Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Tip60
Function | Molecular Process |
---|---|
Regulating cell identity | Stem cell identity [18,19,20,21] |
Enhancing Treg cell induction [22,23] | |
Transcriptional regulator | Transcription [13,24] |
Modulating metabolic stress response | Cell survival [13,25] |
Hormone response | AR signaling response [26,27] |
Genome stability/chromatin remodeling | DNA damage repair [14,24] |
Transcriptional regulation [28] | |
Neuronal protection | Neuronal cell function [16,20] |
Cell cycle | Regulating Mad1/2 expression [13,29] |
Protein Name | Signaling Pathway |
---|---|
FOXP3 | Transcription |
APBB1 (Fe65) | |
C/EBP α | |
Interleukin-9 receptor | |
STAT3 | |
HDAC7 | |
KLF4 | |
ATXN1 | |
Epc1 | |
Epc2 | |
MBTD1 | |
Gas41/YEATS4 | |
MYC | |
RELA/p65 | |
SOX9 | |
ATM | DNA damage response |
P53 | |
SIRT1 | |
TRRAP | |
FAM135B | |
ATF2 | |
p400 | |
MOF | |
BAF53a | |
ANP32E | |
RNF8 | |
UHRF1 | |
FLJ10914/MRGBP | |
MORF4L1 | |
TRIM29 | |
ACTL6A | |
TRCp120 | |
P300 | Enhancing Treg cell induction |
USP7 | |
FOXP3 | |
Androgen receptor | AR signaling response |
HDAC1 | |
RuvBL1 | Tip60 complex assembly |
RuvBL2 | |
ING3 | Apoptosis |
APP | |
YL-1 | Chromatin remodeling |
UHRF1 | |
P400 | |
HDAC9 | |
MORF4L2 | |
JAZF1 | |
DMAP | DNA replication |
Mdm2 | Regulation of Tip60 |
Cul3 | |
ATF3 | |
UHRF2 |
3. Tip60-Modulated Transcriptional Regulation
4. Tip60-Modulated Epigenetic Regulation
5. Tip60-Modulated Immunoregulation
6. Tip60-Regulated Genome Stability
7. Tip60 Regulation
8. Tip60 Tumor Profiling
9. Tip60 Inhibitors
10. Tip60 as a Biomarker
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manzari, M.T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D.A. Targeted Drug Delivery Strategies for Precision Medicines. Nat. Rev. Mater. 2021, 6, 351–370. [Google Scholar] [CrossRef] [PubMed]
- Dugger, S.A.; Platt, A.; Goldstein, D.B. Drug Development in the Era of Precision Medicine. Nat. Rev. Drug Discov. 2018, 17, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Garcia-Moreno, J.; Brown, J.; Bourke, E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018, 23, 1166. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.-H.; Snyder, M. Omics Profiling in Precision Oncology. Mol. Cell. Proteom. 2016, 15, 2525–2536. [Google Scholar] [CrossRef] [PubMed]
- Letai, A. Functional Precision Cancer Medicine—Moving beyond Pure Genomics. Nat. Med. 2017, 23, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Mateo, J.; Steuten, L.; Aftimos, P.; André, F.; Davies, M.; Garralda, E.; Geissler, J.; Husereau, D.; Martinez-Lopez, I.; Normanno, N.; et al. Delivering Precision Oncology to Patients with Cancer. Nat. Med. 2022, 28, 658–665. [Google Scholar] [CrossRef] [PubMed]
- López-Bañuelos, L.; Vega, L. Inhibition of Acetylation, Is It Enough to Fight Cancer? Crit. Rev. Oncol. Hematol. 2022, 176, 103752. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.A.L.; Bourke, E.; Eriksson, L.A.; Kerin, M.J. Targeting Cancer Using KAT Inhibitors to Mimic Lethal Knockouts. Biochem. Soc. Trans. 2016, 44, 979–986. [Google Scholar] [CrossRef]
- Farria, A.; Li, W.; Dent, S.Y.R. KATs in Cancer: Functions and Therapies. Oncogene 2015, 34, 4901–4913. [Google Scholar] [CrossRef]
- Sheikh, B.N.; Akhtar, A. The Many Lives of KATs—Detectors, Integrators and Modulators of the Cellular Environment. Nat. Rev. Genet. 2019, 20, 7–23. [Google Scholar] [CrossRef]
- Lee, K.K.; Workman, J.L. Histone Acetyltransferase Complexes: One Size Doesn’t Fit All. Nat. Rev. Mol. Cell. Biol. 2007, 8, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Narita, T.; Weinert, B.T.; Choudhary, C. Functions and Mechanisms of Non-Histone Protein Acetylation. Nat. Rev. Mol. Cell. Biol. 2019, 20, 156–174. [Google Scholar] [CrossRef] [PubMed]
- Sapountzi, V.; Logan, I.R.; Robson, C.N. Cellular Functions of TIP60. Int. J. Biochem. Cell Biol. 2006, 38, 1496–1509. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Jiang, X.; Price, B.D. Tip60: Connecting Chromatin to DNA Damage Signaling. Cell Cycle 2010, 9, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.A.L.; Hancock, W. Lysine acetylation inhibitors (KATi) as novel therapeutics. In Handbook of Cancer and Immunology; Rezaei, N., Ed.; Springer: Cham, Switzerland, 2024; ISBN 978-3-030-80962-1. [Google Scholar] [CrossRef]
- Li, Z.; Rasmussen, L.J. TIP60 in Aging and Neurodegeneration. Ageing Res. Rev. 2020, 64, 101195. [Google Scholar] [CrossRef] [PubMed]
- Voss, A.K.; Thomas, T. Histone Lysine and Genomic Targets of Histone Acetyltransferases in Mammals. BioEssays 2018, 40, e1800078. [Google Scholar] [CrossRef]
- Lashgari, A.; Kougnassoukou Tchara, P.E.; Lambert, J.P.; Côté, J. New insights into the DNA repair pathway choice with NuA4/TIP60. DNA Repair 2022, 113, 103315. [Google Scholar] [CrossRef]
- Acharya, D.; Hainer, S.J.; Yoon, Y.; Wang, F.; Bach, I.; Rivera-Pérez, J.A.; Fazzio, T.G. KAT-Independent Gene Regulation by Tip60 Promotes ESC Self-Renewal but Not Pluripotency. Cell Rep. 2017, 19, 671–679. [Google Scholar] [CrossRef]
- Tominaga, K.; Sakashita, E.; Kasashima, K.; Kuroiwa, K.; Nagao, Y.; Iwamori, N.; Endo, H. Tip60/KAT5 Histone Acetyltransferase Is Required for Maintenance and Neurogenesis of Embryonic Neural Stem Cells. Int. J. Mol. Sci. 2023, 24, 2113. [Google Scholar] [CrossRef]
- Fazzio, T.G.; Huff, J.T.; Panning, B. An RNAi Screen of Chromatin Proteins Identifies Tip60-P400 as a Regulator of Embryonic Stem Cell Identity. Cell 2008, 134, 162–174. [Google Scholar] [CrossRef]
- Su, Q.; Jing, J.; Li, W.; Ma, J.; Zhang, X.; Wang, Z.; Zhou, Z.; Dai, L.; Shao, L. Impaired Tip60-Mediated Foxp3 Acetylation Attenuates Regulatory T Cell Development in Rheumatoid Arthritis. J. Autoimmun. 2019, 100, 27–39. [Google Scholar] [CrossRef]
- Fueyo-González, F.; Vilanova, G.; Ningoo, M.; Marjanovic, N.; González-Vera, J.A.; Orte, Á.; Fribourg, M. Small-Molecule TIP60 Inhibitors Enhance Regulatory T Cell Induction through TIP60-P300 Acetylation Crosstalk. iScience 2023, 26, 108491. [Google Scholar] [CrossRef]
- Ghobashi, A.H.; Kamel, M.A. Tip60: Updates. J. Appl. Genet. 2018, 59, 161–168. [Google Scholar] [CrossRef]
- Tan, K.N.; Avery, V.M.; Carrasco-Pozo, C. Metabolic Roles of Androgen Receptor and Tip60 in Androgen-Dependent Prostate Cancer. Int. J. Mol. Sci. 2020, 21, 6622. [Google Scholar] [CrossRef]
- Xiao, H.; Chung, J.; Kao, H.-Y.; Yang, Y.-C. Tip60 Is a Co-Repressor for STAT3. J. Biol. Chem. 2003, 278, 11197–11204. [Google Scholar] [CrossRef]
- Brady, M.E.; Ozanne, D.M.; Gaughan, L.; Waite, I.; Cook, S.; Neal, D.E.; Robson, C.N. Tip60 Is a Nuclear Hormone Receptor Coactivator. J. Biol. Chem. 1999, 274, 17599–17604. [Google Scholar] [CrossRef]
- Kim, J.-W.; Song, P.I.; Jeong, M.-H.; An, J.-H.; Lee, S.-Y.; Jang, S.-M.; Song, K.-H.; Armstrong, C.A.; Choi, K.-H. TIP60 Represses Transcriptional Activity of P73β via an MDM2-Bridged Ternary Complex. J. Biol. Chem. 2008, 283, 20077–20086. [Google Scholar] [CrossRef]
- Li, H.; Cuenin, C.; Murr, R.; Wang, Z.-Q.; Herceg, Z. HAT Cofactor Trrap Regulates the Mitotic Checkpoint by Modulation of Mad1 and Mad2 Expression. EMBO J. 2004, 23, 4824–4834. [Google Scholar] [CrossRef]
- Hlubek, F.; Lohberg, C.; Meiler, J.; Jung, A.; Kirchner, T.; Brabletz, T. Tip60 Is a Cell-Type-Specific Transcriptional Regulator. J. Biochem. 2001, 129, 635–641. [Google Scholar] [CrossRef]
- Wang, P.; Bao, H.; Zhang, X.; Liu, F.; Wang, W. Regulation of Tip60-dependent P53 Acetylation in Cell Fate Decision. FEBS Lett. 2019, 593, 13–22. [Google Scholar] [CrossRef]
- Liu, N.; Wang, J.; Wang, J.; Wang, R.; Liu, Z.; Yu, Y.; Lu, H. ING5 Is a Tip60 Cofactor That Acetylates P53 in Response to DNA Damage. Cancer Res. 2013, 73, 3749–3760. [Google Scholar] [CrossRef]
- Avvakumov, N.; Côté, J. The MYST Family of Histone Acetyltransferases and Their Intimate Links to Cancer. Oncogene 2007, 26, 5395–5407. [Google Scholar] [CrossRef]
- Mir, U.S.; Bhat, A.; Mushtaq, A.; Pandita, S.; Altaf, M.; Pandita, T.K. Role of Histone Acetyltransferases MOF and Tip60 in Genome Stability. DNA Repair 2021, 107, 103205. [Google Scholar] [CrossRef]
- Squatrito, M.; Gorrini, C.; Amati, B. Tip60 in DNA Damage Response and Growth Control: Many Tricks in One HAT. Trends Cell Biol. 2006, 16, 433–442. [Google Scholar] [CrossRef]
- Won Jeong, K.; Chodankar, R.; Purcell, D.J.; Bittencourt, D.; Stallcup, M.R. Gene-Specific Patterns of Coregulator Requirements by Estrogen Receptor-in Breast Cancer Cells. Mol. Endocrinol. 2012, 26, 955–966. [Google Scholar] [CrossRef]
- Yamagata, K.; Shino, M.; Aikawa, Y.; Fujita, S.; Kitabayashi, I. Tip60 Activates Hoxa9 and Meis1 Expression through Acetylation of H2A.Z, Promoting MLL-AF10 and MLL-ENL Acute Myeloid Leukemia. Leukemia 2021, 35, 2840–2853. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, B.; Cai, L.; Choi, H.J.; Ohgi, K.A.; Tran, C.; Chen, C.; Chung, C.H.; Huber, O.; Rose, D.W.; et al. Transcriptional Regulation of a Metastasis Suppressor Gene by Tip60 and B-Catenin Complexes. Nature 2005, 434, 921–926. [Google Scholar] [CrossRef]
- Legube, G.; Linares, L.K.; Tyteca, S.; Cile Caron, C.; Scheffner, M.; Chevillard-Briet, M.; Trouche, D. Role of the Histone Acetyl Transferase Tip60 in the P53 Pathway. J. Biol. Chem. 2004, 279, 44825–44833. [Google Scholar] [CrossRef]
- Tyteca, S.; Vandromme, M.; Legube, G.; Chevillard-Briet, M.; Trouche, D. Tip60 and P400 Are Both Required for UV-Induced Apoptosis but Play Antagonistic Roles in Cell Cycle Progression. EMBO J. 2006, 25, 1680–1689. [Google Scholar] [CrossRef]
- Bassi, C.; Li, Y.-T.; Khu, K.; Mateo, F.; Baniasadi, P.S.; Elia, A.; Mason, J.; Stambolic, V.; Pujana, M.A.; Mak, T.W.; et al. The Acetyltransferase Tip60 Contributes to Mammary Tumorigenesis by Modulating DNA Repair. Cell Death Differ. 2016, 23, 1198–1208. [Google Scholar] [CrossRef]
- Fazzio, T.G.; Huff, J.T.; Panning, B. Chromatin Regulation Tip(60)s the Balance in Embryonic Stem Cell Self-Renewal. Cell Cycle 2008, 7, 3302–3306. [Google Scholar] [CrossRef]
- Xu, S.; Wilf, R.; Menon, T.; Panikker, P.; Sarthi, J.; Elefant, F. Epigenetic Control of Learning and Memory in Drosophila by Tip60 HAT Action. Genetics 2014, 198, 1571–1586. [Google Scholar] [CrossRef]
- Nagai, Y.; Lam, L.; Greene, M.I.; Zhang, H. FOXP3 and Its Cofactors as Targets of Immunotherapies. Engineering 2019, 5, 115–121. [Google Scholar] [CrossRef]
- Xiao, Y.; Nagai, Y.; Deng, G.; Ohtani, T.; Zhu, Z.; Zhou, Z.; Zhang, H.; Ji, M.Q.; Lough, J.W.; Samanta, A.; et al. Dynamic Interactions between TIP60 and P300 Regulate FOXP3 Function through a Structural Switch Defined by a Single Lysine on TIP60. Cell Rep. 2014, 7, 1471–1480. [Google Scholar] [CrossRef]
- Goel, P.N.; Grover, P.; Greene, M.I. PRMT5 and Tip60 Modify FOXP3 Function in Tumor Immunity. Crit. Rev. Immunol. 2020, 40, 283–295. [Google Scholar] [CrossRef]
- Grover, P.; Goel, P.N.; Greene, M.I. Regulatory T Cells: Regulation of Identity and Function. Front Immunol. 2021, 12, 750542. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bin Dhuban, K.; D’Hennezel, E.; Nagai, Y.; Xiao, Y.; Shao, S.; Istomine, R.; Alvarez, F.; Ben-Shoshan, M.; Ochs, H.; Mazer, B.; et al. Suppression by Human FOXP3+ Regulatory T Cells Requires FOXP3-TIP60 Interactions. Sci. Immunol. 2017, 2, eaai9297. [Google Scholar] [CrossRef]
- Wang, L.; Kumar, S.; Dahiya, S.; Wang, F.; Wu, J.; Newick, K.; Han, R.; Samanta, A.; Beier, U.H.; Akimova, T.; et al. Ubiquitin-Specific Protease-7 Inhibition Impairs Tip60-Dependent Foxp3 + T-Regulatory Cell Function and Promotes Antitumor Immunity. EBioMedicine 2016, 13, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Barbi, J.; Pan, F. The Regulation of Immune Tolerance by FOXP3. Nat. Rev. Immunol. 2017, 17, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Song, X.; Li, B.; Greene, M.I. FOXP3 and Its Partners: Structural and Biochemical Insights into the Regulation of FOXP3 Activity. Immunol. Res. 2008, 42, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Song, X.; Greene, M.I. FoxP3 in Treg Cell Biology: A Molecular and Structural Perspective. Clin. Exp. Immunol. 2020, 199, 255–262. [Google Scholar] [CrossRef]
- Grover, P.; Goel, P.N.; Piccirillo, C.A.; Greene, M.I. FOXP3 and Tip60 Structural Interactions Relevant to IPEX Development Lead to Potential Therapeutics to Increase FOXP3 Dependent Suppressor T Cell Functions. Front. Pediatr. 2021, 9, 607292. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, X.; Chen, S.; Fernandes, N.; Price, B.D. A Role for the Tip60 Histone Acetyltransferase in the Acetylation and Activation of ATM. Proc. Natl. Acad. Sci. USA 2005, 102, 13182–13187. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, G.; Li, Y.; Lei, D.; Xiang, J.; Ouyang, L.; Wang, Y.; Yang, J. Recent Progress in DNA Methyltransferase Inhibitors as Anticancer Agents. Front. Pharmacol. 2022, 13, 1072651. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Luo, J.; Zhang, W.; Gu, W. Tip60-Dependent Acetylation of P53 Modulates the Decision between Cell-Cycle Arrest and Apoptosis. Mol. Cell 2006, 24, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Searle, N.E.; Torres-Machorro, A.L.; Pillus, L. Chromatin Regulation by the NuA4 Acetyltransferase Complex Is Mediated by Essential Interactions Between Enhancer of Polycomb (Epl1) and Esa1. Genetics 2017, 205, 1125–1137. [Google Scholar] [CrossRef] [PubMed]
- Ikura, T.; Tashiro, S.; Kakino, A.; Shima, H.; Jacob, N.; Amunugama, R.; Yoder, K.; Izumi, S.; Kuraoka, I.; Tanaka, K.; et al. DNA Damage-Dependent Acetylation and Ubiquitination of H2AX Enhances Chromatin Dynamics. Mol. Cell. Biol. 2007, 27, 7028–7040. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.-L.; Xiang, J.-F.; Liu, S.-C.; Guo, T.; Yan, G.-F.; Feng, Y.; Kong, N.; Li, H.-D.; Huang, Y.; Lin, H.; et al. H2AX Facilitates Classical Non-Homologous End Joining at the Expense of Limited Nucleotide Loss at Repair Junctions. Nucleic Acids Res. 2017, 45, 10614–10633. [Google Scholar] [CrossRef]
- Chailleux, C.; Tyteca, S.; Papin, C.; Boudsocq, F.; Puget, N.; Courilleau, C.; Grigoriev, M.; Canitrot, Y.; Trouche, D. Physical Interaction between the Histone Acetyl Transferase Tip60 and the DNA Double-Strand Breaks Sensor MRN Complex. Biochem. J. 2010, 426, 365–371. [Google Scholar] [CrossRef]
- Mo, F.; Zhuang, X.; Liu, X.; Yao, P.Y.; Qin, B.; Su, Z.; Zang, J.; Wang, Z.; Zhang, J.; Dou, Z.; et al. Acetylation of Aurora B by TIP60 Ensures Accurate Chromosomal Segregation. Nat. Chem. Biol. 2016, 12, 226–232. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, Y.; Roy, K.; Price, B.D. DNA Damage-Induced Acetylation of Lysine 3016 of ATM Activates ATM Kinase Activity. Mol. Cell. Biol. 2007, 27, 8502–8509. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, K.; Fradet-Turcotte, A.; Avvakumov, N.; Lambert, J.-P.; Roques, C.; Pandita, R.K.; Paquet, E.; Herst, P.; Gingras, A.-C.; Pandita, T.K.; et al. The TIP60 Complex Regulates Bivalent Chromatin Recognition by 53BP1 through Direct H4K20me Binding and H2AK15 Acetylation. Mol. Cell 2016, 62, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Jia, K.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; He, Y.; Zhou, C. Alterations of DNA Damage Repair in Cancer: From Mechanisms to Applications. Ann. Transl. Med. 2020, 8, 1685. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, J.L.; Lan, L.; Zou, L. DNA Repair Defects in Cancer and Therapeutic Opportunities. Genes Dev. 2022, 36, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lindahl, T. Maintenance of Genome Stability. Genom. Proteom. Bioinform. 2016, 14, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-K.; Choi, Y.-L.; Kwon, M.; Park, P.J. Mechanisms and Consequences of Cancer Genome Instability: Lessons from Genome Sequencing Studies. Annu. Rev. Pathol. Mech. Dis. 2016, 11, 283–312. [Google Scholar] [CrossRef] [PubMed]
- McGuire, A.; Casey, M.C.; Shalaby, A.; Kalinina, O.; Curran, C.; Webber, M.; Callagy, G.; Holian, E.; Bourke, E.; Kerin, M.J.; et al. Quantifying Tip60 (Kat5) Stratifies Breast Cancer. Sci. Rep. 2019, 9, 3819. [Google Scholar] [CrossRef] [PubMed]
- Ran, Q.; Pereira-Smith, O.M. Identification of an Alternatively Spliced Form of the Tat Interactive Protein (Tip60), Tip60(β). Gene 2000, 258, 141–146. [Google Scholar] [CrossRef]
- Gorrini, C.; Squatrito, M.; Luise, C.; Syed, N.; Perna, D.; Wark, L.; Martinato, F.; Sardella, D.; Verrecchia, A.; Bennett, S.; et al. Tip60 Is a Haplo-Insufficient Tumour Suppressor Required for an Oncogene-Induced DNA Damage Response. Nature 2007, 448, 1063–1067. [Google Scholar] [CrossRef]
- Kwan, S.; Sheel, A.; Song, C.; Zhang, X.; Jiang, T.; Dang, H.; Cao, Y.; Ozata, D.M.; Mou, H.; Yin, H.; et al. Depletion of TRRAP Induces P53-Independent Senescence in Liver Cancer by Down-Regulating Mitotic Genes. Hepatology 2020, 71, 275–290. [Google Scholar] [CrossRef]
- Kim, J.-W.; Jang, S.-M.; Kim, C.-H.; An, J.-H.; Kang, E.-J.; Choi, K.-H. New Molecular Bridge between RelA/P65 and NF-ΚB Target Genes via Histone Acetyltransferase TIP60 Cofactor. J. Biol. Chem. 2012, 287, 7780–7791. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Wang, Y.; Zhang, T.; Bai, L.; Wang, Y.; Duan, C. E3 Ligase UHRF2 Stabilizes the Acetyltransferase TIP60 and Regulates H3K9ac and H3K14ac via RING Finger Domain. Protein Cell 2017, 8, 202–218. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Gou, D.; Xiang, J.; Pan, X.; Gao, Q.; Zhou, P.; Liu, Y.; Hu, J.; Wang, K.; Tang, N. O-GlcNAc Modified-TIP60/KAT5 Is Required for PCK1 Deficiency-Induced HCC Metastasis. Oncogene 2021, 40, 6707–6719. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Sakai, M.; Shimokawa, T.; Yamada, Y.; Nakamura, Y.; Furukawa, Y. C20orf20 (MRG-Binding Protein) as a Potential Therapeutic Target for Colorectal Cancer. Br. J. Cancer 2010, 102, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Nakagawa, S.; Saku, A.; Isobe, Y.; Yamaguchi, R.; Sheridan, P.; Takane, K.; Ikenoue, T.; Zhu, C.; Miura, M.; et al. Bromodomain Protein BRD8 Regulates Cell Cycle Progression in Colorectal Cancer Cells through a TIP60-Independent Regulation of the Pre-RC Complex. iScience 2023, 26, 106563. [Google Scholar] [CrossRef] [PubMed]
- Mattera, L.; Escaffit, F.; Pillaire, M.-J.; Selves, J.; Tyteca, S.; Hoffmann, J.-S.; Gourraud, P.-A.; Chevillard-Briet, M.; Cazaux, C.; Trouche, D. The P400/Tip60 Ratio Is Critical for Colorectal Cancer Cell Proliferation through DNA Damage Response Pathways. Oncogene 2009, 28, 1506–1517. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, J.; Zhang, S.; Liu, X.; Long, X.; Lan, J.; Zhou, M.; Zheng, L.; Zhou, J. LINC00839 Promotes Colorectal Cancer progression by Recruiting RUVBL1/Tip60 Complexes to Activate. EMBO Rep. 2022, 23, e54128. [Google Scholar] [CrossRef]
- Hong, Y.J.; Park, J.; Hahm, J.Y.; Kim, S.H.; Lee, D.H.; Park, K.-S.; Seo, S.-B. Regulation of UHRF1 Acetylation by TIP60 Is Important for Colon Cancer Cell Proliferation. Genes Genom. 2022, 44, 1353–1361. [Google Scholar] [CrossRef]
- Cui, H.; Guo, M.; Xu, D.; Ding, Z.-C.; Zhou, G.; Ding, H.-F.; Zhang, J.; Tang, Y.; Yan, C. The Stress-Responsive Gene ATF3 Regulates the Histone Acetyltransferase Tip60. Nat. Commun. 2015, 6, 6752. [Google Scholar] [CrossRef]
- Schleicher, E.M.; Dhoonmoon, A.; Jackson, L.M.; Khatib, J.B.; Nicolae, C.M.; Moldovan, G.-L. The TIP60-ATM Axis Regulates Replication Fork Stability in BRCA-Deficient Cells. Oncogenesis 2022, 11, 33. [Google Scholar] [CrossRef]
- Fujimoto, M.; Takii, R.; Matsumoto, M.; Okada, M.; Nakayama, K.I.; Nakato, R.; Fujiki, K.; Shirahige, K.; Nakai, A. HSF1 Phosphorylation Establishes an Active Chromatin State via the TRRAP–TIP60 Complex and Promotes Tumorigenesis. Nat. Commun. 2022, 13, 4355. [Google Scholar] [CrossRef] [PubMed]
- Obri, A.; Ouararhni, K.; Papin, C.; Diebold, M.-L.; Padmanabhan, K.; Marek, M.; Stoll, I.; Roy, L.; Reilly, P.T.; Mak, T.W.; et al. ANP32E Is a Histone Chaperone That Removes H2A.Z from Chromatin. Nature 2014, 505, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Masuda, Y.; Takahashi, H.; Sato, S.; Tomomori-Sato, C.; Saraf, A.; Washburn, M.P.; Florens, L.; Conaway, R.C.; Conaway, J.W.; Hatakeyama, S. TRIM29 Regulates the Assembly of DNA Repair Proteins into Damaged Chromatin. Nat. Commun. 2015, 6, 7299. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.-S.; Guan, H.; Yan, S.; Hu, S.; Song, M.; Guo, Z.-P.; Xie, D.-F.; Liu, Y.; Liu, X.; Zhang, S.; et al. TIP60 K430 SUMOylation Attenuates Its Interaction with DNA-PKcs in S-Phase Cells: Facilitating Homologous Recombination and Emerging Target for Cancer Therapy. Sci. Adv. 2020, 6, eaba7822. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Jin, J.; Tomomori-Sato, C.; Sato, S.; Sorokina, I.; Parmely, T.J.; Conaway, R.C.; Conaway, J.W. Identification of New Subunits of the Multiprotein Mammalian TRRAP/TIP60-Containing Histone Acetyltransferase Complex. J. Biol. Chem. 2003, 278, 42733–42736. [Google Scholar] [CrossRef] [PubMed]
- Procida, T.; Friedrich, T.; Jack, A.P.M.; Peritore, M.; Bönisch, C.; Eberl, H.C.; Daus, N.; Kletenkov, K.; Nist, A.; Stiewe, T.; et al. JAZF1, A Novel P400/TIP60/NuA4 Complex Member, Regulates H2A.Z Acetylation at Regulatory Regions. Int. J. Mol. Sci. 2021, 22, 678. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, W.; Bronner, C.; Zaayter, L.; Ahmad, T.; Richert, L.; Alhosin, M.; Ibrahim, A.; Hamiche, A.; Mely, Y.; Mousli, M. Interaction of the Epigenetic Integrator UHRF1 with the MYST Domain of TIP60 inside the Cell. J. Exp. Clin. Cancer Res. 2017, 36, 188. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Ashraf, W.; Ibrahim, A.; Zaayter, L.; Muller, C.; Hamiche, A.; Mély, Y.; Bronner, C.; Mousli, M. TIP60 Governs the Auto-ubiquitination of UHRF1 through USP7 Dissociation from the UHRF1/USP7 Complex. Int. J. Oncol. 2021, 59, 89. [Google Scholar] [CrossRef]
- Idrissou, M.; Boisnier, T.; Sanchez, A.; Khoufaf, F.Z.H.; Penault-Llorca, F.; Bignon, Y.-J.; Bernard-Gallon, D. TIP60/P400/H4K12ac Plays a Role as a Heterochromatin Back-up Skeleton in Breast Cancer. Cancer Genom. Proteom. 2020, 17, 687–694. [Google Scholar] [CrossRef]
- Peng, L.; Ling, H.; Yuan, Z.; Fang, B.; Bloom, G.; Fukasawa, K.; Koomen, J.; Chen, J.; Lane, W.S.; Seto, E. SIRT1 Negatively Regulates the Activities, Functions, and Protein Levels of HMOF and TIP60. Mol. Cell. Biol. 2012, 32, 2823–2836. [Google Scholar] [CrossRef]
- Qin, B.; Yu, J.; Nowsheen, S.; Wang, M.; Tu, X.; Liu, T.; Li, H.; Wang, L.; Lou, Z. UFL1 Promotes Histone H4 Ufmylation and ATM Activation. Nat. Commun. 2019, 10, 1242. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; He, Z.; Zhang, A.; Yan, Z.; Zhang, X.; Hu, S.; Wang, N.; He, H. Tip60 and P300 Function Antagonistically in the Epigenetic Regulation of HPV18 E6/E7 Genes in Cervical Cancer HeLa Cells. Genes Genom. 2020, 42, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Akbar, H.; Cao, J.; Wang, D.; Yuan, X.; Zhang, M.; Muthusamy, S.; Song, X.; Liu, X.; Aikhionbare, F.; Yao, X.; et al. Acetylation of Nup62 by TIP60 Ensures Accurate Chromosome Segregation in Mitosis. J. Mol. Cell Biol. 2022, 14, 56. [Google Scholar] [CrossRef]
- Cheng, Z.; Ke, Y.; Ding, X.; Wang, F.; Wang, H.; Ahmed, K.; Liu, Z.; Xu, Y.; Aikhionbare, F.; Yan, H.; et al. Functional Characterization of TIP60 Sumoylation in UV-Irradiated DNA Damage Response. Oncogene 2008, 27, 931–941. [Google Scholar] [CrossRef]
- Sliva, D.; Zhu, Y.X.; Tsai, S.; Kamine, J.; Yang, Y.-C. Tip60 Interacts with Human Interleukin-9 Receptor α-Chain. Biochem. Biophys. Res. Commun. 1999, 263, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-J.; Loewenstein, P.M.; Green, M. Identification of a Panel of MYC and Tip60 Co-Regulated Genes Functioning Primarily in Cell Cycle and DNA Replication. Genes Cancer 2018, 9, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Wen, M.; Gao, P.; Feng, M.; Wei, G. RUVBL1 Ubiquitination by DTL Promotes RUVBL1/2-β-Catenin-Mediated Transcriptional Regulation of NHEJ Pathway and Enhances Radiation Resistance in Breast Cancer. Cell Death Dis. 2024, 15, 259. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, J.; Lungchukiet, P.; Quarni, W.; Yang, S.; Zhang, X.; Bai, W. Fe65 Suppresses Breast Cancer Cell Migration and Invasion through Tip60 Mediated Cortactin Acetylation. Sci. Rep. 2015, 5, 11529. [Google Scholar] [CrossRef]
- Chen, W.; Salto-Tellez, M.; Palanisamy, N.; Ganesan, K.; Hou, Q.; Tan, L.K.; Sii, L.H.; Ito, K.; Tan, B.; Wu, J.; et al. Targets of Genome Copy Number Reduction in Primary Breast Cancers Identified by Integrative Genomics. Genes Chromosomes Cancer 2007, 46, 288–301. [Google Scholar] [CrossRef]
- Coffey, K.; Blackburn, T.J.; Cook, S.; Golding, B.T.; Griffin, R.J.; Hardcastle, I.R.; Hewitt, L.; Huberman, K.; McNeill, H.V.; Newell, D.R.; et al. Characterisation of a Tip60 Specific Inhibitor, NU9056, in Prostate Cancer. PLoS ONE 2012, 7, e45539. [Google Scholar] [CrossRef]
- Miyajima, N.; Maruyama, S.; Bohgaki, M.; Kano, S.; Shigemura, M.; Shinohara, N.; Nonomura, K.; Hatakeyama, S. TRIM68 Regulates Ligand-Dependent Transcription of Androgen Receptor in Prostate Cancer Cells. Cancer Res. 2008, 68, 3486–3494. [Google Scholar] [CrossRef]
- Ito, S.; Kayukawa, N.; Ueda, T.; Taniguchi, H.; Morioka, Y.; Hongo, F.; Ukimura, O. MRGBP Promotes AR-Mediated Transactivation of KLK3 and TMPRSS2 via Acetylation of Histone H2A.Z in Prostate Cancer Cells. Biochim. Biophys. Acta Gene Regul. Mech. 2018, 1861, 794–802. [Google Scholar] [CrossRef]
- Gaughan, L.; Brady, M.E.; Cook, S.; Neal, D.E.; Robson, C.N. Tip60 Is a Co-Activator Specific for Class I Nuclear Hormone Receptors. J. Biol. Chem. 2001, 276, 46841–46848. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, D.L.; Martinka, M.; Li, G. Prognostic Significance of Nuclear ING3 Expression in Human Cutaneous Melanoma. Clin. Cancer Res. 2007, 13, 4111–4116. [Google Scholar] [CrossRef]
- Lau, E.; Ronai, Z.A. ATF2—At the Crossroad of Nuclear and Cytosolic Functions. J. Cell Sci. 2012, 125, 2815–2824. [Google Scholar] [CrossRef]
- Dai, C.; Shi, D.; Gu, W. Negative Regulation of the Acetyltransferase TIP60-P53 Interplay by UHRF1 (Ubiquitin-like with PHD and RING Finger Domains 1). J. Biol. Chem. 2013, 288, 19581–19592. [Google Scholar] [CrossRef]
- Niu, X.; Wu, T.; Yin, Q.; Gu, X.; Li, G.; Zhou, C.; Ma, M.; Su, L.; Tang, S.; Tian, Y.; et al. Combination of Paclitaxel and PXR Antagonist SPA70 Reverses Paclitaxel-Resistant Non-Small Cell Lung Cancer. Cells 2022, 11, 3094. [Google Scholar] [CrossRef]
- Yi, J.; Huang, X.; Yang, Y.; Zhu, W.-G.; Gu, W.; Luo, J. Regulation of Histone Acetyltransferase TIP60 Function by Histone Deacetylase 3. J. Biol. Chem. 2014, 289, 33878–33886. [Google Scholar] [CrossRef]
- Yuan, X.-S.; Wang, Z.-T.; Hu, Y.-J.; Bao, F.-C.; Yuan, P.; Zhang, C.; Cao, J.-L.; Lv, W.; Hu, J. Downregulation of RUVBL1 Inhibits Proliferation of Lung Adenocarcinoma Cells by G1/S Phase Cell Cycle Arrest via Multiple Mechanisms. Tumor Biol. 2016, 37, 16015–16027. [Google Scholar] [CrossRef]
- Dohmesen, C.; Koeppel, M.; Dobbelstein, M. Specific Inhibition of Mdm2-Mediated Neddylation by Tip60. Cell Cycle 2008, 7, 222–231. [Google Scholar] [CrossRef]
- Pikor, L.A.; Lockwood, W.W.; Thu, K.L.; Vucic, E.A.; Chari, R.; Gazdar, A.F.; Lam, S.; Lam, W.L. YEATS4 Is a Novel Oncogene Amplified in Non–Small Cell Lung Cancer That Regulates the P53 Pathway. Cancer Res. 2013, 73, 7301–7312. [Google Scholar] [CrossRef]
- Eymin, B.; Claverie, P.; Salon, C.; Leduc, C.; Col, E.; Brambilla, E.; Khochbin, S.; Gazzeri, S. P14 ARF Activates a Tip60-Dependent and P53-Independent ATM/ATR/CHK Pathway in Response to Genotoxic Stress. Mol. Cell. Biol. 2006, 26, 4339–4350. [Google Scholar] [CrossRef]
- Rivero, S.; Rodríguez-Real, G.; Marín, I.; Huertas, P. MRGBP, a Member of the NuA4 Complex, Inhibits DNA Double-strand Break Repair. FEBS Open Bio. 2021, 11, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shan, J.; Liu, J.; Feng, Y.; Ke, Y.; Qi, W.; Liu, W.; Zeng, X. RNF8 Promotes Efficient DSB Repair by Inhibiting the Pro-apoptotic Activity of P53 through Regulating the Function of Tip60. Cell Prolif. 2020, 53, e12780. [Google Scholar] [CrossRef]
- Hattori, T.; Coustry, F.; Stephens, S.; Eberspaecher, H.; Takigawa, M.; Yasuda, H.; de Crombrugghe, B. Transcriptional Regulation of Chondrogenesis by Coactivator Tip60 via Chromatin Association with Sox9 and Sox5. Nucleic Acids Res. 2008, 36, 3011–3024. [Google Scholar] [CrossRef]
- Li, T.Y.; Song, L.; Sun, Y.; Li, J.; Yi, C.; Lam, S.M.; Xu, D.; Zhou, L.; Li, X.; Yang, Y.; et al. Tip60-mediated lipin 1 acetylation and ER translocation determine triacylglycerol synthesis rate. Nat Commun. 2018, 9, 1916. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.; Shibata, E.; Dutta, A. Deubiquitination of Tip60 by USP7 Determines the Activity of the P53-Dependent Apoptotic Pathway. Mol. Cell. Biol. 2013, 33, 3309–3320. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Jin, S.; Gewirtz, A.M. The Histone Acetyltransferase TIP60 Interacts with C-Myb and Inactivates Its Transcriptional Activity in Human Leukemia. J. Biol. Chem. 2012, 287, 925–934. [Google Scholar] [CrossRef]
- Bararia, D.; Trivedi, A.K.; Zada, A.A.P.; Greif, P.A.; Mulaw, M.A.; Christopeit, M.; Hiddemann, W.; Bohlander, S.K.; Behre, G. Proteomic Identification of the MYST Domain Histone Acetyltransferase TIP60 (HTATIP) as a Co-Activator of the Myeloid Transcription Factor C/EBPα. Leukemia 2008, 22, 800–807. [Google Scholar] [CrossRef]
- Huang, X.; Spencer, G.J.; Lynch, J.T.; Ciceri, F.; Somerville, T.D.D.; Somervaille, T.C.P. Enhancers of Polycomb EPC1 and EPC2 Sustain the Oncogenic Potential of MLL Leukemia Stem Cells. Leukemia 2014, 28, 1081–1091. [Google Scholar] [CrossRef]
- Bhoumik, A.; Singha, N.; O’Connell, M.J.; Ronai, Z.A. Regulation of TIP60 by ATF2 Modulates ATM Activation. J. Biol. Chem. 2008, 283, 17605–17614. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, I.; Micci, F.; Thorsen, J.; Gorunova, L.; Eibak, A.M.; Bjerkehagen, B.; Davidson, B.; Heim, S. Novel Fusion of MYST/Esa1-Associated Factor 6 and PHF1 in Endometrial Stromal Sarcoma. PLoS ONE 2012, 7, e39354. [Google Scholar] [CrossRef] [PubMed]
- Panchenko, M.V.; Zhou, M.I.; Cohen, H.T. Von Hippel-Lindau Partner Jade-1 Is a Transcriptional Co-Activator Associated with Histone Acetyltransferase Activity. J. Biol. Chem. 2004, 279, 56032–56041. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, A.; Whelan, C.M.; Berezovska, O.; Hyman, B.T. The γ Secretase-Generated Carboxyl-Terminal Domain of the Amyloid Precursor Protein Induces Apoptosis via Tip60 in H4 Cells. J. Biol. Chem. 2002, 277, 28530–28536. [Google Scholar] [CrossRef] [PubMed]
- Ai, W.; Zheng, H.; Yang, X.; Liu, Y.; Wang, T.C. Tip60 Functions as a Potential Corepressor of KLF4 in Regulation of HDC Promoter Activity. Nucleic Acids Res. 2007, 35, 6137–6149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wu, Q.; Liu, W.; Wang, Y.; Zhao, L.; Chen, J.; Liu, H.; Liu, S.; Li, J.; Zhang, W.; et al. FAM135B Sustains the Reservoir of Tip60-ATM Assembly to Promote DNA Damage Response. Clin. Transl. Med. 2022, 12, e945. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Jiang, Y.; Peng, P.; Liu, G.; Qi, S.; Liu, K.; Mei, Q.; Li, J. Quantitative Proteomics Reveals the Role of Lysine 2-Hydroxyisobutyrylation Pathway Mediated by Tip60. Oxidative Med. Cell. Longev. 2022, 2022, 4571319. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Han, Z.; Halabelian, L.; Yang, X.; Ding, J.; Zhang, N.; Ngo, L.; Song, J.; Zeng, H.; He, M.; et al. Identification of Lysine Isobutyrylation as a New Histone Modification Mark. Nucleic Acids Res 2020, 49, 177–189. [Google Scholar] [CrossRef]
- Dutta, A.; Abmayr, S.M.; Workman, J.L. Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function. Mol. Cell 2016, 63, 547–552. [Google Scholar] [CrossRef]
- Chen, Y.; Sprung, R.; Tang, Y.; Ball, H.; Sangras, B.; Kim, S.C.; Falck, J.R.; Peng, J.; Gu, W.; Zhao, Y. Lysine Propionylation and Butyrylation Are Novel Post-Translational Modifications in Histones. Mol. Cell. Proteom. 2007, 6, 812–819. [Google Scholar] [CrossRef]
- Fang, X.; Lu, G.; Ha, K.; Lin, H.; Du, Y.; Zuo, Q.; Fu, Y.; Zou, C.; Zhang, P. Acetylation of TIP60 at K104 Is Essential for Metabolic Stress-Induced Apoptosis in Cells of Hepatocellular Cancer. Exp. Cell Res. 2018, 362, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Charvet, C.; Wissler, M.; Brauns-Schubert, P.; Wang, S.-J.; Tang, Y.; Sigloch, F.C.; Mellert, H.; Brandenburg, M.; Lindner, S.E.; Breit, B.; et al. Phosphorylation of Tip60 by GSK-3 Determines the Induction of PUMA and Apoptosis by P53. Mol. Cell 2011, 42, 584–596. [Google Scholar] [CrossRef] [PubMed]
- Hwa Shin, S.; Sun Kang, S. Phosphorylation of Tip60 Tyrosine 327 by Abl Kinase Inhibits HAT Activity through Association with FE65. Open Biochem. J. 2013, 7, 66–72. [Google Scholar] [CrossRef]
- Yamagata, K.; Kitabayashi, I. Sirt1 Physically Interacts with Tip60 and Negatively Regulates Tip60-Mediated Acetylation of H2AX. Biochem. Biophys. Res. Commun. 2009, 390, 1355–1360. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-Y.; Li, T.Y.; Liu, Q.; Zhang, C.; Li, X.; Chen, Y.; Zhang, S.-M.; Lian, G.; Liu, Q.; Ruan, K.; et al. GSK3-TIP60-ULK1 Signaling Pathway Links Growth Factor Deprivation to Autophagy. Science 2012, 336, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Li, M.L.; Jiang, Q.; Bhanu, N.V.; Wu, J.; Li, W.; Garcia, B.A.; Greenberg, R.A. Phosphorylation of TIP60 Suppresses 53BP1 Localization at DNA Damage Sites. Mol. Cell. Biol. 2019, 39, 209–227. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Seit-Nebi, A.; Han, X.; Aslanian, A.; Tat, J.; Liao, R.; Yates, J.R.; Sun, P. A Posttranslational Modification Cascade Involving P38, Tip60, and PRAK Mediates Oncogene-Induced Senescence. Mol. Cell 2013, 50, 699–710. [Google Scholar] [CrossRef] [PubMed]
- García-González, R.; Monte-Serrano, E.; Morejón-García, P.; Navarro-Carrasco, E.; Lazo, P.A. The VRK1 Chromatin Kinase Regulates the Acetyltransferase Activity of Tip60/KAT5 by Sequential Phosphorylations in Response to DNA Damage. Biochim. Biophys. Acta Gene Regul. Mech. 2022, 1865, 194887. [Google Scholar] [CrossRef] [PubMed]
- Sapountzi, V.; Logan, I.R.; Nelson, G.; Cook, S.; Robson, C.N. Phosphorylation of Tat-Interactive Protein 60kDa by Protein Kinase Cε Is Important for Its Subcellular Localisation. Int. J. Biochem. Cell Biol. 2008, 40, 236–244. [Google Scholar] [CrossRef]
- Clarke, T.L.; Sanchez-Bailon, M.P.; Chiang, K.; Reynolds, J.J.; Herrero-Ruiz, J.; Bandeiras, T.M.; Matias, P.M.; Maslen, S.L.; Skehel, J.M.; Stewart, G.S.; et al. PRMT5-Dependent Methylation of the TIP60 Coactivator RUVBL1 Is a Key Regulator of Homologous Recombination. Mol. Cell 2017, 65, 900–916.e7. [Google Scholar] [CrossRef]
- Col, E.; Caron, C.; Chable-Bessia, C.; Legube, G.; Gazzeri, S.; Komatsu, Y.; Yoshida, M.; Benkirane, M.; Trouche, D.; Khochbin, S. HIV-1 Tat Targets Tip60 to Impair the Apoptotic Cell Response to Genotoxic Stresses. EMBO J. 2005, 24, 2634–2645. [Google Scholar] [CrossRef] [PubMed]
- Naidu, S.R.; Lakhter, A.J.; Androphy, E.J. PIASy-Mediated Tip60 Sumoylation Regulates P53-Induced Autophagy. Cell Cycle 2012, 11, 2717–2728. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J. SIRT1 Regulates Autoacetylation and Histone Acetyltransferase Activity of TIP60. J. Biol. Chem. 2010, 285, 11458–11464. [Google Scholar] [CrossRef] [PubMed]
- Shibahara, D.; Akanuma, N.; Kobayashi, I.S.; Heo, E.; Ando, M.; Fujii, M.; Jiang, F.; Prin, P.N.; Pan, G.; Wong, K.; et al. TIP60 Is Required for Tumorigenesis in Non-small Cell Lung Cancer. Cancer Sci. 2023, 114, 2400–2413. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.A.L. Patent spotlight: Small-molecule lysine acetyltransferase inhibitors (KATi). Pharmaceutical Patent Analyst. 2020, 9, 17–28. [Google Scholar] [CrossRef]
- Hu, Y.; Fisher, J.B.; Koprowski, S.; McAllister, D.; Kim, M.; Lough, J. Homozygous Disruption of the Tip60 Gene Causes Early Embryonic Lethality. Dev. Dyn. 2009, 238, 2912–2921. [Google Scholar] [CrossRef]
- Numata, A.; Kwok, H.S.; Zhou, Q.-L.; Li, J.; Tirado-Magallanes, R.; Angarica, V.E.; Hannah, R.; Park, J.; Wang, C.Q.; Krishnan, V.; et al. Lysine Acetyltransferase Tip60 Is Required for Hematopoietic Stem Cell Maintenance. Blood 2020, 136, 1735–1747. [Google Scholar] [CrossRef] [PubMed]
- Idrissou, M.; Judes, G.; Daures, M.; Sanchez, A.; El Ouardi, D.; Besse, S.; Degoul, F.; Penault-Llorca, F.; Bignon, Y.-J.; Bernard-Gallon, D. TIP60 Inhibitor TH1834 Reduces Breast Cancer Progression in Xenografts in Mice. OMICS 2019, 23, 457–459. [Google Scholar] [CrossRef]
- Gao, C.; Bourke, E.; Scobie, M.; Famme, M.A.; Koolmeister, T.; Helleday, T.; Eriksson, L.A.; Lowndes, N.F.; Brown, J.A.L. Rational Design and Validation of a Tip60 Histone Acetyltransferase Inhibitor. Sci. Rep. 2014, 4, 5372. [Google Scholar] [CrossRef]
- Huang, M.; Huang, J.; Zheng, Y.; Sun, Q. Histone Acetyltransferase Inhibitors: An Overview in Synthesis, Structure-Activity Relationship and Molecular Mechanism. Eur. J. Med. Chem. 2019, 178, 259–286. [Google Scholar] [CrossRef]
- Whedon, S.D.; Cole, P.A. KATs off: Biomedical Insights from Lysine Acetyltransferase Inhibitors. Curr. Opin. Chem. Biol. 2023, 72, 102255. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Q.; Tan, H.; Liao, M.; Zhu, S.; Zheng, L.-L.; Huang, H.; Liu, B. Targeting Cancer Epigenetic Pathways with Small-Molecule Compounds: Therapeutic Efficacy and Combination Therapies. Pharmacol. Res. 2021, 173, 105702. [Google Scholar] [CrossRef]
- Ghizzoni, M.; Wu, J.; Gao, T.; Haisma, H.J.; Dekker, F.J.; George Zheng, Y. 6-Alkylsalicylates Are Selective Tip60 Inhibitors and Target the Acetyl-CoA Binding Site. Eur. J. Med. Chem. 2012, 47, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Zohourian, N.; Brown, J.A.L. Current Trends in Clinical Trials and the Development of Small Molecule Epigenetic Inhibitors as Cancer Therapeutics. Epigenomics 2024, 16, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wan, T.C.; Kulik, K.R.; Lauth, A.; Smith, B.C.; Lough, J.W.; Auchampach, J.A. Pharmacological Inhibition of the Acetyltransferase Tip60 Mitigates Myocardial Infarction Injury. Dis. Model Mech. 2023, 16, dmm049786. [Google Scholar] [CrossRef]
- Nagaya, M.; Yamaoka, R.; Kanada, F.; Sawa, T.; Takashima, M.; Takamura, Y.; Inatani, M.; Oki, M. Histone Acetyltransferase Inhibition Reverses Opacity in Rat Galactose-Induced Cataract. PLoS ONE 2022, 17, e0273868. [Google Scholar] [CrossRef]
- Chen, L.; Qing, W.; Yi, Z.; Lin, G.; Peng, Q.; Zhou, F. NU9056, a KAT 5 Inhibitor, Treatment Alleviates Brain Dysfunction by Inhibiting NLRP3 Inflammasome Activation, Affecting Gut Microbiota, and Derived Metabolites in LPS-Treated Mice. Front. Nutr. 2021, 8, 701760. [Google Scholar] [CrossRef]
- Xu, L.; Qin, Y.; Liu, M.; Jiao, J.; Tu, D.; Zhang, M.; Yan, D.; Song, X.; Sun, C.; Zhu, F.; et al. The Acetyltransferase KAT5 Inhibitor NU 9056 Promotes Apoptosis and Inhibits JAK2/STAT3 Pathway in Extranodal NK/T Cell Lymphoma. Anticancer Agents Med. Chem. 2022, 22, 1530–1540. [Google Scholar] [CrossRef]
- Xu, W.; Xie, L.; Yang, Y.; Xu, J.; Cai, S.; Tian, Y. KAT5 Inhibitor NU9056 Suppresses Anaplastic Thyroid Carcinoma Progression through C-Myc/MiR-202 Pathway. Int. J. Endocrinol. 2022, 2022, 2014568. [Google Scholar] [CrossRef] [PubMed]
- Zong-ying, L.; Jing-tao, H. NU9056 Targets KAT5 to Regulate the Proliferation, Migration and Invasion of Esophageal Cancer Cells via ABCE1 Acetylation. SDRP J. Cell. Mol. Physiol. 2022, 4, 220–227. [Google Scholar] [CrossRef]
- Luo, F.; Tao, Y.; Wang, M.; Yang, L.; Su, R.; Pan, Z.; Tan, X. The Protective Effects of KAT5 Inhibition on Ocular Inflammation by Mediating the PI3K/AKT Pathway in a Murine Model of Allergic Conjunctivitis. Investig. Opthalmology Vis. Sci. 2022, 63, 4. [Google Scholar] [CrossRef]
- Sen, U.; Nayak, A.; Khurana, J.; Sharma, D.; Gupta, A. Inhibition of PfMYST Histone Acetyltransferase Activity Blocks Plasmodium Falciparum Growth and Survival. Antimicrob. Agents Chemother. 2020, 65, e00953-20. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.; Fiches, G.; Jean, M.J.; Dieringer, M.; McGuinness, J.; John, S.P.; Shamay, M.; Desai, P.; Zhu, J.; Santoso, N.G. Inhibition of Tip60 Reduces Lytic and Latent Gene Expression of Kaposi’s Sarcoma-Associated Herpes Virus (KSHV) and Proliferation of KSHV-Infected Tumor Cells. Front. Microbiol. 2018, 9, 788. [Google Scholar] [CrossRef] [PubMed]
- Cregan, S.; McDonagh, L.; Gao, Y.; Barr, M.P.; O’Byrne, K.J.; Finn, S.P.; Cuffe, S.; Gray, S.G. KAT5 (Tip60) Is a Potential Therapeutic Target in Malignant Pleural Mesothelioma. Int. J. Oncol. 2016, 48, 1290–1296. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Rao, M.; Wang, C.; Sakamaki, T.; Wang, J.; Di Vizio, D.; Zhang, X.; Albanese, C.; Balk, S.; Chang, C.; et al. Acetylation of Androgen Receptor Enhances Coactivator Binding and Promotes Prostate Cancer Cell Growth. Mol. Cell. Biol. 2003, 23, 8563–8575. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, P.; Davis, S.A.; Vashishtha, H.; Gucwa, A.L.; Ginsburg, D.S. Nuclear Localization Is Not Required for Tip60 Tumor Suppressor Activity in Breast and Lung Cancer Cells. DNA Cell Biol. 2020, 39, 2077–2084. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-H.; Lee, D.H. KAT5 Negatively Regulates the Proliferation of Prostate Cancer LNCaP Cells via the Caspase 3-Dependent Apoptosis Pathway. Anim. Cells Syst. 2019, 23, 253–259. [Google Scholar] [CrossRef]
- Chen, G.; Cheng, Y.; Tang, Y.; Martinka, M.; Li, G. Role of Tip60 in Human Melanoma Cell Migration, Metastasis, and Patient Survival. J. Investig. Dermatol. 2012, 132, 2632–2641. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, G.; Han, S.; Shao, Z.; Lu, Z.; Huo, L.; Zhang, J.; Yang, R.; Feng, Q.; Shen, H.; et al. Tip60 Suppresses Cholangiocarcinoma Proliferation and Metastasis via PI3k-AKT. Cell Physiol. Biochem. 2018, 50, 612–628. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Bai, R.; Zhao, Z.; Zhou, J.; Weng, Y. Abstract 2851: Reduced Tip60 Expression in Human Gastric Cancer. Cancer Res. 2014, 74, 2851. [Google Scholar] [CrossRef]
- Beaver, M.; Karisetty, B.C.; Zhang, H.; Bhatnagar, A.; Armour, E.; Parmar, V.; Brown, R.; Xiang, M.; Elefant, F. Chromatin and Transcriptomic Profiling Uncover Dysregulation of the Tip60 HAT/HDAC2 Epigenomic Landscape in the Neurodegenerative Brain. Epigenetics 2022, 17, 786–807. [Google Scholar] [CrossRef]
- Zhang, H.; Karisetty, B.C.; Bhatnagar, A.; Armour, E.M.; Beaver, M.; Roach, T.V.; Mortazavi, S.; Mandloi, S.; Elefant, F. Tip60 Protects against Amyloid-β-Induced Transcriptomic Alterations via Different Modes of Action in Early versus Late Stages of Neurodegeneration. Mol. Cell. Neurosci. 2020, 109, 103570. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Cell/Tumor Type Interaction Observed in | Reference |
---|---|---|
TFF1 | Breast tumor | [36] |
Hoxa9 | Leukemia cell | [37] |
SRF | Cardiac cells | [13] |
KAI1 | Prostate cancer cell | [38] |
GREB1 | Breast tumor | [36] |
Meis1 | Leukemia cell | [37] |
P21 | Osteosarcoma | [39] |
Fas | [40] | |
bax | [40] | |
Hdm2 | [40] | |
POLQ, ASPM, EXO1, Gemin6, HESP1, KIF14, MTBP, PDSS1, TERF1 | Mammary tumors | [41] |
Cancer Cells Lines/Model Used | Interacting Protein | Location | Reference |
---|---|---|---|
Hepatocellular carcinoma | TRRAP | n + | [26,71,72,73,74] |
P65 | |||
UHRF2 | |||
HDAC1 | |||
MYC | |||
HDAC7 | n/c ++ | ||
STAT3 | |||
Colorectal cancer | TRRAP | n | [75,76,77,78,79,80] |
P400 | |||
RUVBL1 | |||
MRGBP | |||
UHRF1 | |||
ATF3 | n/c | ||
TRCp120, BRD8 | |||
Cervical cancer | TRRAP | n | [28,32,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97] |
DNA-PK | |||
P400 | |||
ANP32E | |||
MRGBP | |||
UHRF1 | |||
TRIM29 | |||
JAZF1 | |||
USP7 | |||
ING5 | |||
SIRT1 | |||
DNA-PKcs | |||
ATM | |||
P300 | |||
DMAP1 | |||
TRCp120 | |||
Nup62 | |||
SENP6/SUMO1 | n/c | ||
MDM2 | |||
IL-9 receptor | |||
MYC | |||
Breast cancer | P53 | n | [41,90,97,98,99,100] |
P400 | |||
RUVBL1 | |||
RUVBL2 | |||
Fe65 | n/c | ||
MORF4L1/MRG15 | |||
MYC | |||
Prostate cancer | P53 | n | [101,102,103,104,105,106] |
TRIM68 | |||
MRGBP | |||
AR | |||
MORF4L1/MRG15 | |||
ING3 | n/c | ||
ATF2 | |||
Lung cancer | UHRF1 | n | [80,107,108,109,110,111,112,113] |
PXR | |||
HDAC3 | n/c | ||
ATF3 | |||
RUVBL2 | |||
MDM2 | |||
Gas41/YEATS4 | |||
p14ARF | |||
Osteosarcoma/ chondrosarcoma | UHRF1 | n | [32,80,92,107,111,114,115,116,117,118] |
MRGBP | |||
RNF8 | |||
SOX9 | |||
ING5 | |||
SIRT1 | |||
DNA-PKcs | |||
ATM | |||
USP7 | n/c | ||
ATF3 | |||
Blood cancer | MBTD1 | n | [26,63,119,120,121] |
HDAC1 | |||
C/EBP α | |||
STAT3 | n/c | ||
EPC2 | |||
Melanoma | ING3 | n/c | [105,122] |
ATF2 | |||
Endometrial sarcoma | MEAF6 | n | [123] |
Renal cancer | JADE1 | n | [124] |
Neuroglioma cells | APP | n | [125] |
Gastric cancer | KLF4 | n | [126] |
Esophageal squamous cell carcinoma | ATM | n | [127] |
FAM135B | n/c |
Tip60 (Protein) Regulatory Activity | Tip60 (Protein) Modification | Regulating Protein | Modified Tip60 Residues (aa) | Signaling Pathway |
---|---|---|---|---|
Activation | Phosphorylation | glycogen synthase kinase3 alpha/beta (GSK3A/GSK3B) | S86 | Autophagy [136] |
Activation | Phosphorylation | CDK1 | S90 | Receptor-mediated signaling processes/DDR [137] |
Activation | Phosphorylation | p38 MAPK | T158 | Oncogene-induced senescence [138] |
Activation | Phosphorylation | DNA-PK | S199 | DDR [139] |
Suppression | Phosphorylation | Abl tyrosine kinase | Y327 | DDR [134] |
Suppression | Phosphorylation | PRKCE/PKCε | T298/S300 | AR signaling [140] |
Activation | Acetylation | Autoacetylation (Tip60) | K104 | Apoptosis [132] |
Activation | Acetylation | RUVBL1 | - | Acetyltransferase activity of TIP60 [141] |
Suppression | Acetylation, polyubiquitination | CBP/p300 | K268 | Apoptosis [142] |
Activation | SUMOylation | UBE2I/Ubc9 | K430, K451 | DDR [95] |
Activation | SUMOylation | PIAS4/PIASy | K430, K451 | p53-induced autophagy [143] |
Suppression | Negative effect on autoacetylation | SIRT1 | K76, K80, K189, K327 | DDR [144] |
Suppression | Deacetylation | HDAC3 | Unknown | Apoptosis [109] |
Suppression | Downregulation of acetylation activity | RNF8 | Unknown | DNA repair [115] |
Suppression | Association | ATF2 | aa 368–513 | DDR [122] |
Inhibitor Name | Effect | Disease | In Vitro/In Vivo | Reference |
---|---|---|---|---|
TH1834 |
Diminishing scarring, enhancing cardiomyocytes cell-cycle activating, reducing cardiomyocytes apoptosis, increasing cardiomyocytes density | Ischemic heart disease | In vivo (mice) | [158] |
Reducing tumor growth | Breast cancer | In vitro | [150] | |
In vivo (mice) | [149] | |||
Altering expression of target genes related to cell proliferation and differentiation | Cataract | Ex vivo | [159] | |
Suppressing tumor growth | Lung cancer | In vitro/ In vivo (mice) | [145] | |
Increasing Foxp3 acetylation, enhancing Treg cell induction | Autoimmune disease, transplant | In vitro/ In vivo (mice) | [23] | |
NU9056 |
Inhibiting cellular proliferation, inducing apoptosis by activation of caspase 3 and 9, decreasing androgen receptor | Prostate cancer | In vitro | [101] |
Inhibiting the NLRP3 inflammasome, affecting gut microbiota | Cognitive impairment, emotional disorder | In vitro/ In vivo (mice) | [160] | |
Inhibiting cell proliferation, inducing apoptosis, inhibiting the JAK2/STAT3 signaling pathway | Extra-nodal natural killer/T cell lymphoma | In vitro | [161] | |
Shortening c-Myc half-life, downregulating miR-202 expression | Thyroid carcinoma | In vitro/ In vivo (mice) | [162] | |
Reducing the ABCE1 protein acetylation, inhibiting the EMT, survival, migration, and invasion capacity of cancer cells | Esophageal cancer | In vitro | [163] | |
Mediating the PI3K/AKT pathway | Allergic conjunctivitis | In vivo (mice) | [164] | |
Inhibiting PfMYST, blocking Plasmodium falciparum growth and survival | Parasite Plasmodium falciparum | In vitro | [165] | |
Decreasing the viability of KSHV-infected B lymphoma cells | KSHV-infected tumor | In vitro | [166] | |
Increasing Foxp3 acetylation, enhancing Treg cell induction | Autoimmune disease, transplant | In vitro/ In vivo (mice) | [23] | |
MG 149 | Inducing pro-inflammatory cytokines/chemokines, inhibiting cancer cells proliferation, inducing apoptosis in cancer cells | Malignant pleural mesothelioma | In vitro | [167] |
Decreasing the viability of KSHV-infected B lymphoma cells | KSHV-infected tumor | In vitro | [166] | |
Increasing Foxp3 acetylation, enhancing Treg cell induction | Autoimmune disease, transplant | In vitro/ In vivo (mice) | [23] | |
Inhibition of OXPHOS and mitochondrial biogenesis | Colon cancer | In vitro | [78] |
Tip60 Dysregulation | Tumor | Experiment | Reference |
---|---|---|---|
Cytoplasmic mislocalization | Lung cancer | In vitro/in vivo | [145,169] |
Downregulated Tip60, cytoplasmic mislocalization | Breast cancer | In vitro/in vivo | [68,149] |
Downregulated Tip60 and Kat5 transcript | Breast cancer | In vitro/in vivo | [41] |
Overexpressed Tip60 | Prostate cancer | In vitro/in vivo | [101,168] |
Low KAT5 transcript expression | Prostate cancer | In vitro | [170] |
Upregulation of Tip60 activity | Colon cancer | In vitro | [79] |
Low KAT5 transcript expression | Melanoma | In vitro | [171] |
Low KAT5 transcript expression | Cholangiocarcinoma | In vitro | [172] |
Low KAT5 transcript expression | Gastric cancer | In vitro | [173] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zohourian, N.; Coll, E.; Dever, M.; Sheahan, A.; Burns-Lane, P.; Brown, J.A.L. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers 2024, 16, 2677. https://doi.org/10.3390/cancers16152677
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers. 2024; 16(15):2677. https://doi.org/10.3390/cancers16152677
Chicago/Turabian StyleZohourian, Nazanin, Erin Coll, Muiread Dever, Anna Sheahan, Petra Burns-Lane, and James A. L. Brown. 2024. "Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology" Cancers 16, no. 15: 2677. https://doi.org/10.3390/cancers16152677
APA StyleZohourian, N., Coll, E., Dever, M., Sheahan, A., Burns-Lane, P., & Brown, J. A. L. (2024). Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers, 16(15), 2677. https://doi.org/10.3390/cancers16152677