Prognostic Role of Clinicopathological Characteristics and Serum Markers in Metastatic Melanoma Patients Treated with BRAF and MEK Inhibitors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Statistical Analysis
3. Results
3.1. Patient and Disease Characteristics
3.2. M Stage, Serum S100B, pT Category, Clark Level and Primary Tumor Localization Are Significant and Independent Prognostic Factors of Disease Progression in Metastatic Melanoma Patients Treated with BRAF + MEK Inhibitors
3.3. M Stage, pT Category and Clark Level Are Significant and Independent Determinants of Tumor Response to BRAF + MEK Inhibitor Treatment in Patients with Metastatic Melanoma
3.4. Diagnostic Impact of Independent Prognostic Factors of Disease Progression on the Prediction of 18 Month Progression-Free Survival
3.5. M Stage, Serum S100B, Serum LDH, Clark Level and Primary Tumor Localization Are Significant and Independent Prognostic Factors of Mortality in Metastatic Melanoma Patients Treated with BRAF + MEK Inhibitors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peirano, D.; Donoso, F.; Vargas, S.; Hidalgo, L.; Agüero, R.; Uribe, P.; Mondaca, S.; Navarrete-Dechent, C. Patterns of Recurrence of Cutaneous Melanoma: A Literature Review. Dermatol. Pract. Concept. 2023, 13, e2023304. [Google Scholar] [CrossRef]
- Dimitriou, F.; Hauschild, A.; Mehnert, J.M.; Long, G.V. Double Trouble: Immunotherapy Doublets in Melanoma-Approved and Novel Combinations to Optimize Treatment in Advanced Melanoma. Am. Soc. Clin. Oncol. Educ. Book. Am. Soc. Clin. Oncol. Annu. Meet. 2022, 42, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Schadendorf, D.; Fisher, D.E.; Garbe, C.; Gershenwald, J.E.; Grob, J.J.; Halpern, A.; Herlyn, M.; Marchetti, M.A.; McArthur, G.; Ribas, A.; et al. Melanoma. Nat. Reviews. Dis. Primers 2015, 1, 15003. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; Del Marmol, V.; Dréno, B.; et al. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment—Update 2022. Eur. J. Cancer 2022, 170, 256–284. [Google Scholar] [CrossRef] [PubMed]
- Safaee Ardekani, G.; Jafarnejad, S.M.; Tan, L.; Saeedi, A.; Li, G. The prognostic value of BRAF mutation in colorectal cancer and melanoma: A systematic review and meta-analysis. PLoS ONE 2012, 7, e47054. [Google Scholar] [CrossRef]
- Adler, N.R.; Wolfe, R.; Kelly, J.W.; Haydon, A.; McArthur, G.A.; McLean, C.A.; Mar, V.J. Tumour mutation status and sites of metastasis in patients with cutaneous melanoma. Br. J. Cancer 2017, 117, 1026–1035. [Google Scholar] [CrossRef]
- Robert, C.; Grob, J.J.; Stroyakovskiy, D.; Karaszewska, B.; Hauschild, A.; Levchenko, E.; Chiarion Sileni, V.; Schachter, J.; Garbe, C.; Bondarenko, I.; et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N. Engl. J. Med. 2019, 381, 626–636. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Dreno, B.; Larkin, J.; Ribas, A.; Liszkay, G.; Maio, M.; Mandala, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L.; et al. 5-Year Outcomes with Cobimetinib plus Vemurafenib in BRAFV600 Mutation-Positive Advanced Melanoma: Extended Follow-up of the coBRIM Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 5225–5235. [Google Scholar] [CrossRef] [PubMed]
- Betof Warner, A.; Tarhini, A.; Kang, B.; Nakasato, A.; Ling, Y.L.; Shah, R.; Tang, J.; Patel, J. Real-world outcomes of different lines and sequences of treatment in BRAF-positive advanced melanoma patients. Melanoma Res. 2023, 33, 38–49. [Google Scholar] [CrossRef]
- Kartolo, A.; Deluce, J.; Hopman, W.M.; Liu, L.; Baetz, T.; Ernst, S.; Lenehan, J.G. Real-World Evidence of Systemic Therapy Sequencing on Overall Survival for Patients with Metastatic BRAF-Mutated Cutaneous Melanoma. Curr. Oncol. 2022, 29, 1501–1513. [Google Scholar] [CrossRef]
- Atkins, M.B.; Lee, S.J.; Chmielowski, B.; Tarhini, A.A.; Cohen, G.I.; Truong, T.G.; Moon, H.H.; Davar, D.; O’Rourke, M.; Stephenson, J.J.; et al. Combination Dabrafenib and Trametinib Versus Combination Nivolumab and Ipilimumab for Patients With Advanced BRAF-Mutant Melanoma: The DREAMseq Trial-ECOG-ACRIN EA6134. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 186–197. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Casula, M.; Bulgarelli, J.; Pisano, M.; Piccinini, C.; Piccin, L.; Cossu, A.; Mandalà, M.; Ferrucci, P.F.; Guidoboni, M.; et al. Sequential immunotherapy and targeted therapy for metastatic BRAF V600 mutated melanoma: 4-year survival and biomarkers evaluation from the phase II SECOMBIT trial. Nat. Commun. 2024, 15, 146. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wongchenko, M.J.; Robert, C.; Larkin, J.; Ascierto, P.A.; Dreno, B.; Maio, M.; Garbe, C.; Chapman, P.B.; Sosman, J.A.; et al. Genomic Features of Exceptional Response in Vemurafenib +/− Cobimetinib-treated Patients with BRAF (V600)-mutated Metastatic Melanoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 3239–3246. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Gosh, A.; Lee, D.J.; Emri, G.; Huss, W.J.; Bogner, P.N.; Paragh, G. Prognostic biomarkers of cutaneous melanoma. Photodermatol. Photoimmunol. Photomed. 2022, 38, 418–434. [Google Scholar] [CrossRef]
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.A.; et al. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef] [PubMed]
- Saiag, P.; Robert, C.; Grob, J.J.; Mortier, L.; Dereure, O.; Lebbe, C.; Mansard, S.; Grange, F.; Neidhardt, E.M.; Lesimple, T.; et al. Efficacy, safety and factors associated with disease progression in patients with unresectable (stage III) or distant metastatic (stage IV) BRAF V600-mutant melanoma: An open label, non-randomized, phase IIIb study of trametinib in combination with dabrafenib. Eur. J. Cancer 2021, 154, 57–65. [Google Scholar] [CrossRef]
- Amaral, T.; Seeber, O.; Mersi, E.; Sanchez, S.; Thomas, I.; Meiwes, A.; Forschner, A.; Leiter, U.; Eigentler, T.; Keim, U.; et al. Primary Resistance to PD-1-Based Immunotherapy-A Study in 319 Patients with Stage IV Melanoma. Cancers 2020, 12, 1027. [Google Scholar] [CrossRef]
- Lattanzi, M.; Lee, Y.; Simpson, D.; Moran, U.; Darvishian, F.; Kim, R.H.; Hernando, E.; Polsky, D.; Hanniford, D.; Shapiro, R.; et al. Primary Melanoma Histologic Subtype: Impact on Survival and Response to Therapy. J. Natl. Cancer Inst. 2019, 111, 180–188. [Google Scholar] [CrossRef]
- Janka, E.A.; Varvolgyi, T.; Sipos, Z.; Soos, A.; Hegyi, P.; Kiss, S.; Dembrovszky, F.; Csupor, D.; Keringer, P.; Pecsi, D.; et al. Predictive Performance of Serum S100B Versus LDH in Melanoma Patients: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 772165. [Google Scholar] [CrossRef]
- Janka, E.A.; Ványai, B.; Szabó, I.L.; Toka-Farkas, T.; Várvölgyi, T.; Kapitány, A.; Szegedi, A.; Emri, G. Primary tumour category, site of metastasis, and baseline serum S100B and LDH are independent prognostic factors for survival in metastatic melanoma patients treated with anti-PD-1. Front. Oncol. 2023, 13, 1237643. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E. Multivariate survival analysis using Cox’s regression model. Hepatology 1987, 7, 1346–1358. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.M.; Athanasiou, T. Summary receiver operating characteristic curve analysis techniques in the evaluation of diagnostic tests. Ann. Thorac. Surg. 2005, 79, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Emri, G.; Paragh, G.; Tósaki, Á.; Janka, E.; Kollár, S.; Hegedűs, C.; Gellén, E.; Horkay, I.; Koncz, G.; Remenyik, É. Ultraviolet radiation-mediated development of cutaneous melanoma: An update. J. Photochem. Photobiol. B 2018, 185, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Colombino, M.; Casula, M.; Paliogiannis, P.; Manca, A.; Sini, M.C.; Pisano, M.; Santeufemia, D.A.; Cossu, A.; Palmieri, G. Heterogeneous pathogenesis of melanoma: BRAF mutations and beyond. Crit. Rev. Oncol./Hematol. 2024, 201, 104435. [Google Scholar] [CrossRef]
- Kodali, N.; Bhattaru, A.; Blanchard, I.; Sharma, Y.; Lipner, S.R. Assessing melanoma prognosis: The interplay between patient profiles, survival, and BRAF, NRAS, KIT, and TWT mutations in a retrospective multi-study analysis. Melanoma Res. 2024. [Google Scholar] [CrossRef]
- Elder, D.E.; Bastian, B.C.; Cree, I.A.; Massi, D.; Scolyer, R.A. The 2018 World Health Organization Classification of Cutaneous, Mucosal, and Uveal Melanoma: Detailed Analysis of 9 Distinct Subtypes Defined by Their Evolutionary Pathway. Arch. Pathol. Lab. Med. 2020, 144, 500–522. [Google Scholar] [CrossRef]
- Grimaldi, A.M.; Simeone, E.; Festino, L.; Vanella, V.; Strudel, M.; Ascierto, P.A. MEK Inhibitors in the Treatment of Metastatic Melanoma and Solid Tumors. Am. J. Clin. Dermatol. 2017, 18, 745–754. [Google Scholar] [CrossRef]
- Amann, V.C.; Ramelyte, E.; Thurneysen, S.; Pitocco, R.; Bentele-Jaberg, N.; Goldinger, S.M.; Dummer, R.; Mangana, J. Developments in targeted therapy in melanoma. Eur. J. Surg. Oncol. 2017, 43, 581–593. [Google Scholar] [CrossRef]
- Genomic Classification of Cutaneous Melanoma. Cell 2015, 161, 1681–1696. [CrossRef]
- Luke, J.J.; Flaherty, K.T.; Ribas, A.; Long, G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat. Rev. Clin. Oncol. 2017, 14, 463–482. [Google Scholar] [CrossRef] [PubMed]
- Welsh, S.J.; Rizos, H.; Scolyer, R.A.; Long, G.V. Resistance to combination BRAF and MEK inhibition in metastatic melanoma: Where to next? Eur. J. Cancer 2016, 62, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Hugo, W.; Shi, H.; Sun, L.; Piva, M.; Song, C.; Kong, X.; Moriceau, G.; Hong, A.; Dahlman, K.B.; Johnson, D.B.; et al. Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance. Cell 2015, 162, 1271–1285. [Google Scholar] [CrossRef]
- Tarhini, A.; Kudchadkar, R.R. Predictive and on-treatment monitoring biomarkers in advanced melanoma: Moving toward personalized medicine. Cancer Treat. Rev. 2018, 71, 8–18. [Google Scholar] [CrossRef]
- Simeone, E.; Grimaldi, A.M.; Festino, L.; Vanella, V.; Palla, M.; Ascierto, P.A. Combination Treatment of Patients with BRAF-Mutant Melanoma: A New Standard of Care. BioDrugs Clin. Immunother. Biopharm. Gene Ther. 2017, 31, 51–61. [Google Scholar] [CrossRef]
- Shi, H.; Hugo, W.; Kong, X.; Hong, A.; Koya, R.C.; Moriceau, G.; Chodon, T.; Guo, R.; Johnson, D.B.; Dahlman, K.B.; et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014, 4, 80–93. [Google Scholar] [CrossRef]
- Cheng, L.; Lopez-Beltran, A.; Massari, F.; MacLennan, G.T.; Montironi, R. Molecular testing for BRAF mutations to inform melanoma treatment decisions: A move toward precision medicine. Mod. Pathol. Off. J. United States Can. Acad. Pathol. Inc. 2018, 31, 24–38. [Google Scholar] [CrossRef]
- Wongchenko, M.J.; Ribas, A.; Ascierto, P.A.; Dreno, B.; Maria di Giacomo, A.; Garbe, C.; Chang, I.; Hsu, J.; Rooney, I.; Lu, W.; et al. Effects of Molecular Heterogeneity on Survival of Patients With BRAF(V600)-Mutated Melanoma Treated With Vemurafenib With or Without Cobimetinib in the coBRIM Study. JCO Precis. Oncol. 2018, 2, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Erkes, D.A.; Cai, W.; Sanchez, I.M.; Purwin, T.J.; Rogers, C.; Field, C.O.; Berger, A.C.; Hartsough, E.J.; Rodeck, U.; Alnemri, E.S.; et al. Mutant BRAF and MEK Inhibitors Regulate the Tumor Immune Microenvironment via Pyroptosis. Cancer Discov. 2020, 10, 254–269. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kato, S.; Nesline, M.K.; Conroy, J.M.; DePietro, P.; Pabla, S.; Kurzrock, R. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat. Rev. 2022, 110, 102461. [Google Scholar] [CrossRef]
- Hornyák, L.; Dobos, N.; Koncz, G.; Karányi, Z.; Páll, D.; Szabó, Z.; Halmos, G.; Székvölgyi, L. The Role of Indoleamine-2,3-Dioxygenase in Cancer Development, Diagnostics, and Therapy. Front. Immunol. 2018, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Sandri, S.; Watanabe, L.R.M.; Oliveira, E.A.; Faião-Flores, F.; Migliorini, S.; Tiago, M.; Felipe-Silva, A.; Vazquez, V.L.; da Costa Souza, P.; Consolaro, M.E.L.; et al. Indoleamine 2,3-dioxygenase in melanoma progression and BRAF inhibitor resistance. Pharmacol. Res. 2020, 159, 104998. [Google Scholar] [CrossRef]
- Biswas, P.; Stuehr, D.J. Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through control of cell heme allocation by nitric oxide. J. Biol. Chem. 2023, 299, 104753. [Google Scholar] [CrossRef]
- Park, C.K.; Kim, S.K. Clinicopathological significance of intratumoral and peritumoral lymphocytes and lymphocyte score based on the histologic subtypes of cutaneous melanoma. Oncotarget 2017, 8, 14759–14769. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, S.; Donnelly, D.; Call, M.; Johannet, P.; Moran, U.; Polsky, D.; Shapiro, R.; Berman, R.; Pavlick, A.; Weber, J.; et al. Melanoma Prognosis: Accuracy of the American Joint Committee on Cancer Staging Manual Eighth Edition. J. Natl. Cancer Inst. 2020, 112, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Abd Elmageed, Z.Y.; Moore, R.F.; Tsumagari, K.; Lee, M.M.; Sholl, A.B.; Friedlander, P.; Al-Qurayshi, Z.; Hassan, M.; Wang, A.R.; Boulares, H.A.; et al. Prognostic Role of BRAF(V600E) Cellular Localization in Melanoma. J. Am. Coll. Surg. 2018, 226, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Zerfaoui, M.; Toraih, E.; Ruiz, E.; Errami, Y.; Attia, A.S.; Krzysztof, M.; Abd Elmageed, Z.Y.; Kandil, E. Nuclear Localization of BRAF(V600E) Is Associated with HMOX-1 Upregulation and Aggressive Behavior of Melanoma Cells. Cancers 2022, 14, 311. [Google Scholar] [CrossRef]
- Béke, G.; Dajnoki, Z.; Kapitány, A.; Gáspár, K.; Medgyesi, B.; Póliska, S.; Hendrik, Z.; Péter, Z.; Törőcsik, D.; Bíró, T.; et al. Immunotopographical Differences of Human Skin. Front. Immunol. 2018, 9, 424. [Google Scholar] [CrossRef]
- van Zeijl, M.C.T.; de Wreede, L.C.; van den Eertwegh, A.J.M.; Wouters, M.; Jochems, A.; Schouwenburg, M.G.; Aarts, M.J.B.; van Akkooi, A.C.J.; van den Berkmortel, F.; de Groot, J.W.B.; et al. Survival outcomes of patients with advanced melanoma from 2013 to 2017: Results of a nationwide population-based registry. Eur. J. Cancer 2021, 144, 242–251. [Google Scholar] [CrossRef]
- Tas, F. Metastatic behavior in melanoma: Timing, pattern, survival, and influencing factors. J. Oncol. 2012, 2012, 647684. [Google Scholar] [CrossRef]
- Ali, A.; Dumbrava, M.; Riddell, K.; Stewart, N.; Ward, R.; Ibrahim, A.K.; Chin, M. Correlation between initial tumour volume and treatment duration on Dabrafenib: Observation study of subjects with BRAF mutant melanoma on the BRF112680 trial. BMC Cancer 2020, 20, 342. [Google Scholar] [CrossRef]
- Balakirouchenane, D.; Guegan, S.; Csajka, C.; Jouinot, A.; Heidelberger, V.; Puszkiel, A.; Zehou, O.; Khoudour, N.; Courlet, P.; Kramkimel, N.; et al. Population Pharmacokinetics/Pharmacodynamics of Dabrafenib Plus Trametinib in Patients with BRAF-Mutated Metastatic Melanoma. Cancers 2020, 12, 931. [Google Scholar] [CrossRef] [PubMed]
- Moser, J.C.; Chen, D.; Hu-Lieskovan, S.; Grossmann, K.F.; Patel, S.; Colonna, S.V.; Ying, J.; Hyngstrom, J.R. Real-world survival of patients with advanced BRAF V600 mutated melanoma treated with front-line BRAF/MEK inhibitors, anti-PD-1 antibodies, or nivolumab/ipilimumab. Cancer Med. 2019, 8, 7637–7643. [Google Scholar] [CrossRef] [PubMed]
- Schilling, B.; Martens, A.; Geukes Foppen, M.H.; Gebhardt, C.; Hassel, J.C.; Rozeman, E.A.; Gesierich, A.; Gutzmer, R.; Kähler, K.C.; Livingstone, E.; et al. First-line therapy-stratified survival in BRAF-mutant melanoma: A retrospective multicenter analysis. Cancer Immunol. Immunother. CII 2019, 68, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Frauchiger, A.L.; Mangana, J.; Rechsteiner, M.; Moch, H.; Seifert, B.; Braun, R.P.; Dummer, R.; Goldinger, S.M. Prognostic relevance of lactate dehydrogenase and serum S100 levels in stage IV melanoma with known BRAF mutation status. Br. J. Dermatol. 2016, 174, 823–830. [Google Scholar] [CrossRef]
- Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568–571. [Google Scholar] [CrossRef]
- Van Wilpe, S.; Koornstra, R.; Den Brok, M.; De Groot, J.W.; Blank, C.; De Vries, J.; Gerritsen, W.; Mehra, N. Lactate dehydrogenase: A marker of diminished antitumor immunity. Oncoimmunology 2020, 9, 1731942. [Google Scholar] [CrossRef]
- Gassenmaier, M.; Lenders, M.M.; Forschner, A.; Leiter, U.; Weide, B.; Garbe, C.; Eigentler, T.K.; Wagner, N.B. Serum S100B and LDH at Baseline and During Therapy Predict the Outcome of Metastatic Melanoma Patients Treated with BRAF Inhibitors. Target. Oncol. 2021, 16, 197–205. [Google Scholar] [CrossRef]
- Sanmamed, M.F.; Fernández-Landázuri, S.; Rodríguez, C.; Lozano, M.D.; Echeveste, J.I.; Pérez Gracia, J.L.; Alegre, E.; Carranza, O.; Zubiri, L.; Martín-Algarra, S.; et al. Relevance of MIA and S100 serum tumor markers to monitor BRAF inhibitor therapy in metastatic melanoma patients. Clin. Chim. Acta 2014, 429, 168–174. [Google Scholar] [CrossRef]
- Finon, A.; Zaragoza, J.; Maillard, H.; Beneton, N.; Bens, G.; Samimi, M.; Caille, A.; Machet, L. A high neutrophil to lymphocyte ratio prior to BRAF inhibitor treatment is a predictor of poor progression-free survival in patients with metastatic melanoma. Eur. J. Dermatol. EJD 2018, 28, 38–43. [Google Scholar] [CrossRef]
- Cocorocchio, E.; Martinoli, C.; Gandini, S.; Pala, L.; Conforti, F.; Stucchi, S.; Mazzarol, G.; Ferrucci, P. Baseline neutrophil-to-lymphocyte ratio (NLR) is associated with outcome of patients treated with BRAF inhibitors. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst. Mex. 2020, 22, 1818–1824. [Google Scholar] [CrossRef] [PubMed]
- Teterycz, P.; Jagodzińska-Mucha, P.; Cybulska-Stopa, B.; Mariuk-Jarema, A.; Kozak, K.; Koseła-Paterczyk, H.; Czarnecka, A.M.; Rajczykowski, M.; Dziura, R.; Galus, Ł.; et al. High baseline neutrophil-to-lymphocyte ratio predicts worse outcome in patients with metastatic BRAF-positive melanoma treated with BRAF and MEK inhibitors. Melanoma Res. 2018, 28, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Kopecký, J.; Pásek, M.; Lakomý, R.; Melichar, B.; Mrazová, I.; Kubeček, O.; Arenbergerová, M.; Lemstrová, R.; Švancarová, A.; Tretera, V.; et al. The outcome in patients with BRAF-mutated metastatic melanoma treated with anti-programmed death receptor-1 monotherapy or targeted therapy in the real-world setting. Cancer Med. 2024, 13, e6982. [Google Scholar] [CrossRef]
- Janka, E.A.; Vanyai, B.; Dajnoki, Z.; Szabo, I.L.; Reibl, D.; Komka, I.; Blasszauer, C.; Varvolgyi, T.; Szegedi, A.; Emri, G. Regional variability of melanoma incidence and prevalence in Hungary. Epidemiological impact of ambient UV radiation and socioeconomic factors. Eur. J. Cancer Prev. 2022, 31, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Syeda, M.M.; Wiggins, J.M.; Corless, B.C.; Long, G.V.; Flaherty, K.T.; Schadendorf, D.; Nathan, P.D.; Robert, C.; Ribas, A.; Davies, M.A.; et al. Circulating tumour DNA in patients with advanced melanoma treated with dabrafenib or dabrafenib plus trametinib: A clinical validation study. Lancet Oncol. 2021, 22, 370–380. [Google Scholar] [CrossRef]
Patient Characteristics | N (%) |
---|---|
Total | 199 (100.0) |
Age distribution | |
<60 years | 79 (39.7) |
≥60 years | 120 (60.3) |
Sex | |
Male | 117 (58.8) |
Female | 82 (41.2) |
Primary Melanoma Characteristics | N (%) |
Localization | |
Head and neck | 22 (11.1) |
Upper limbs | 27 (13.6) |
Lower limbs | 33 (16.6) |
Trunk | 93 (46.6) |
Occult | 24 (12.1) |
Histological subtype | |
SSM | 36 (18.1) |
LMM | 1 (0.5) |
NM | 73 (36.7) |
MM | 89 (44.7) |
Clark level | |
II | 3 (1.5) |
III | 51 (25.6) |
IV | 69 (34.7) |
V | 26 (13.0) |
unknown | 50 (25.2) |
AJCC 8th edition T category | |
pT1a | 8 (4.0) |
pT1b–T2a | 25 (12.6) |
pT2b–T3a | 20 (10.0) |
pT3b–T4a | 42 (21.1) |
pT4b | 72 (36.2) |
unknown | 32 (16.1) |
Disease Characteristics | |
AJCC 8th edition M category at the start of treatment | |
M1a | 64 (32.1) |
M1b | 36 (18.1) |
M1c | 70 (35.2) |
M1d | 29 (14.6) |
Baseline serum LDH level | |
normal | 50 (25.1) |
elevated | 126 (63.3) |
unknown | 23 (11.6) |
Baseline serum S100B level | |
normal | 90 (45.2) |
elevated | 85 (42.7) |
unknown | 24 (12.1) |
Baseline peripheral blood NLR | |
below cut-off | 62 (31.2) |
above cut-off | 107 (53.8) |
unknown | 30 (15.0) |
Cox Regression According to Endpoint: PFS | Univariate Logistic Regression Model | Multivariate Logistic Regression Model | |||
---|---|---|---|---|---|
Variables | Categories | HR [95% CI] | p-Value | HR [95% CI] | p-Value |
Age | ≥60 years/<60 years | 1.04 [0.72; 1.49] | 0.842 | - | - |
Sex | male/female | 1.21 [0.83; 1.76] | 0.317 | - | - |
Histological subtype | SSM/MM | 0.99 [0.60; 1.62] | 0.996 | - | - |
NM/MM | 1.07 [0.58; 1.30] | 0.865 | |||
Localization of primary tumor | head and neck/trunk | 0.84 [0.48; 1.47] | 0.530 | 0.84 [0.40; 1.75] | 0.637 |
upper extremities/trunk | 1.73 [1.05; 2.86] | 0.032 | 3.70 [1.81; 7.56] | <0.001 | |
lower extremities/trunk | 1.57 [1.01; 2.77] | 0.049 | 1.19 [1.03; 2.51] | 0.044 | |
Clark level | IV/II–III | 1.02 [0.46; 1.19] | 0.212 | 1.01 [0.66; 1.28] | 0.219 |
V/II–III | 1.70 [1.02; 2.98] | 0.048 | 3.32 [1.33; 8.30] | 0.010 | |
AJCC 8th edition T category | pT2b–T3a/pT1a–T2a | 1.77 [1.02; 3.39] | 0.045 | 2.43 [1.51; 7.77] | 0.003 |
pT3b–T4a/pT1a–T2a | 1.03 [0.55; 1.92] | 0.923 | 1.14 [0.51; 2.55] | 0.744 | |
pT4b/pT1a–T2a | 1.15 [1.01; 1.93] | 0.048 | 1.84 [1.01; 4.38] | 0.049 | |
AJCC 8th edition M category at the beginning of therapy | M1b/M1a | 1.17 [0.67; 2.04] | 0.586 | 1.34 [0.56; 3.23] | 0.516 |
M1c/M1a | 2.01 [1.26; 3.21] | 0.003 | 3.09 [1.58; 6.04] | 0.001 | |
M1d/M1a | 2.02 [1.15; 3.55] | 0.014 | 4.07 [1.80; 9.18] | 0.001 | |
Serum S100B level | elevated/normal | 1.83 [1.25; 2.68] | 0.002 | 1.83 [1.09; 3.63] | 0.032 |
Serum LDH level | elevated/normal | 1.47 [0.96; 2.26] | 0.078 | - | - |
Peripheral blood NLR | above/below cut-off | 1.49 [0.96; 2.31] | 0.072 |
Multivariate Logistic Regression Model | ||||
---|---|---|---|---|
Variables | Categories | OR [95% CI] | p-Value | |
CR-PR vs. SD | AJCC 8th edition M category at the beginning of therapy | M1a/M1d | 7.67 [1.10; 18.86] | 0.045 |
CR-PR vs. PD | AJCC 8th edition T category | T1a–T2a/T2b–T3a | 4.71 [1.13; 10.43] | 0.045 |
T1a–T2a/T4b | 3.84 [1.12; 11.54] | 0.049 | ||
Clark level | II–III/V | 7.46 [1.17; 12.30] | 0.036 | |
AJCC 8th edition M category at the beginning of therapy | M1a/M1d | 8.48 [1.21; 15.78] | 0.035 |
Cox Regression According to Endpoint: OS | Univariate Logistic Regression Model | Multivariate Logistic Regression Model | |||
---|---|---|---|---|---|
Variables | Categories | HR [95% CI] | p-Value | HR [95% CI] | p-Value |
Age | ≥60 years/<60 years | 1.20 [0.83; 1.75] | 0.339 | - | - |
Sex | male/female | 1.44 [0.98; 2.11] | 0.060 | - | - |
Histological subtype | SSM/MM | 0.99 [0.65; 1.50] | 0.955 | - | - |
NM/MM | 1.02 [0.62; 1.68] | 0.946 | |||
Localization of primary tumor | head and neck/trunk | 0.97 [0.56; 1.82] | 0.975 | 0.86 [0.41; 1.78] | 0.677 |
upper extremities/trunk | 1.24 [1.03; 2.09] | 0.001 | 3.20 [1.55; 6.18] | 0.004 | |
lower extremities/trunk | 1.13 [1.01; 2.56] | 0.045 | 1.64 [1.06; 4.03] | 0.040 | |
Clark level | IV/II–III | 1.15 [0.72; 1.85] | 0.566 | 1.69 [0.91; 3.14] | 0.099 |
V/II–III | 1.73 [1.05; 3.13] | 0.048 | 4.23 [1.72; 8.40] | 0.002 | |
AJCC 8th edition T category | pT2b–T3a/pT1a–T2a | 1.20 [1.01; 2.37] | 0.038 | 1.15 [0.82; 2.77] | 0.067 |
pT3b–T4a/pT1a–T2a | 1.06 [0.58; 1.95] | 0.846 | 1.05 [0.47; 2.40] | 0.913 | |
pT4b/pT1a–T2a | 1.14 [1.02; 1.77] | 0.024 | 1.22 [0.84; 2.76] | 0.062 | |
AJCC 8th edition M category at the beginning of therapy | M1b/M1a | 0.92 [0.51; 1.67] | 0.794 | 1.25 [0.53; 2.94] | 0.604 |
M1c/M1a | 1.94 [1.21; 3.11] | 0.006 | 2.47 [1.24; 4.90] | 0.010 | |
M1d/M1a | 2.61 [1.50; 4.55] | 0.001 | 4.16 [1.95; 8.88] | <0.001 | |
Serum S100B level | elevated/normal | 1.78 [1.19; 2.65] | 0.005 | 2.01 [1.18; 3.43] | 0.010 |
Serum LDH level | elevated/normal | 1.65 [1.04; 2.61] | 0.033 | 1.84 [1.08; 2.32] | 0.025 |
Peripheral blood NLR | above/below cut-off | 1.63 [1.06; 2.51] | 0.025 | 1.32 [0.77; 2.27] | 0.311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janka, E.A.; Szabó, I.L.; Kollár, S.; Toka-Farkas, T.; Ványai, B.; Várvölgyi, T.; Kapitány, A.; Shabu, H.; Szegedi, A.; Emri, G. Prognostic Role of Clinicopathological Characteristics and Serum Markers in Metastatic Melanoma Patients Treated with BRAF and MEK Inhibitors. Cancers 2024, 16, 2981. https://doi.org/10.3390/cancers16172981
Janka EA, Szabó IL, Kollár S, Toka-Farkas T, Ványai B, Várvölgyi T, Kapitány A, Shabu H, Szegedi A, Emri G. Prognostic Role of Clinicopathological Characteristics and Serum Markers in Metastatic Melanoma Patients Treated with BRAF and MEK Inhibitors. Cancers. 2024; 16(17):2981. https://doi.org/10.3390/cancers16172981
Chicago/Turabian StyleJanka, Eszter Anna, Imre Lőrinc Szabó, Sándor Kollár, Tünde Toka-Farkas, Beatrix Ványai, Tünde Várvölgyi, Anikó Kapitány, Hibah Shabu, Andrea Szegedi, and Gabriella Emri. 2024. "Prognostic Role of Clinicopathological Characteristics and Serum Markers in Metastatic Melanoma Patients Treated with BRAF and MEK Inhibitors" Cancers 16, no. 17: 2981. https://doi.org/10.3390/cancers16172981
APA StyleJanka, E. A., Szabó, I. L., Kollár, S., Toka-Farkas, T., Ványai, B., Várvölgyi, T., Kapitány, A., Shabu, H., Szegedi, A., & Emri, G. (2024). Prognostic Role of Clinicopathological Characteristics and Serum Markers in Metastatic Melanoma Patients Treated with BRAF and MEK Inhibitors. Cancers, 16(17), 2981. https://doi.org/10.3390/cancers16172981