The Proapoptotic Action of Pyrrolidinedione–Thiazolidinone Hybrids towards Human Breast Carcinoma Cells Does Not Depend on Their Genotype
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Studied Compounds
2.3. Culture of MCF-7, MDA-MB-231, HCC1954, T-47D, 4T1, and MCF-10A Cells
2.4. The MTT Assay
2.5. The Clonogenic Assay
2.6. [3H]-Thymidine Incorporation Assay
2.7. Flow Cytometry of Apoptosis Induction in Breast Tumor Cells
2.8. Assessment of Changes in Mitochondrial Membrane Potential
2.9. Caspases 3/7, 8, 9, and 10 Enzymatic Activity Assays
2.10. RNA Isolation and Quantitative PCR (qPCR)
2.11. ELISA Measurement of Beclin-1, LC3B, MMP-2, MMP-9, and ICAM-1
2.12. Statistical Analysis
3. Results
3.1. Cytotoxicity of Derivatives towards Breast Cancer Cells
3.2. Studied Derivatives Inhibit the Formation of Colonies of Breast Cancer Cells
3.3. The Effect of Studied Derivatives on the DNA Biosynthesis Process in Breast Carcinoma and Normal Breast Epithelial Cells
3.4. Les-6287 Induces Apoptosis by Extrinsic and Intrinsic Pathways
3.5. Compounds Inhibit Autophagy in Breast Cancer Cells
3.6. Les-6287 Decreases the Concentration of MMP-2, MMP-9, and ICAM-1 Proteins, Which Are Involved in Metastasis and Invasion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Philip, C.; Mathew, A.; John, M.J. Cancer care: Challenges in the developing world. Cancer Res. Stat. Treat. 2018, 1, 58–62. [Google Scholar] [CrossRef]
- Waks, A.G.; Winer, E.P. Breast cancer treatment: A review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Emran, T.B.; Shahriar, A.; Mahmud, A.R.; Rahman, T.; Abir, M.H.; Siddiquee, M.F.-R.; Ahmed, H.; Rahman, N.; Nainu, F.; Wahyudin, E.; et al. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front. Oncol. 2022, 12, 891652. [Google Scholar] [CrossRef] [PubMed]
- Bass, A.K.A.; El-Zoghbi, M.S.; Nageeb, E.-S.M.; Mohamed, M.F.A.; Badr, M.; Abuo-Rahma, G.E.-D.A. Abuo-Rahma, Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors. Eur. J. Med. Chem. 2021, 209, 112904. [Google Scholar] [CrossRef]
- Xu, Y.; Gong, M.; Wang, Y.; Yang, Y.; Liu, S.; Zeng, Q. Global trends and forecasts of breast cancer incidence and deaths. Sci. Data 2023, 10, 334. [Google Scholar] [CrossRef]
- Burguin, A.; Diorio, C.; Durocher, F. Breast cancer treatments: Updates and new challenges. J. Pers. Med. 2021, 11, 808. [Google Scholar] [CrossRef]
- Ronchi, A.; Pagliuca, F.; Zito Marino, F.; Accardo, M.; Cozzolino, I.; Franco, R. Current and potential immunohistochemical biomarkers for prognosis and therapeutic stratification of breast carcinoma. Semin. Cancer Biol. 2021, 72, 114–122. [Google Scholar] [CrossRef]
- Jacobs, A.T.; Martinez Castaneda-Cruz, D.; Rose, M.M.; Connelly, L. Targeted therapy for breast cancer: An overview of drug classes and outcomes. Biochem. Pharmacol. 2022, 204, 115209. [Google Scholar] [CrossRef]
- Mark, C.; Lee, J.S.; Cui, X.; Yuan, Y. Antibody-drug conjugates in breast cancer: Current status and future directions. Int. J. Mol. Sci. 2023, 24, 13726. [Google Scholar] [CrossRef]
- Nunes Filho, P.; Albuquerque, C.; Pilon Capella, M.; Debiasi, M. Immune checkpoint inhibitors in breast cancer: A narrative review. Oncol. Ther. 2023, 11, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.M.; Shastry, M.; Hamilton, E. Targeting HER2-positive breast cancer: Advances and future directions. Nat. Rev. Drug Discov. 2023, 22, 101–126. [Google Scholar] [CrossRef] [PubMed]
- Masoud, V.; Pagès, G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J. Clin. Oncol. 2017, 8, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Minden, A. Current molecular combination therapies used for the treatment of breast cancer. Int. J. Mol. Sci. 2022, 23, 11046. [Google Scholar] [CrossRef]
- Yang, T.; Li, W.; Huang, T.; Zhou, J. Antibody-drug conjugates for breast cancer treatment: Emerging agents, targets and future directions. Int. J. Mol. Sci. 2023, 24, 11903. [Google Scholar] [CrossRef]
- Campos, J.C.; Campos, P.T.; Bona, N.P.; Soares, M.S.; Souza, P.O.; Braganhol, E.; Cunico, W.; Siqueira, G.M. Synthesis and biological evaluation of novel 2-imino-4-thiazolidinones as potential antitumor agents for glioblastoma. Med. Chem. 2022, 18, 452–462. [Google Scholar] [CrossRef]
- Chawla, P.A.; Wahan, S.K.; Negi, M.; Faruk, A.; Chawla, V. Synthetic strategies and medicinal perspectives of 4-thiazolidinones: Recent developments and structure–activity relationship studies. J. Heterocycl. Chem. 2023, 60, 1248–1286. [Google Scholar] [CrossRef]
- Kadhim, Z.Y.; Alqaraghuli, H.G.J.; Abd, M.T. Synthesis, characterization, molecular docking, in vitro biological evaluation and in vitro cytotoxicity Sstudy of novel thiazolidine-4-one derivatives as anti-breast cancer agents. Anti-Cancer Agents Med. Chem. 2021, 21, 2397–2406. [Google Scholar] [CrossRef]
- Tahmasvand, R.; Bayat, P.; Vahdaniparast, S.M.; Dehghani, S.; Kooshafar, Z.; Khaleghi, S.; Almasirad, A.; Salimi, M. Design and synthesis of novel 4-thiazolidinone derivatives with promising anti-breast cancer activity: Synthesis, characterization, in vitro and in vivo results. Bioorg. Chem. 2020, 104, 104276. [Google Scholar] [CrossRef]
- Subtel’na, I.; Atamanyuk, D.; Szymańska, E.; Kieć-Kononowicz, K.; Zimenkovsky, B.; Vasylenko, O.; Gzella, A.; Lesyk, R. Synthesis of 5-arylidene-2-amino-4-azolones and evaluation of their anticancer activity. Bioorg. Med. Chem. 2010, 18, 5090–5102. [Google Scholar] [CrossRef]
- Buzun, K.; Kryshchyshyn-Dylevych, A.; Senkiv, J.; Roman, O.; Gzella, A.; Bielawski, K.; Bielawska, A.; Lesyk, R. Synthesis and anticancer activity evaluation of 5-[2-chloro-3-(4-nitrophenyl)-2-propenylidene]-4-thiazolidinones. Molecules 2021, 26, 3057. [Google Scholar] [CrossRef]
- Buzun, K.; Gornowicz, A.; Lesyk, R.; Kryshchyshyn-Dylevych, A.; Gzella, A.; Czarnomysy, R.; Latacz, G.; Olejarz-Maciej, A.; Handzlik, J.; Bielawski, K.; et al. 2-{5-[(Z,2Z)-2-Chloro-3-(4-nitrophenyl)-2-propenylidene]-4-oxo-2-thioxothiazolidin-3-yl}-3-methylbutanoic acid as a potential anti-breast cancer molecule. Int. J. Mol. Sci. 2022, 23, 4091. [Google Scholar] [CrossRef]
- Finiuk, N.; Kryshchyshyn-Dylevych, A.; Holota, S.; Klyuchivska, O.; Kozytskiy, A.; Karpenko, O.; Manko, N.; Ivasechko, I.; Stoika, R.; Lesyk, R. Novel hybrid pyrrolidinedione-thiazolidinones as potential anticancer agents: Synthesis and biological evaluation. Eur. J. Med. Chem. 2022, 238, 114422. [Google Scholar] [CrossRef] [PubMed]
- Finiuk, N.; Kaleniuk, E.; Holota, S.; Stoika, R.; Lesyk, R.; Szychowski, K.A. Pyrrolidinedione-thiazolidinone hybrid molecules with potent cytotoxic effect in squamous cell carcinoma SCC-15 cells. Bioorg. Med. Chem. 2023, 92, 117442. [Google Scholar] [CrossRef] [PubMed]
- Radomska, D.; Czarnomysy, R.; Szymanowska, A.; Radomski, D.; Domínguez-Álvarez, E.; Bielawska, A.; Bielawski, K. Novel selenoesters as a potential tool in triple-negative breast cancer treatment. Cancers 2022, 14, 4304. [Google Scholar] [CrossRef]
- Nunez, J.G.; Pinheiro, J.S.; Padilha, G.L.; Garcia, H.O.; Porta, V.; Apel, M.A.; Bruno, A.N. Antineoplastic potential and chemical evaluation of essential oils from leaves and flowers of Tagetes ostenii Hicken. An. Acad. Bras. Cienc. 2020, 92, e20191143. [Google Scholar] [CrossRef] [PubMed]
- Szwed, A.; Miłowska, K.; Michlewska, S.; Moreno, S.; Shcharbin, D.; Gomez-Ramirez, R.; de la Mata, F.J.; Majoral, J.-P.; Bryszewska, M.; Gabryelak, T. Generation dependent effects and entrance to mitochondria of hybrid dendrimers on normal and cancer neuronal cells in vitro. Biomolecules 2020, 10, 427. [Google Scholar] [CrossRef]
- Avrutsky, M.I.; Troy, C.M. Caspase-9: A multimodal therapeutic target with diverse cellular expression in human disease. Front. Pharmacol. 2021, 12, 701301. [Google Scholar] [CrossRef]
- Gornowicz, A.; Lesyk, R.; Czarnomysy, R.; Holota, S.; Shepeta, Y.; Popławska, B.; Podolak, M.; Szymanowski, W.; Bielawski, K.; Bielawska, A. Multi-targeting anticancer activity of a new 4-thiazolidinone derivative with anti-HER2 antibodies in human AGS gastric cancer cells. Int. J. Mol. Sci. 2023, 24, 6791. [Google Scholar] [CrossRef]
- Zhang, S.; Rao, S.; Yang, M.; Ma, C.; Hong, F.; Yang, S. Role of mitochondrial pathways in cell apoptosis during hepatic ischemia/reperfusion injury. Int. J. Mol. Sci. 2022, 23, 2357. [Google Scholar] [CrossRef]
- Jiang, M.; Qi, L.; Li, L.; Wu, Y.; Song, D.; Li, Y. Caspase-8: A key protein of cross-talk signal way in “panoptosis” in cancer. Int. J. Cancer 2021, 149, 1408–1420. [Google Scholar] [CrossRef]
- Singh, V.; Khurana, A.; Navik, U.; Allawadhi, P.; Bharani, K.K.; Weiskirchen, R. Apoptosis and pharmacological therapies for targeting thereof for cancer therapeutics. Science 2022, 4, 15. [Google Scholar] [CrossRef]
- Talvensaari-Mattila, A.; Pääkkö, P.; Turpeenniemi-Hujanen, T. Matrix metalloproteinase-2 (MMP-2) is associated with survival in breast carcinoma. Br. J. Cancer 2003, 89, 1270–1275. [Google Scholar] [CrossRef]
- Huang, H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances. Sensors 2018, 18, 3249. [Google Scholar] [CrossRef]
- Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef]
- Hossain, M.; Habib, I.; Singha, K.; Kumar, A. FDA-approved heterocyclic molecules for cancer treatment: Synthesis, dosage, mechanism of action and their adverse effect. Heliyon 2024, 10, e23172. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kumar, A.; Singh, H.; Sonawane, P.; Paliwal, H.; Thareja, S.; Pathak, P.; Grishina, M.; Jaremko, M.; Emwas, A.-H.; et al. Concept of hybrid drugs and recent advancements in anticancer hybrids. Pharmaceuticals 2022, 15, 1071. [Google Scholar] [CrossRef] [PubMed]
- Poyraz, S.; Döndaş, H.A.; Döndaş, N.Y.; Sansano, J.M. Recent insights about pyrrolidine core skeletons in pharmacology. Front. Pharmacol. 2023, 14, 1239658. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, N.; Chen, Y.; Yang, Y. Regulation of micropatterned curvature-dependent FA heterogeneity on cytoskeleton tension and nuclear DNA synthesis of malignant breast cancer cells. J. Mater. Chem. B 2023, 11, 99–108. [Google Scholar] [CrossRef]
- Shadbad, M.A.; Safaei, S.; Brunetti, O.; Derakhshani, A.; Lotfinejad, P.; Mokhtarzadeh, A.; Hemmat, N.; Racanelli, V.; Solimando, A.G.; Argentiero, A.; et al. A systematic review on the therapeutic potentiality of PD-L1-inhibiting microRNAs for triple-negative breast cancer: Toward single-cell sequencing-guided biomimetic delivery. Genes 2021, 12, 1206. [Google Scholar] [CrossRef]
- Yuan, J.; Ofengeim, D. A guide to cell death pathways. Nat. Rev. Mol. Cell Biol. 2023, 11, 99–108. [Google Scholar] [CrossRef]
- Van Opdenbosch, N.; Lamkanfi, M. Caspases in cell death, inflammation, and disease. Immunity 2019, 50, 1352–1364. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; He, M.; Li, L.; Liang, Z.; Zou, Z.; Tao, A. Cell-in-cell death is not restricted by caspase-3 deficiency in MCF-7 cells. J. Breast Cancer 2016, 19, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Onorati, A.V.; Dyczynski, M.; Ojha, R.; Amaravadi, R.K. Targeting autophagy in cancer. Cancer 2018, 124, 3307–3318. [Google Scholar] [CrossRef]
- Wirawan, E.; Vande Walle, L.; Kersse, K.; Cornelis, S.; Claerhout, S.; Vanoverberghe, I.; Roelandt, R.; De Rycke, R.; Verspurten, J.; Declercq, W.; et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 2010, 1, e18. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, H. Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: A systematic review and meta-analysis. BMC Cancer 2021, 21, 149. [Google Scholar] [CrossRef]
- Dong, H.; Diao, H.; Zhao, Y.; Xu, H.; Pei, S.; Gao, J.; Wang, J.; Hussain, T.; Zhao, D.; Zhou, X.; et al. Overexpression of matrix metalloproteinase-9 in breast cancer cell lines remarkably increases the cell malignancy largely via activation of transforming growth factor beta/SMAD signalling. Cell Prolif. 2019, 52, e12633. [Google Scholar] [CrossRef]
- Chen, M.; Wu, C.; Fu, Z.; Liu, S. ICAM1 promotes bone metastasis via integrin-mediated TGF-β/EMT signaling in triple-negative breast cancer. Cancer Sci. 2022, 113, 3751–3765. [Google Scholar] [CrossRef]
Assay | Target Species | Catalog Number | Manufacturer |
---|---|---|---|
MAP1LC3B | Human | qHsaCEP0041298 | Bio-Rad |
BECN1 | Human | qHsaCID0016032 | Bio-Rad |
GAPDH | Human | qHsaCEP0041396 | Bio-Rad |
Cell Line | Timepoint, h | IC50, µM (M ± SD) | |||
---|---|---|---|---|---|
Les-6287 | Les-6294 | Les-6328 | Dox | ||
MCF-7 | 24 | 2.34 ± 0.16 | 6.74 ± 0.64 | 3.26 ± 0.40 | 3.47 ± 0.49 |
48 | 1.43 ± 0.18 | 3.54 ± 0.14 | 2.18 ± 0.19 | 0.18 ± 0.07 | |
T-47D | 24 | 3.11 ± 0.19 | 4.48 ± 0.51 | 4.08 ± 0.56 | 3.66 ± 0.33 |
48 | 1.74 ± 0.25 | 2.66 ± 0.21 | 1.97 ± 0.58 | 2.31 ± 0.24 | |
MDA-MB-231 | 24 | 3.86 ± 0.24 | 21.85 ± 9.92 | 6.09 ± 0.33 | 6.18 ± 0.08 |
48 | 1.37 ± 0.15 | 3.72 ± 0.22 | 2.01 ± 0.12 | 1.09 ± 0.09 | |
4T1 | 24 | 1.60 ± 0.14 | 2.20 ± 0.19 | 2.25 ± 0.34 | 2.37 ± 0.25 |
48 | 1.62 ± 0.21 | 2.22 ± 0.25 | 1.94 ± 0.15 | 1.98 ± 0.21 | |
HCC1954 | 24 | 2.52 ± 0.65 | 4.53 ± 0.18 | 9.91 ± 0.17 | 1.90 ± 0.11 |
48 | 2.25 ± 0.64 | 5.01 ± 0.23 | 6.40 ± 0.25 | 1.15 ± 0.16 | |
MCF-10A | 24 | 93.01 ± 2.29 | >100 | >100 | 15.91 ± 0.91 |
48 | 64.58 ± 0.68 | >100 | >100 | 0.23 ± 0.05 |
Cell Line | IC50 (M ± SD) | |||
---|---|---|---|---|
Les-6287 | Les-6294 | Les-6328 | Dox | |
MCF-7 | 0.42 ± 0.08 | 1.33 ± 0.10 | 1.57 ± 0.12 | 0.42 ± 0.08 |
MDA-MB-231 | 0.42 ± 0.11 | 0.67 ± 0.08 | 1.19 ± 0.03 | 0.42 ± 0.11 |
HCC1954 | 0.43 ± 0.11 | 3.05 ± 0.03 | 1.54 ± 0.02 | 0.43 ± 0.11 |
MCF-10A | >50 | >50 | >50 | 0.47 ± 0.11 |
Cell Line | IC50 (M ± SD) | |
---|---|---|
Les-6287 | Dox | |
MCF-7 | 2.37 ± 0.02 | 0.66 ± 0.13 |
MDA-MB-231 | 2.32 ± 0.04 | 0.63 ± 0.11 |
HCC1954 | 3.67 ± 0.09 | 1.07 ± 0.04 |
MCF-10A | 43.54 ± 1.16 | 3.19 ± 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finiuk, N.; Kozak, Y.; Gornowicz, A.; Czarnomysy, R.; Tynecka, M.; Holota, S.; Moniuszko, M.; Stoika, R.; Lesyk, R.; Bielawski, K.; et al. The Proapoptotic Action of Pyrrolidinedione–Thiazolidinone Hybrids towards Human Breast Carcinoma Cells Does Not Depend on Their Genotype. Cancers 2024, 16, 2924. https://doi.org/10.3390/cancers16162924
Finiuk N, Kozak Y, Gornowicz A, Czarnomysy R, Tynecka M, Holota S, Moniuszko M, Stoika R, Lesyk R, Bielawski K, et al. The Proapoptotic Action of Pyrrolidinedione–Thiazolidinone Hybrids towards Human Breast Carcinoma Cells Does Not Depend on Their Genotype. Cancers. 2024; 16(16):2924. https://doi.org/10.3390/cancers16162924
Chicago/Turabian StyleFiniuk, Nataliya, Yuliia Kozak, Agnieszka Gornowicz, Robert Czarnomysy, Marlena Tynecka, Serhii Holota, Marcin Moniuszko, Rostyslav Stoika, Roman Lesyk, Krzysztof Bielawski, and et al. 2024. "The Proapoptotic Action of Pyrrolidinedione–Thiazolidinone Hybrids towards Human Breast Carcinoma Cells Does Not Depend on Their Genotype" Cancers 16, no. 16: 2924. https://doi.org/10.3390/cancers16162924
APA StyleFiniuk, N., Kozak, Y., Gornowicz, A., Czarnomysy, R., Tynecka, M., Holota, S., Moniuszko, M., Stoika, R., Lesyk, R., Bielawski, K., & Bielawska, A. (2024). The Proapoptotic Action of Pyrrolidinedione–Thiazolidinone Hybrids towards Human Breast Carcinoma Cells Does Not Depend on Their Genotype. Cancers, 16(16), 2924. https://doi.org/10.3390/cancers16162924