using the SimpliAmp Thermal Cycler (Thermofisher Scientific, Carlsbad, CA, USA). The reaction was terminated at 85 °C for 5 min. Diluted cDNA (1:400) was stored at −20 °C (Table 2).
2.2. RT-PCR
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. mRNA Expression of Candidate Genes
3.3. Chemotherapy Response
3.3.1. Histology
3.3.2. Gene Candidates
3.3.3. Prediction of Multiple Factors in Predicting Chemotherapeutic Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fletcher, C.D.M.; Unni, K.K.; Mertens, F. (Eds.) World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone; IARC Press: Lyon, France, 2002; pp. 1–36. [Google Scholar]
- Klein, M.J.; Siegal, G.P. Osteosarcoma: Anatomic and histologic variants. Am. J. Clin. Pathol. 2006, 125, 555–581. [Google Scholar] [CrossRef] [PubMed]
- Xin, S.; Wei, G. Prognostic factors in osteosarcoma: A study level meta-analysis and systematic review of current practice. J. Bone Oncol. 2020, 21, 100281. [Google Scholar] [CrossRef] [PubMed]
- Huvos, A.G.; Rosen, G.; Marcove, R.C. Primary osteogenic sarcoma: Pathologic aspects in 20 patients after treatment with chemotherapy en bloc resection, and prosthetic bone replacement. Arch. Pathol. Lab. Med. 1977, 101, 14–18. [Google Scholar] [PubMed]
- Smeland, S.; Bielack, S.S.; Whelan, J.; Bernstein, M.; Hogendoorn, P.; Krailo, M.D.; Gorlick, R.; Janeway, K.A.; Ingleby, F.C.; Anninga, J.; et al. survival and prognosis with osteosarcoma: Outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur. J. Cancer 2019, 109, 36–50. [Google Scholar] [CrossRef]
- Marina, N.M.; Smeland, S.; Bielack, S.S.; Bernstein, M.; Jovic, G.; Krailo, M.D.; Hook, J.M.; Arndt, C.; van den Berg, H.; Brennan, B.; et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): An open-label, international randomised controlled trial. Lancet Oncol. 2016, 17, 1396–1408. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Duan, Y.; Wang, C.; Kamar, S.; Shi, X.; Yang, J.; Yang, J.; Zhao, N.; Han, L.; et al. Does intensified chemotherapy increase survival outcomes of osteosarcoma patients? A meta-analysis. J. Bone Oncol. 2018, 12, 54–60. [Google Scholar] [CrossRef]
- Mintz, M.B.; Sowers, R.; Brown, K.M.; Hilmer, S.C.; Mazza, B.; Huvos, A.G.; Meyers, P.A.; LaFleur, B.; McDonough, W.S.; Henry, M.M.; et al. An expression signature classifies chemotherapy-resistant pediatric osteosarcoma. Cancer Res. 2005, 65, 1748–1754. [Google Scholar] [CrossRef]
- Marchandet, L.; Lallier, M.; Charrier, C.; Baud’huin, M.; Ory, B.; Lamoureux, F. Mechanisms of Resistance to Conventional Therapies for Osteosarcoma. Cancers 2021, 13, 683. [Google Scholar] [CrossRef]
- Man, T.-K.; Chintagumpala, M.; Visvanathan, J.; Shen, J.; Perlaky, L.; Hicks, J.; Johnson, M.; Davino, N.; Murray, J.; Helman, L.; et al. Expression profiles of osteosarcoma that can predict response to chemotherapy. Cancer Res. 2005, 65, 8142–8150. [Google Scholar] [CrossRef]
- Ochi, K.; Daigo, Y.; Katagiri, T.; Nagayama, S.; Tsunoda, T.; Myoui, A.; Naka, N.; Araki, N.; Kudawara, I.; Ieguchi, M.; et al. Prediction of response to neoadjuvant chemotherapy for osteosarcoma by gene-expression profiles. Int. J. Oncol. 2004, 24, 647–655. [Google Scholar] [CrossRef]
- Mthethwa, P.G.; Marais, L.C.; Ramsuran, V.; Aldous, C.M. A Systematic Review of the Heterogenous Gene Expression Patterns Associated with Multidrug Chemoresistance in Conventional Osteosarcoma. Genes 2023, 14, 832. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Sun, Z.; Hoffman, R.M.; Yang, Z.; Jiang, Y.; Wang, L.; Hao, Y. P-glycoprotein overexpression is associated with cisplatin resistance in human osteosarcoma. Anticancer Res. 2019, 39, 1711–1718. [Google Scholar] [CrossRef] [PubMed]
- Patiño-García, A.; Zalacaín, M.; Marrodán, L.; San-Julián, M.; Sierrasesúmaga, L. Methotrexate in Pediatric Osteosarcoma: Response and Toxicity in Relation to Genetic Polymorphisms and Dihydrofolate Reductase and Reduced Folate Carrier 1 Expression. J. Pediatr. 2009, 154, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lv, L.Y.; Li, B.J.; Zhang, J.; Wei, F. Investigation of ERCC1 and ERCC2 gene polymorphisms and response to chemotherapy and overall survival in osteosarcoma. Genet. Mol. Res. GMR 2015, 14, 11235–11241. [Google Scholar] [CrossRef] [PubMed]
- Kaseta, M.K.; Khaldi, L.; Gomatos, I.P.; Tzagarakis, G.P.; Alevizos, L.; Leandros, E.; Papagelopoulos, P.J.; Soucacos, P.N. Prognostic value of bax, bcl-2, and p53 staining in primary osteosarcoma. J. Surg. Oncol. 2008, 97, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.H.; Moon, S.-H.; Suh, J.-S.; Yang, W.-I. Tumor Volume Change as a Predictor of Chemotherapeutic Response in Osteosarcoma. Clin. Orthop. Relat. Res. 2000, 376, 200–208. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Sadykova, L.R.; Ntekim, A.I.; Muyangwa-Semenova, M.; Rutland, C.S.; Jeyapalan, J.N.; Blatt, N.; Rizvanov, A.A. Epidemiology and Risk Factors of Osteosarcoma. Cancer Investig. 2020, 38, 259–269. [Google Scholar] [CrossRef]
- Hart, H.; Parkes, J.D. Long-term outcomes in osteosarcoma patients in the Groote Schuur Hospital patient population: A retrospective review. S. Afr. J. Oncol. 2017, 1, a17. [Google Scholar] [CrossRef]
- Mthethwa, P.G.; Marais, L.C.; Aldous, C.M. Prognostic factors for overall survival of conventional osteosarcoma of the appendicular skeleton. Bone Jt. Open 2024, 5, 210–217. [Google Scholar] [CrossRef]
- Hattinger, C.M.; Patrizio, M.P.; Luppi, S.; Magagnoli, F.; Picci, P.; Serra, M. Current understanding of pharmacogenetic implications of DNA damaging drugs used in osteosarcoma treatment. Expert Opin. Drug Metab. Toxicol. 2019, 15, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Paolillo, A.; Tesser-Gamba, F.; Seixas Alves, M.T.; Filho, R.J.G.; Oliveira, R.; Petrilli, A.S.; Toledo, S.R.C. Pharmacogenetics of the Primary and Metastatic Osteosarcoma: Gene Expression Profile Associated with Outcome. Int. J. Mol. Sci. 2023, 24, 5607. [Google Scholar] [CrossRef] [PubMed]
- Nathrath, M.; Kremer, M.; Letzel, H.; Remberger, K.; Höfler, H.; Ulle, T. Expression of genes of potential importance in response to chemotherapy in osteosarcoma patients. Klin. Padiatr. 2002, 214, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Hao, T.; Feng, W.; Zhang, J.; Sun, Y.J.; Wang, G. Association of four ERCC1 and ERCC2 SNPs with survival of bone tumour patients. Asian Pac. J. Cancer Prev. 2012, 13, 3821–3824. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhang, Z.; Deng, C.B.; Tian, Y.H.; Ma, X. Meta-analysis showing that ERCC1 polymorphism is predictive of osteosarcoma prognosis. Oncotarget 2017, 8, 62769–62779. [Google Scholar] [CrossRef]
- Li, J.; Liu, S.; Wang, W.; Zhang, K.; Liu, Z.; Zhang, C.; Chen, S.; Wu, S. ERCC polymorphisms and prognosis of patients with osteosarcoma. Tumor Biol. 2014, 35, 10129–10136. [Google Scholar] [CrossRef]
- Fanelli, M.; Tavanti, E.; Patrizio, M.P.; Vella, S.; Fernandez-Ramos, A.; Magagnoli, F.; Luppi, S.; Hattinger, C.M.; Serra, M. Cisplatin Resistance in Osteosarcoma: In vitro Validation of Candidate DNA Repair-Related Therapeutic Targets and Drugs for Tailored Treatments. Front. Oncol. 2020, 10, 331. [Google Scholar] [CrossRef]
- Ramírez-Cosmes, A.; Reyes-Jiménez, E.; Zertuche-Martínez, C.; Hernández-Hernández, C.A.; García-Román, R.; Romero-Díaz, R.I.; Manuel-Martínez, A.E.; Elizarrarás-Rivas, J.; Vásquez-Garzón, V.R. The implications of ABCC3 in cancer drug resistance: Can we use it as a therapeutic target? Am. J. Cancer Res. 2021, 11, 4127–4140. [Google Scholar]
- Hurkmans, E.G.E.; Brand, A.C.A.M.; Verdonschot, J.A.J.; te Loo, D.M.W.M.; Coenen, M.J.H. Pharmacogenetics of chemotherapy treatment response and -toxicities in patients with osteosarcoma: A systematic review. BMC Cancer 2022, 22, 1326. [Google Scholar] [CrossRef]
- Baldini, N.; Scotlandi, K.; Serra, M.; Picci, P.; Bacci, G.; Sottili, S.; Campanacci, M. P-glycoprotein expression in osteosarcoma: A basis for risk-adapted adjuvant chemotherapy. J. Orthop. Res. 1999, 17, 629–632. [Google Scholar] [CrossRef]
- Ifergan, I.; Meller, I.; Issakov, J.; Assaraf, Y.G. Reduced folate carrier protein expression in osteosarcoma. Cancer 2003, 98, 1958–1966. [Google Scholar] [CrossRef]
- Flintoff, W.F.; Sadlish, H.; Gorlick, R.; Yang, R.; Williams, F.M. Functional analysis of altered reduced folate carrier sequence changes identified in osteosarcomas. Biochim. Biophys. Acta 2004, 1690, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhou, J.; Zhu, X.; Tang, X.; Liu, J.; Zhou, Q.; Chen, Z.; Liu, T.; Wang, W.; Xiao, X.; et al. Integrative analysis of expression, prognostic significance and immune infiltration of RFC family genes in human sarcoma. Aging 2022, 14, 3705–3719. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Guo, J.; Zhang, K.; Guo, Y. TP53 Mutations and Survival in Osteosarcoma Patients: A Meta-Analysis of Published Data. Dis. Markers 2016, 2016, 4639575. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Shen, J.; Choy, E.; Yang, C.; Mankin, H.; Hornicek, F.; Duan, Z. p53 overexpression increases chemosensitivity in multidrug-resistant osteosarcoma cell lines. Cancer Chemother. Pharmacol. 2016, 77, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Kubista, B.; Klinglmueller, F.; Bilban, M.; Pfeiffer, M.; Lass, R.; Giurea, A.; Funovics, P.T.; Toma, C.; Dominkus, M.; Kotz, R.; et al. Microarray analysis identifies distinct gene expression profiles associated with histological subtype in human osteosarcoma. Int. Orthop. 2011, 35, 401–411. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, C.; Tang, D.; Chen, B.; Jiang, Z. Development and Validation of Nomogram-Based Prognosis Tools for Patients with Extremity Osteosarcoma: A SEER Population Study. J. Oncol. 2022, 2022, 9053663. [Google Scholar] [CrossRef]
- Hauben, E.I.; Weeden, S.; Pringle, J.; Van Marck, E.A.; Hogendoorn, P.C. Does the histological subtype of high-grade central osteosarcoma influence the response to treatment with chemotherapy and does it affect overall survival? A study on 570 patients of two consecutive trials of the European Osteosarcoma Intergroup. Eur. J. Cancer 2002, 38, 1218–1225. [Google Scholar] [CrossRef]
Patient | Age | Sex | Tumour Site | MRI Tumour Volume (cm3) | ALP* (U/L) | LDH* (U/L) | Metastasis | Enneking Stage | Histological Subtypes | Surgery Performed | Neoadjuvant Chemotherapy | Chemotherapy Response (%) Huvos Grade |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 21 | M | Femur, distal | 79,534 | 144 | 256 | Yes | III | Fibroblastic | Yes | Yes | 90 (Huvos III) |
2 | 12 | F | Femur, distal | 113,256 | 592 | 736 | Yes | III | Osteoblastic | Yes | Yes | 75 (Huvos II) |
3 | 31 | F | Femur, distal | 160,025 | 249 | 624 | No | IIB | Osteoblastic | Yes | Yes | 50 (Huvos II) |
4 | 17 | M | Femur, proximal | 58,578 | 604 | 626 | No | IIB | Osteoblastic | Yes | Yes | 75 (Huvos II) |
5 | 16 | M | Pelvis | 237,186 | 837 | 1250 | No | IIB | Osteoblastic | No | No | N/A |
6 | 6 | M | Femur, proximal | 177,907 | 181 | 1972 | Yes | III | Chondroblastic | Yes | Yes | 20 (Huvos I) |
7 | 17 | M | Radius, distal | 9019 | 266 | 432 | No | IIB | Chondroblastic | Yes | Yes | 10 (Huvos I) |
8 | 20 | F | Femur, distal | 6029 | 46 | 112 | No | IIB | Chondroblastic | Yes | Yes | 15 (Huvos I) |
9 | 31 | F | Femur, distal | 160,024 | 249 | 624 | No | IIB | Osteoblastic | Yes | Yes | 70 (Huvos II) |
10 | 12 | F | Humerus, proximal | 73,912 | 723 | 840 | Yes | III | Osteoblastic | No | No | N/A |
11 | 11 | M | Femur, distal | 53,248 | 172 | 93 | No | IIB | Mixed | Yes | Yes | 85 (Huvos II) |
12 | 27 | M | Tibia, proximal | 80,757 | 156 | 220 | No | IIB | Osteoblastic | Yes | Yes | 70 (Huvos II) |
13 | 6 | M | Femur, distal | 168,948 | 369 | 663 | Yes | III | Chondroblastic | Yes | Yes | 25 (Huvos I) |
14 | 11 | M | Femur, distal | 55,929 | 257 | 275 | No | IIB | Mixed | Yes | Yes | 90 (Huvos III) |
15 | 11 | M | Femur, distal | 11,719 | 237 | 330 | No | IIB | Osteoblastic | Yes | Yes | 30 (Huvos I) |
16 | 16 | M | Tibia, proximal | 40,069 | 140 | 628 | Yes | III | Chondroblastic | Yes | Yes | 15 (Huvos I) |
17 | 23 | M | Tibia, proximal | 107,314 | 220 | 642 | Yes | III | Osteoblastic | Yes | Yes | 60 (Huvos II) |
18 | 16 | M | Femur, distal | 142,272 | 369 | 663 | Yes | III | Chondroblastic | Yes | Yes | 25 (Huvos I) |
19 | 22 | F | Femur, distal | 87,107 | 127 | 190 | No | IIB | Mixed | Yes | Yes | 95 (Huvos III) |
20 | 16 | M | Femur, distal | 50,173 | 452 | 2437 | Yes | III | Fibroblastic | Yes | Yes | 90 (Huvos III) |
21 | 17 | M | Femur, proximal | 58,578 | 604 | 626 | No | IIB | Osteoblastic | Yes | Yes | 75 (Huvos II) |
22 | 6 | M | Pelvis | 76,452 | 103 | 112 | No | IIB | Chondroblastic | No | No | N/A |
23 | 14 | F | Femur, distal | 79,534 | 144 | 258 | Yes | III | Fibroblastic | Yes | Yes | 90 (Huvos III) |
24 | 22 | M | Femur, distal | 87,107 | 127 | 190 | No | IIB | Osteoblastic | Yes | Yes | 85 (Huvos II) |
25 | 14 | F | Femur, distal | 50,375 | 237 | 330 | Yes | III | Osteoblastic | Yes | Yes | 75 (Huvos II) |
26 | 11 | F | Femur, distal | 70,152 | 98 | 129 | No | IIB | Chondroblastic | Yes | Yes | 5 (Huvos I) |
27 | 12 | F | Tibia, proximal | 113,256 | 140 | 628 | Yes | III | Osteoblastic | Yes | Yes | 70 (Huvos II) |
28 | 16 | M | Tibia, proximal | 50,273 | 592 | 736 | Yes | III | Chondroblastic | Yes | Yes | 15 (Huvos I) |
Master Mix | x1 Reaction Volume |
---|---|
5× VILO™ Reaction Mix | 4 μL |
10× SuperScript™ Enzyme Mix | 2 μL |
RNA (up to 25 μg) | X μL |
DEPC-treated water | to 20 μL |
Gene | Forward Sequence | Reverse Sequence |
---|---|---|
ABCC3 | 5′-TGGGGTGAAGTTTCGTACTGG-3′ | reverse 5′-CACGTTTGACTGAGTTGGTGATA-3′ |
ABCB1 | 5′-TTGCTGCTTACATTCAGGTTTCA-3′ | 5′-AGCCTATCTCCTGTCGCATTA-3′ |
ERCC1 | 5′-CCTTATTCCGATCTACACAGAGC-3′ | 5′-TATTCGGCGTAGGTCTGAGGG-3′ |
RFC1 | 5′-TTGAACGAGATGAGGCCAAGT-3′ | 5′-CCCTTTCTTGCGGAGATTCTCT-3′ |
p53 | 5′-ACAGCTTTGAGGTGCGTGTTT-3′ | 5′-CCCTTTCTTGCGGAGATTCTCT-3′ |
GAPDH | 5′-TCCACCACCCTGTTGCTGTA-3′ | 5′-ACCACAGTCCATGCCATCAC-3′ |
Patients | Summary Measure i (n = 28) |
---|---|
Median age (years) | 16 (IQR 11.3–20.8) |
Sex | |
Male | 18 (64.3%) |
Female | 10 (35.7%) |
Tumour location | |
Femur, distal | 16 (57%) |
Tibia, proximal | 5 (18%) |
Other sites | 7 (25%) |
Metastasis at diagnosis | |
Yes | 13 (46%) |
No | 15 (54%) |
Histological subtype | |
Osteoblastic | 13 (46%) |
Chondroblastic | 9 (32%) |
Fibroblastic | 3 (11%) |
Mixed | 3 (11%) |
Median MRI tumour volume (cm3) | 7799 cm3 (IQR 5109–1133; CI = 664 to 1092) |
Median alkaline phosphatase (ALP = U/L) | 2370 U/L (IQR 1410–431; CI = 2184 to 3841) |
Median lactate dehydrogenase (LDH = U/L) | 624 U/L (IQR 2290–6630; CI = 3861 to 8012) |
Definitive surgery performed | |
Yes | 25 (89%) |
No | 3 (11%) |
Neoadjuvant chemotherapy | |
Yes | 25 (89%) |
No | 3 (11%) |
Chemotherapy response (tumour necrosis) | |
Non-responder (NR < 90%) | 21 (84%) |
Responder (R = or >90%) | 4 (16%) |
Median follow time in months | 12.7 (IQR 9–17) |
Demised during follow up | 3 (11%) |
Patient Characteristics and Gene Candidates | Odds Ratio (95% Confidence Interval) | p Value |
---|---|---|
Age | −0.11 (−0.171 to −0.039) | 0.052 |
Age ` | −2.5 (−3.616 to −1.378) | 0.022 * |
Male sex | −0.17 (−0.369 to −0.021) | 0.179 |
ABCC3 | 0.67 (0.407 to 0.936) | 0.016 * |
ABCC3 ` | −1.02 (−1.463 to −0.575) | 0.020 * |
ABCB1 | −0.20 (−0.467 to 0.063) | 0.232 |
ABCB1 ` | 0.52 (−0.322 to 1.355) | 0.314 |
p53 | −0.02 (−0.293 to 0.244) | 0.869 |
p53 ` | 0.23 (0.014 to 0.446) | 0.128 |
ERCC1 | −0.37 (−0.599 to −0.133) | 0.054 |
ERCC1 ` | 0.57 (0.235 to 0.901) | 0.044 * |
RFC1 | −1.04 (−1.592 to −0.487) | 0.035 * |
RFC1 ` | 1.43 (0.647 to 2.217) | 0.037 * |
Osteoblastic | −1.28 (−1.664 to −0.901) | 0.007 * |
Chondroblastic | −0.81 (−1.106 to −0.520) | 0.012 * |
Fibroblastic | 0.11 (−0.199 to 0.418) | 0.536 |
Mixed | −0.35 (−0.602 to −0.121) | 0.374 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mthethwa, P.G.; Arumugam, T.; Ramsuran, V.; Gokul, A.; Rodseth, R.; Marais, L. Unique Gene Expression Profiles within South Africa Are Associated with Varied Chemotherapeutic Responses in Conventional Osteosarcoma. Cancers 2024, 16, 3240. https://doi.org/10.3390/cancers16183240
Mthethwa PG, Arumugam T, Ramsuran V, Gokul A, Rodseth R, Marais L. Unique Gene Expression Profiles within South Africa Are Associated with Varied Chemotherapeutic Responses in Conventional Osteosarcoma. Cancers. 2024; 16(18):3240. https://doi.org/10.3390/cancers16183240
Chicago/Turabian StyleMthethwa, Phakamani G., Thilona Arumugam, Veron Ramsuran, Anmol Gokul, Reitze Rodseth, and Leonard Marais. 2024. "Unique Gene Expression Profiles within South Africa Are Associated with Varied Chemotherapeutic Responses in Conventional Osteosarcoma" Cancers 16, no. 18: 3240. https://doi.org/10.3390/cancers16183240
APA StyleMthethwa, P. G., Arumugam, T., Ramsuran, V., Gokul, A., Rodseth, R., & Marais, L. (2024). Unique Gene Expression Profiles within South Africa Are Associated with Varied Chemotherapeutic Responses in Conventional Osteosarcoma. Cancers, 16(18), 3240. https://doi.org/10.3390/cancers16183240