Advances in Image-Guided Ablation Therapies for Solid Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Image-Guided Ablation
3. Ablation Techniques
4. Radiofrequency Ablation
4.1. Mechanism and Technique
4.2. Hepatic Ablation
4.3. Pancreatic Ablation
4.4. Renal Ablation
4.5. Lung Ablation
5. Microwave Ablation
5.1. Mechanism and Technique
5.2. Hepatic Ablation
5.3. Renal Ablation
5.4. Lung Ablation
5.5. Pancreatic Ablation
5.6. Adrenal Ablation
5.7. Parathyroid Ablation
5.8. Thyroid Ablation
5.9. Bone Ablation
6. Cryoablation
6.1. Mechanism and Technique
6.2. Hepatic Ablation
6.3. Renal Ablation
6.4. Lung Ablation
6.5. Breast Ablation
6.6. Desmoid Ablation
6.7. Prostate Ablation
7. Irreversible Electroporation
7.1. Hepatic Ablation
7.2. Pancreatic Ablation
7.3. Renal Ablation
7.4. Prostate Ablation
8. High-Intensity Focused Ultrasound
8.1. Mechanism and Technique
8.2. Hepatic Ablation
8.3. Breast Ablation
8.4. Prostate Ablation
8.5. Renal Ablation
8.6. Esophageal Ablation
8.7. Pancreatic Ablation
8.8. Intracranial Ablation
8.9. Bone Ablation
9. Histotripsy
Hepatic Ablation
10. Principles of Selecting an Ablation Modality
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McGahan, J.P.; van Raalte, V.A. History of Ablation. In Tumor Ablation: Principles and Practice; van Sonnenberg, E., McMullen, W.N., Solbiati, L., Livraghi, T., Müeller, P.R., Silverman, S.G., Eds.; Springer: New York, NY, USA, 2005; pp. 3–16. [Google Scholar] [CrossRef]
- Glazer, D.I.; Tatli, S.; Shyn, P.B.; Vangel, M.G.; Tuncali, K.; Silverman, S.G. Percutaneous Image-Guided Cryoablation of Hepatic Tumors: Single-Center Experience with Intermediate to Long-Term Outcomes. AJR Am. J. Roentgenol. 2017, 209, 1381–1389. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yu, J.; Fowlkes, J.B.; Liang, P.; Nolsøe, C.P. US-guided ablation of tumors–Where is it used and how did we get there. Med-X 2023, 1, 5. [Google Scholar] [CrossRef]
- Goldberg, S.N.; Gazelle, G.S.; Mueller, P.R. Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am. J. Roentgenol. 2000, 174, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Floridi, C.; Radaelli, A.; Abi-Jaoudeh, N.; Grass, M.; Lin, M.D.; Chiaradia, M.; Geschwind, J.-F.; Kobeiter, H.; Squillaci, E.; Maleux, G.; et al. C-arm cone-beam computed tomography in interventional oncology: Technical aspects and clinical applications. Radiol. Med. 2014, 119, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Chehab, M.; Kouri, B.E.; Miller, M.J.; Venkatesan, A.M. Image Fusion Technology in Interventional Radiology. Tech. Vasc. Interv. Radiol. 2023, 26, 100915. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, A.M.; Kadoury, S.; Abi-Jaoudeh, N.; Levy, E.B.; Maass-Moreno, R.; Krücker, J.; Dalal, S.; Xu, S.; Glossop, N.; Wood, B.J. Real-time FDG PET Guidance during Biopsies and Radiofrequency Ablation Using Multimodality Fusion with Electromagnetic Navigation. Radiology 2011, 260, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Manson, E.N.; Hasford, F.; Inkoom, S.; Gedel, A.M. Integrating image fusion with nanoparticle contrast agents for diagnosis: A review. Egypt. J. Radiol. Nucl. Med. 2020, 51, 208. [Google Scholar] [CrossRef]
- Mansur, A.; Garg, T.; Shrigiriwar, A.; Etezadi, V.; Georgiades, C.; Habibollahi, P.; Huber, T.C.; Camacho, J.C.; Nour, S.G.; Sag, A.A.; et al. Image-Guided Percutaneous Ablation for Primary and Metastatic Tumors. Diagnostics 2022, 12, 1300. [Google Scholar] [CrossRef]
- Ahmed, M.; Brace, C.L.; Lee, F.T., Jr.; Goldberg, S.N. Principles of and Advances in Percutaneous Ablation. Radiology 2011, 258, 351–369. [Google Scholar] [CrossRef]
- Goldberg, S.N.; Solbiati, L.; Hahn, P.F.; Cosman, E.; Conrad, J.E.; Fogle, R.; Gazelle, G.S. Large-volume tissue ablation with radio frequency by using a clustered, internally cooled electrode technique: Laboratory and clinical experience in liver metastases. Radiology 1998, 209, 371–379. [Google Scholar] [CrossRef]
- Pereira, P.L.; Trübenbach, J.; Schenk, M.; Subke, J.; Kroeber, S.; Schaefer, I.; Remy, C.T.; Schmidt, D.; Brieger, J.; Claussen, C.D. Radiofrequency ablation: In vivo comparison of four commercially available devices in pig livers. Radiology 2004, 232, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Lorentzen, T. The loop electrode: In vitro evaluation of a device for ultrasound-guided interstitial tissue ablation using radiofrequency electrosurgery. Acad. Radiol. 1996, 3, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zhang, B.; Zhang, W. Current Solutions for the Heat-Sink Effect of Blood Vessels with Radiofrequency Ablation: A Review and Future Work. In Advanced Computational Methods in Life System Modeling and Simulation; Fei, M., Ma, S., Li, X., Sun, X., Jia, L., Su, Z., Eds.; Springer: Singapore, 2017; pp. 113–122. [Google Scholar] [CrossRef]
- Cha, J.; Kim, Y.-S.; Rhim, H.; Lim, H.K.; Choi, D.; Lee, M.W. Radiofrequency ablation using a new type of internally cooled electrode with an adjustable active tip: An experimental study in ex vivo bovine and in vivo porcine livers. Eur. J. Radiol. 2011, 77, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Lee, J.M.; Hwang, E.J.; Hwang, I.P.; Baek, J.; Han, J.K.; Choi, B.I. Monopolar Radiofrequency Ablation Using a Dual-Switching System and a Separable Clustered Electrode: Evaluation of the In Vivo Efficiency. Korean J. Radiol. 2014, 15, 235–244. [Google Scholar] [CrossRef]
- Zhu, M.; Sun, Z.; Ng, C.K. Image-guided thermal ablation with MR-based thermometry. Quant. Imaging Med. Surg. 2017, 7, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Ferrero, A.; In, M.-H.; Favazza, C.P. Thermometry mapping during CT-guided thermal ablations: Proof of feasibility and internal validation using spectral CT. Phys. Med. Biol. 2024, 69, 115022. [Google Scholar] [CrossRef] [PubMed]
- Zane, K.E.; Makary, M.S. Locoregional Therapies for Hepatocellular Carcinoma with Portal Vein Tumor Thrombosis. Cancers 2021, 13, 5430. [Google Scholar] [CrossRef] [PubMed]
- Makary, M.S.; Ramsell, S.; Miller, E.; Beal, E.W.; Dowell, J.D. Hepatocellular carcinoma locoregional therapies: Outcomes and future horizons. World J. Gastroenterol. 2021, 27, 7462–7479. [Google Scholar] [CrossRef] [PubMed]
- Zane, K.E.; Nagib, P.B.; Jalil, S.; Mumtaz, K.; Makary, M.S. Emerging curative-intent minimally-invasive therapies for hepatocellular carcinoma. World J. Hepatol. 2022, 14, 885–895. [Google Scholar] [CrossRef]
- Criss, C.R.; Makary, M.S. Recent Advances in Image-Guided Locoregional Therapies for Primary Liver Tumors. Biology 2023, 12, 999. [Google Scholar] [CrossRef]
- Gavriilidis, P.; Askari, A.; Azoulay, D. Survival following redo hepatectomy vs radiofrequency ablation for recurrent hepatocellular carcinoma: A systematic review and meta-analysis. HPB 2017, 19, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-K.; Liu, X.-H.; Cui, H.; Xie, X.-H. Radiofrequency ablation vs. surgical resection for resectable hepatocellular carcinoma: A systematic review and meta-analysis. Mol. Clin. Oncol. 2020, 12, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Park, E.K.; Kim, H.J.; Kim, C.Y.; Hur, Y.H.; Koh, Y.S.; Kim, J.C.; Kim, H.J.; Kim, J.W.; Cho, C.K. A comparison between surgical resection and radiofrequency ablation in the treatment of hepatocellular carcinoma. Ann. Surg. Treat. Res. 2014, 87, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-A.; Shim, J.H.; Kim, M.-J.; Kim, S.Y.; Won, H.J.; Shin, Y.M.; Kim, P.N.; Kim, K.-H.; Lee, S.-G.; Lee, H.C. Radiofrequency ablation as an alternative to hepatic resection for single small hepatocellular carcinomas. Br. J. Surg. 2016, 103, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, M.N.; Ehsan, H.; Muneeb, A.; Wahab, A.; Sana, M.K.; Neupane, K.; Chaudhary, F.S. Role of Radiofrequency Ablation in the Management of Unresectable Pancreatic Cancer. Front. Med. 2021, 7, 624997. [Google Scholar] [CrossRef] [PubMed]
- Testoni, S.G.G.; Healey, A.J.; Dietrich, C.F.; Arcidiacono, P.G. Systematic review of endoscopy ultrasound-guided thermal ablation treatment for pancreatic cancer. Endosc. Ultrasound 2020, 9, 83–100. [Google Scholar] [PubMed]
- Hare, A.E.; Makary, M.S. Locoregional Approaches in Cholangiocarcinoma Treatment. Cancers 2022, 14, 5853. [Google Scholar] [CrossRef]
- Owen, M.; Makary, M.S.; Beal, E.W. Locoregional Therapy for Intrahepatic Cholangiocarcinoma. Cancers 2023, 15, 2384. [Google Scholar] [CrossRef] [PubMed]
- Girelli, R.; Frigerio, I.; Salvia, R.; Barbi, E.; Tinazzi Martini, P.; Bassi, C. Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer. Br. J. Surg. 2010, 97, 220–225. [Google Scholar] [CrossRef]
- D’Onofrio, M.; Crosara, S.; De Robertis, R.; Butturini, G.; Salvia, R.; Paiella, S.; Bassi, C.; Mucelli, R.P. Percutaneous Radiofrequency Ablation of Unresectable Locally Advanced Pancreatic Cancer: Preliminary Results. Technol. Cancer Res. Treat. 2017, 16, 285–294. [Google Scholar] [CrossRef]
- Mizandari, M.; Kumar, J.; Pai, M.; Chikovani, T.; Azrumelashvili, T.; Reccia, I.; Habib, N. Interventional radiofrequency ablation: A promising therapeutic modality in the management of malignant biliary and pancreatic duct obstruction. J. Cancer 2018, 9, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Gunn, A.J.; Gervais, D.A. Percutaneous Ablation of the Small Renal Mass—Techniques and Outcomes. Semin. Interv. Radiol. 2014, 31, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Green, H.; Taylor, A.; Khoo, V. Beyond the Knife in Renal Cell Carcinoma: A Systematic Review—To Ablate or Not to Ablate? Cancers 2023, 15, 3455. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Gideon, M.; Rajendran, R.; Mathew, G.; Nair, K. Advancing Treatment Frontiers: Radiofrequency Ablation for Small Renal Mass—Intermediate-Term Results. J. Kidney Cancer VHL 2023, 10, 1–6. [Google Scholar] [CrossRef]
- Bargellini, I.; Bozzi, E.; Cioni, R.; Parentini, B.; Bartolozzi, C. Radiofrequency ablation of lung tumours. Insights Imaging 2011, 2, 567–576. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, J.; Fu, Y.; Hu, B. Radiofrequency ablation for stage <IIB non-small cell lung cancer: Opportunities, challenges, and the road ahead. Thorac. Cancer 2023, 14, 3181–3190. [Google Scholar]
- de Baère, T.; Aupérin, A.; Deschamps, F.; Chevallier, P.; Gaubert, Y.; Boige, V.; Fonck, M.; Escudier, B.; Palussiére, J. Radiofrequency ablation is a valid treatment option for lung metastases: Experience in 566 patients with 1037 metastases. Ann. Oncol. 2015, 26, 987–991. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, X.; Wang, Y.; Li, W.; Li, G.; Zhou, J. A prospective clinical trial of radiofrequency ablation for pulmonary metastases. Mol. Clin. Oncol. 2015, 3, 559–562. [Google Scholar] [CrossRef]
- Matsui, Y.; Tomita, K.; Uka, M.; Umakoshi, N.; Kawabata, T.; Munetomo, K.; Nagata, S.; Iguchi, T.; Hiraki, T. Up-to-date evidence on image-guided thermal ablation for metastatic lung tumors: A review. Jpn. J. Radiol. 2022, 40, 1024–1034. [Google Scholar] [CrossRef]
- Wolf, F.J.; Grand, D.J.; Machan, J.T.; DiPetrillo, T.A.; Mayo-Smith, W.W.; Dupuy, D.E. Microwave Ablation of Lung Malignancies: Effectiveness, CT Findings, and Safety in 50 Patients. Radiology 2008, 247, 871–879. [Google Scholar] [CrossRef]
- Wright, A.S.; Sampson, L.A.; Warner, T.F.; Mahvi, D.M.; Lee, F.T., Jr. Radiofrequency versus Microwave Ablation in a Hepatic Porcine Model. Radiology 2005, 236, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Strickland, A.D.; Clegg, P.J.; Cronin, N.J.; Swift, B.; Festing, M.; West, K.P.; Robertson, G.S.M.; Lloyd, D.M. Experimental study of large-volume microwave ablation in the liver. Br. J. Surg. 2002, 89, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Yu, J.; Lu, M.-D.; Dong, B.-W.; Yu, X.-L.; Zhou, X.-D.; Hu, B.; Xie, M.-X.; Cheng, W.; He, W.; et al. Practice guidelines for ultrasound-guided percutaneous microwave ablation for hepatic malignancy. World J. Gastroenterol. (WJG) 2013, 19, 5430–5438. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Domini, J.; Makary, M.S. Single-center analysis of percutaneous ablation in the treatment of hepatocellular carcinoma: Long-term outcomes of a 7-year experience. Abdom. Radiol. 2023, 48, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Radosevic, A.; Quesada, R.; Serlavos, C.; Sánchez, J.; Zugazaga, A.; Sierra, A.; Coll, S.; Busto, M.; Aguilar, G.; Flores, D.; et al. Microwave versus radiofrequency ablation for the treatment of liver malignancies: A randomized controlled phase 2 trial. Sci. Rep. 2022, 12, 316. [Google Scholar] [CrossRef]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Arellano, R.S. Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation. J. Vasc. Interv. Radiol. 2018, 29, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Athreya, S. Meta-analysis of cryoablation versus microwave ablation for small renal masses: Is there a difference in outcome? Diagn. Interv. Radiol. 2013, 19, 501–507. [Google Scholar] [CrossRef]
- Zhou, W.; Herwald, S.E.; McCarthy, C.; Uppot, R.N.; Arellano, R.S. Radiofrequency Ablation, Cryoablation, and Microwave Ablation for T1a Renal Cell Carcinoma: A Comparative Evaluation of Therapeutic and Renal Function Outcomes. J. Vasc. Interv. Radiol. 2019, 30, 1035–1042. [Google Scholar] [CrossRef]
- Dong, X.; Li, X.; Yu, J.; Yu, M.; Yu, X.; Liang, P. Complications of ultrasound-guided percutaneous microwave ablation of renal cell carcinoma. OncoTargets Ther. 2016, 9, 5903–5909. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Mcclure, M.A.; Chen, T.; Chen, S. Efficacy and safety of thermal ablation of lung malignancies: A Network meta-analysis. Ann. Thorac. Med. 2018, 13, 243–250. [Google Scholar] [PubMed]
- Chi, J.; Ding, M.; Shi, Y.; Wang, T.; Cui, D.; Tang, X.; Li, P.; Zhai, B. Comparison study of computed tomography-guided radiofrequency and microwave ablation for pulmonary tumors: A retrospective, case-controlled observational study. Thorac. Cancer 2018, 9, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Makary, M.S.; Khandpur, U.; Cloyd, J.M.; Mumtaz, K.; Dowell, J.D. Locoregional Therapy Approaches for Hepatocellular Carcinoma: Recent Advances and Management Strategies. Cancers 2020, 12, 1914. [Google Scholar] [CrossRef] [PubMed]
- Hiraki, T.; Gobara, H.; Fujiwara, H.; Ishii, H.; Tomita, K.; Uka, M.; Makimoto, S.; Kanazawa, S. Lung cancer ablation: Complications. Semin. Interv. Radiol. 2013, 30, 169–175. [Google Scholar]
- Mal, R.; Domini, J.; Wadhwa, V.; Makary, M.S. Thermal ablation for primary and metastatic lung tumors: Single-center analysis of peri-procedural and intermediate-term clinical outcomes. Clin. Imaging 2023, 98, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Zheng, A.; Wang, X.; Yang, X.; Wang, W.; Huang, G.; Gai, Y.; Ye, X. Major Complications After Lung Microwave Ablation: A Single-Center Experience on 204 Sessions. Ann. Thorac. Surg. 2014, 98, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Kashima, M.; Yamakado, K.; Takaki, H.; Kodama, H.; Yamada, T.; Uraki, J.; Nakatsuka, A. Complications after 1000 lung radiofrequency ablation sessions in 420 patients: A single center’s experiences. Am. J. Roentgenol. 2011, 197, W576–W580. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Wang, Y.; Zhang, J.; Zheng, J.; Li, W. A Meta-Analysis of Clinical Outcomes After Radiofrequency Ablation and Microwave Ablation for Lung Cancer and Pulmonary Metastases. J. Am. Coll. Radiol. 2019, 16, 302–314. [Google Scholar] [CrossRef]
- Carrafiello, G.; Ierardi, A.M.; Fontana, F.; Petrillo, M.; Floridi, C.; Lucchina, N.; Cuffari, S.; Dionigi, G.; Rotondo, A.; Fugazzola, C. Microwave ablation of pancreatic head cancer: Safety and efficacy. J. Vasc. Interv. Radiol. 2013, 24, 1513–1520. [Google Scholar] [CrossRef]
- Rombouts, S.J.E.; Vogel, J.A.; van Santvoort, H.C.; van Lienden, K.P.; van Hillegersberg, R.; Busch, O.R.C.; Besselink, M.G.H.; Molenaar, I.Q. Systematic review of innovative ablative therapies for the treatment of locally advanced pancreatic cancer. Br. J. Surg. 2015, 102, 182–193. [Google Scholar] [CrossRef]
- Ierardi, A.M.; Lucchina, N.; Bacuzzi, A.; Marco, D.C.; Bracchi, E.; Cocozza, E.; Dionigi, G.; Tsetis, D.; Floridi, C.; Carrafiello, G. Percutaneous ablation therapies of inoperable pancreatic cancer: A systematic review. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 2015, 28, 431–439. [Google Scholar]
- Yamakado, K. Image-guided ablation of adrenal lesions. Semin. Interv. Radiol. 2014, 31, 149–156. [Google Scholar] [CrossRef]
- Donlon, P.; Dennedy, M.C. Thermal ablation in adrenal disorders: A discussion of the technology, the clinical evidence and the future. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 291–302. [Google Scholar] [CrossRef]
- Sarma, A.; Shyn, P.B.; Vivian, M.A.; Ng, J.-M.; Tuncali, K.; Lorch, J.H.; Zaheer, S.N.; Gordon, M.S.; Silverman, S.G. Single-Session CT-Guided Percutaneous Microwave Ablation of Bilateral Adrenal Gland Hyperplasia Due to Ectopic ACTH Syndrome. Cardiovasc. Interv. Radiol. 2015, 38, 1335–1338. [Google Scholar] [CrossRef]
- Fintelmann, F.J.; Tuncali, K.; Puchner, S.; Gervais, D.A.; Thabet, A.; Shyn, P.B.; Arellano, R.S.; Tatli, S.; Mueller, P.R.; Silverman, S.G.; et al. Catecholamine Surge during Image-Guided Ablation of Adrenal Gland Metastases: Predictors, Consequences, and Recommendations for Management. J. Vasc. Interv. Radiol. 2016, 27, 395–402. [Google Scholar] [CrossRef]
- Ren, C.; Liang, P.; Yu, X.-L.; Cheng, Z.-G.; Han, Z.-Y.; Yu, J. Percutaneous microwave ablation of adrenal tumours under ultrasound guidance in 33 patients with 35 tumours: A single-centre experience. Int. J. Hyperth. 2016, 32, 517–523. [Google Scholar] [CrossRef]
- Veltri, A.; Basile, D.; Calandri, M.; Bertaggia, C.; Volante, M.; Porpiglia, F.; Calabrese, A.; Puglisi, S.; Basile, V.; Terzolo, M. Oligometastatic adrenocortical carcinoma: The role of image-guided thermal ablation. Eur. Radiol. 2020, 30, 6958–6964. [Google Scholar] [CrossRef]
- Fingeret, A.L. Contemporary Evaluation and Management of Parathyroid Carcinoma. JCO Oncol. Pract. 2021, 17, 17–21. [Google Scholar] [CrossRef]
- Wei, Y.; Peng, C.-Z.; Wang, S.-R.; He, J.-F.; Peng, L.-L.; Zhao, Z.-L.; Cao, X.-J.; Li, Y.; Yu, M.-A. Effectiveness and Safety of Thermal Ablation in the Treatment of Primary Hyperparathyroidism: A Multicenter Study. J. Clin. Endocrinol. Metab. 2021, 106, 2707–2717. [Google Scholar] [CrossRef]
- Guo, D.-M.; Chen, Z.; Zhai, Y.-X.; Su, H.-H. Comparison of radiofrequency ablation and microwave ablation for benign thyroid nodules: A systematic review and meta-analysis. Clin. Endocrinol. 2021, 95, 187–196. [Google Scholar] [CrossRef]
- Choi, Y.; Jung, S.-L. Efficacy and Safety of Thermal Ablation Techniques for the Treatment of Primary Papillary Thyroid Microcarcinoma: A Systematic Review and Meta-Analysis. Thyroid 2020, 30, 720–731. [Google Scholar] [CrossRef]
- Zhao, Z.-L.; Wang, S.-R.; Dong, G.; Liu, Y.; He, J.-F.; Shi, L.-L.; Guo, J.-Q.; Wang, Z.-H.; Cong, Z.-B.; Liu, L.-H.; et al. Microwave Ablation versus Surgical Resection for US-detected Multifocal T1N0M0 Papillary Thyroid Carcinoma: A 10-Center Study. Radiology 2024, 311, e230459. [Google Scholar] [CrossRef]
- Siskin, G.P.; Shlansky-Goldberg, R.D.; Goodwin, S.C.; Sterling, K.; Lipman, J.C.; Nosher, J.L.; Worthington-Kirsch, R.L.; Chambers, T.P. A Prospective Multicenter Comparative Study between Myomectomy and Uterine Artery Embolization with Polyvinyl Alcohol Microspheres: Long-term Clinical Outcomes in Patients with Symptomatic Uterine Fibroids. J. Vasc. Interv. Radiol. 2006, 17, 1287–1295. [Google Scholar] [CrossRef]
- Jin, H.; Lin, W.; Lu, L.; Cui, M. Conventional thyroidectomy vs thyroid thermal ablation on postoperative quality of life and satisfaction for patients with benign thyroid nodules. Eur. J. Endocrinol. 2021, 184, 131–141. [Google Scholar] [CrossRef]
- Gennaro, N.; Sconfienza, L.M.; Ambrogi, F.; Boveri, S.; Lanza, E. Thermal ablation to relieve pain from metastatic bone disease: A systematic review. Skelet. Radiol. 2019, 48, 1161–1169. [Google Scholar] [CrossRef]
- Wu, M.-H.; Xiao, L.-F.; Yan, F.-F.; Chen, S.-L.; Zhang, C.; Lei, J.; Deng, Z.-M. Use of percutaneous microwave ablation for the treatment of bone tumors: A retrospective study of clinical outcomes in 47 patients. Cancer Imaging 2019, 19, 87. [Google Scholar] [CrossRef]
- Cazzato, R.L.; de Rubeis, G.; de Marini, P.; Dalili, D.; Koch, G.; Auloge, P.; Garnon, J.; Gangi, A. Percutaneous microwave ablation of bone tumors: A systematic review. Eur. Radiol. 2021, 31, 3530–3541. [Google Scholar] [CrossRef]
- Sprenkle, P.C.; Mirabile, G.; Durak, E.; Edelstein, A.; Gupta, M.; Hruby, G.W.; Okhunov, Z.; Landman, J. The effect of argon gas pressure on ice ball size and rate of formation. J. Endourol. 2010, 24, 1503–1507. [Google Scholar] [CrossRef]
- Baust, J.G.; Snyder, K.K.; Santucci, K.L.; Robilotto, A.T.; Van Buskirk, R.G.; Baust, J.M. Cryoablation: Physical and molecular basis with putative immunological consequences. Int. J. Hyperth. 2019, 36, 10–16. [Google Scholar] [CrossRef]
- Kwak, K.; Yu, B.; Lewandowski, R.J.; Kim, D.-H. Recent progress in cryoablation cancer therapy and nanoparticles mediated cryoablation. Theranostics 2022, 12, 2175–2204. [Google Scholar] [CrossRef]
- Cha, C.; Lee, F.T.; Rikkers, L.F.; Niederhuber, J.E.; Nguyen, B.T.; Mahvi, D.M. Rationale for the combination of cryoablation with surgical resection of hepatic tumors. J. Gastrointest. Surg. 2001, 5, 206–213. [Google Scholar] [CrossRef]
- Sohn, R.L.; Carlin, A.M.; Steffes, C.; Tyburski, J.G.; Wilson, R.F.; Littrup, P.J.; Weaver, D.W. The extent of cryosurgery increases the complication rate after hepatic cryoablation. Am. Surg. 2003, 69, 317–322; discussion 322–323. [Google Scholar] [CrossRef]
- Niu, L.-Z.; Li, J.-L.; Xu, K.-C. Percutaneous Cryoablation for Liver Cancer. J. Clin. Transl. Hepatol. 2014, 2, 182–188. [Google Scholar]
- Pearson, A.S.; Izzo, F.; Fleming, R.Y.; Ellis, L.M.; Delrio, P.; Roh, M.S.; Granchi, J.; Curley, S.A. Intraoperative radiofrequency ablation or cryoablation for hepatic malignancies. Am. J. Surg. 1999, 178, 592–599. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, C.; Lu, Y.; Bai, W.; An, L.; Qu, J.; Gao, X.; Chen, Y.; Zhou, L.; Wu, Y.; et al. Outcomes of ultrasound-guided percutaneous argon-helium cryoablation of hepatocellular carcinoma. J. Hepato-Biliary-Pancreat. Sci. 2012, 19, 674–684. [Google Scholar] [CrossRef]
- Shafir, M.; Shapiro, R.; Sung, M.; Warner, R.; Sicular, A.; Klipfel, A. Cryoablation of unresectable malignant liver tumors. Am. J. Surg. 1996, 171, 27–31. [Google Scholar] [CrossRef]
- Conners, D.; Rilling, W. Pleural tumor seeding following percutaneous cryoablation of hepatocellular carcinoma. Semin. Interv. Radiol. 2011, 28, 258–260. [Google Scholar] [CrossRef]
- Fairchild, A.H.; Tatli, S.; Dunne, R.M.; Shyn, P.B.; Tuncali, K.; Silverman, S.G. Percutaneous cryoablation of hepatic tumors adjacent to the gallbladder: Assessment of safety and effectiveness. J. Vasc. Interv. Radiol. 2014, 25, 1449–1455. [Google Scholar] [CrossRef]
- Weight, C.J.; Lieser, G.; Larson, B.T.; Gao, T.; Lane, B.R.; Campbell, S.C.; Gill, I.S.; Novick, A.C.; Fergany, A.F. Partial nephrectomy is associated with improved overall survival compared to radical nephrectomy in patients with unanticipated benign renal tumours. Eur. Urol. 2010, 58, 293–298. [Google Scholar] [CrossRef]
- Atwell, T.D.; Schmit, G.D.; Boorjian, S.A.; Mandrekar, J.; Kurup, A.N.; Weisbrod, A.J.; Chow, G.K.; Leibovich, B.C.; Callstrom, M.R.; Patterson, D.E.; et al. Percutaneous ablation of renal masses measuring 3.0 cm and smaller: Comparative local control and complications after radiofrequency ablation and cryoablation. Am. J. Roentgenol. 2013, 200, 461–466. [Google Scholar] [CrossRef]
- Caputo, P.A.; Zargar, H.; Ramirez, D.; Andrade, H.S.; Akca, O.; Gao, T.; Kaouk, J.H. Cryoablation versus Partial Nephrectomy for Clinical T1b Renal Tumors: A Matched Group Comparative Analysis. Eur. Urol. 2017, 71, 111–117. [Google Scholar] [CrossRef]
- Tian, Y.; Qi, X.; Jiang, X.; Shang, L.; Xu, K.; Shao, H. Cryoablation and immune synergistic effect for lung cancer: A review. Front. Immunol. 2022, 13, 950921. [Google Scholar] [CrossRef]
- Moore, W.; Talati, R.; Bhattacharji, P.; Bilfinger, T. Five-year survival after cryoablation of stage I non-small cell lung cancer in medically inoperable patients. J. Vasc. Interv. Radiol. 2015, 26, 312–319. [Google Scholar] [CrossRef]
- Lyons, G.R.; Askin, G.; Pua, B.B. Clinical Outcomes after Pulmonary Cryoablation with the Use of a Triple Freeze Protocol. J. Vasc. Interv. Radiol. 2018, 29, 714–721. [Google Scholar] [CrossRef]
- Pusceddu, C.; Sotgia, B.; Fele, R.M.; Melis, L. CT-guided thin needles percutaneous cryoablation (PCA) in patients with primary and secondary lung tumors: A preliminary experience. Eur. J. Radiol. 2013, 82, e246–e253. [Google Scholar] [CrossRef]
- Gao, W.; Guo, Z.; Shu, S.; Xing, W.; Zhang, W.; Yang, X. The application effect of percutaneous cryoablation for the stage IIIB/IV advanced non-small-cell lung cancer after the failure of chemoradiotherapy. Asian J. Surg. 2018, 41, 530–536. [Google Scholar] [CrossRef]
- Yang, W.; An, Y.; Li, Q.; Liu, C.; Zhu, B.; Huang, Q.; Zhao, M.; Yang, F.; Feng, H.; Hu, K. Co-ablation versus cryoablation for the treatment of stage III–IV non-small cell lung cancer: A prospective, noninferiority, randomized, controlled trial (RCT). Thorac. Cancer 2021, 12, 475–483. [Google Scholar] [CrossRef]
- Pfleiderer, S.O.R.; Freesmeyer, M.G.; Marx, C.; Kühne-Heid, R.; Schneider, A.; Kaiser, W.A. Cryotherapy of breast cancer under ultrasound guidance: Initial results and limitations. Eur. Radiol. 2002, 12, 3009–3014. [Google Scholar] [CrossRef]
- Fine, R.E.; Gilmore, R.C.; Dietz, J.R.; Boolbol, S.K.; Berry, M.P.; Han, L.K.; Kenler, A.S.; Sabel, M.; Tomkovich, K.R.; VanderWalde, N.A.; et al. Cryoablation without Excision for Low-Risk Early-Stage Breast Cancer: 3-Year Interim Analysis of Ipsilateral Breast Tumor Recurrence in the ICE3 Trial. Ann. Surg. Oncol. 2021, 28, 5525–5534. [Google Scholar] [CrossRef]
- Niu, L.; Zhou, L.; Xu, K. Cryosurgery of breast cancer. Gland Surg. 2012, 1, 111–118. [Google Scholar]
- Simmons, R.M.; Ballman, K.V.; Cox, C.; Carp, N.; Sabol, J.; Hwang, R.F.; Attai, D.; Sabel, M.; Nathanson, D.; Kenler, A.; et al. A Phase II Trial Exploring the Success of Cryoablation Therapy in the Treatment of Invasive Breast Carcinoma: Results from ACOSOG (Alliance) Z1072. Ann. Surg. Oncol. 2016, 23, 2438–2445. [Google Scholar] [CrossRef]
- Vora, B.M.K.; Munk, P.L.; Somasundaram, N.; Ouellette, H.A.; Mallinson, P.I.; Sheikh, A.; Abdul Kadir, H.; Tan, T.J.; Yan, Y.Y. Cryotherapy in extra-abdominal desmoid tumors: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0261657. [Google Scholar] [CrossRef]
- Auloge, P.; Garnon, J.; Robinson, J.M.; Thenint, M.-A.; Koch, G.; Caudrelier, J.; Weiss, J.; Cazzato, R.L.; Kurtz, J.E.; Gangi, A. Percutaneous cryoablation for advanced and refractory extra-abdominal desmoid tumors. Int. J. Clin. Oncol. 2021, 26, 1147–1158. [Google Scholar] [CrossRef]
- Redifer Tremblay, K.; Lea, W.B.; Neilson, J.C.; King, D.M.; Tutton, S.M. Percutaneous cryoablation for the treatment of extra-abdominal desmoid tumors. J. Surg. Oncol. 2019, 120, 366–375. [Google Scholar] [CrossRef]
- Havez, M.; Lippa, N.; Al-Ammari, S.; Kind, M.; Stoeckle, E.; Italiano, A.; Gangi, A.; Hauger, O.; Cornelis, F. Percutaneous image-guided cryoablation in inoperable extra-abdominal desmoid tumors: A study of tolerability and efficacy. Cardiovasc. Interv. Radiol. 2014, 37, 1500–1506. [Google Scholar] [CrossRef]
- Schmitz, J.J.; Schmit, G.D.; Atwell, T.D.; Callstrom, M.R.; Kurup, A.N.; Weisbrod, A.J.; Morris, J.M. Percutaneous Cryoablation of Extraabdominal Desmoid Tumors: A 10-Year Experience. Am. J. Roentgenol. 2016, 207, 190–195. [Google Scholar] [CrossRef]
- Bouhamama, A.; Lame, F.; Mastier, C.; Cuinet, M.; Thibaut, A.; Beji, H.; Ricoeur, A.; Blay, J.-Y.; Pilleul, F. Local Control and Analgesic Efficacy of Percutaneous Cryoablation for Desmoid Tumors. Cardiovasc. Interv. Radiol. 2020, 43, 110–119. [Google Scholar] [CrossRef]
- Saltiel, S.; Bize, P.E.; Goetti, P.; Gallusser, N.; Cherix, S.; Denys, A.; Becce, F.; Tsoumakidou, G. Cryoablation of Extra-Abdominal Desmoid Tumors: A Single-Center Experience with Literature Review. Diagnostics 2020, 10, 556. [Google Scholar] [CrossRef]
- Efrima, B.; Ovadia, J.; Drukman, I.; Khoury, A.; Rath, E.; Dadia, S.; Gortzak, Y.; Albagli, A.; Sternheim, A.; Segal, O. Cryo-surgery for symptomatic extra-abdominal desmoids. A proof of concept study. J. Surg. Oncol. 2021, 124, 627–634. [Google Scholar] [CrossRef]
- Eastham, J.A.; Auffenberg, G.B.; Barocas, D.A.; Chou, R.; Crispino, T.; Davis, J.W.; Eggener, S.; Horwitz, E.M.; Kane, C.J.; Kirkby, E.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part I: Introduction, Risk Assessment, Staging, and Risk-Based Management. J. Urol. 2022, 208, 10–18. [Google Scholar] [CrossRef]
- Gangi, A.; Tsoumakidou, G.; Abdelli, O.; Buy, X.; de Mathelin, M.; Jacqmin, D.; Lang, H. Percutaneous MR-guided cryoablation of prostate cancer: Initial experience. Eur. Radiol. 2012, 22, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- oodrum, D.A.; Kawashima, A.; Karnes, R.J.; Davis, B.J.; Frank, I.; Engen, D.E.; Gorny, K.R.; Felmlee, J.P.; Callstrom, M.R.; Mynderse, L.A. Magnetic resonance imaging-guided cryoablation of recurrent prostate cancer after radical prostatectomy: Initial single institution experience. Urology 2013, 82, 870–875. [Google Scholar] [CrossRef]
- Bomers, J.G.R.; Yakar, D.; Overduin, C.G.; Sedelaar, J.P.M.; Vergunst, H.; Barentsz, J.O.; de Lange, F.; Fütterer, J.J. MR Imaging–guided Focal Cryoablation in Patients with Recurrent Prostate Cancer. Radiology 2013, 268, 451–460. [Google Scholar] [CrossRef]
- De Marini, P.; Cazzato, R.L.; Garnon, J.; Tricard, T.; Koch, G.; Tsoumakidou, G.; Ramamurthy, N.; Lang, H.; Gangi, A. Percutaneous MR-guided whole-gland prostate cancer cryoablation: Safety considerations and oncologic results in 30 consecutive patients. Br. J. Radiol. 2019, 92, 20180965. [Google Scholar] [CrossRef] [PubMed]
- Kinsman, K.A.; White, M.L.; Mynderse, L.A.; Kawashima, A.; Rampton, K.; Gorny, K.R.; Atwell, T.D.; Felmlee, J.P.; Callstrom, M.R.; Woodrum, D.A. Whole-Gland Prostate Cancer Cryoablation with Magnetic Resonance Imaging Guidance: One-Year Follow-Up. Cardiovasc. Interv. Radiol. 2018, 41, 344–349. [Google Scholar] [CrossRef]
- Lomas, D.J.; Woodrum, D.A.; McLaren, R.H.; Gorny, K.R.; Felmlee, J.P.; Favazza, C.; Lu, A.; Mynderse, L.A. Rectal wall saline displacement for improved margin during MRI-guided cryoablation of primary and recurrent prostate cancer. Abdom. Radiol. 2020, 45, 1155–1161. [Google Scholar] [CrossRef]
- Chen, C.-H.; Pu, Y.-S. Proactive rectal warming during total-gland prostate cryoablation. Cryobiology 2014, 68, 431–435. [Google Scholar] [CrossRef]
- de Castro Abreu, A.L.; Ma, Y.; Shoji, S.; Marien, A.; Leslie, S.; Gill, I.; Ukimura, O. Denonvilliers’ space expansion by transperineal injection of hydrogel: Implications for focal therapy of prostate cancer. Int. J. Urol. 2014, 21, 416–418. [Google Scholar] [CrossRef]
- Rubinsky, B.; Onik, G.; Mikus, P. Irreversible electroporation: A new ablation modality—Clinical implications. Technol. Cancer Res. Treat. 2007, 6, 37–48. [Google Scholar] [CrossRef]
- Hsiao, C.-Y.; Huang, K.-W. Irreversible Electroporation: A Novel Ultrasound-guided Modality for Non-thermal Tumor Ablation. J. Med. Ultrasound 2017, 25, 195–200. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Sun, S.; Zhang, Y.; Xie, F.; Li, S. The role of irreversible electroporation in promoting M1 macrophage polarization via regulating the HMGB1-RAGE-MAPK axis in pancreatic cancer. OncoImmunology 2021, 10, 1897295. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Huang, X.; Zhang, Y.; Lin, X.; Li, S. T-cell activation and immune memory enhancement induced by irreversible electroporation in pancreatic cancer. Clin. Transl. Med. 2020, 10, e39. [Google Scholar] [CrossRef] [PubMed]
- Babikr, F.; Wan, J.; Xu, A.; Wu, Z.; Ahmed, S.; Freywald, A.; Chibbar, R.; Wu, Y.; Moser, M.; Groot, G.; et al. Distinct roles but cooperative effect of TLR3/9 agonists and PD-1 blockade in converting the immunotolerant microenvironment of irreversible electroporation-ablated tumors. Cell. Mol. Immunol. 2021, 18, 2632–2647. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, H.J.; Vroomen, L.G.P.H.; Nielsen, K.; van Tilborg, A.A.J.M.; Comans, E.F.I.; van Kuijk, C.; van der Meijs, B.B.; van den Bergh, J.; van den Tol, P.M.P.; Meijerink, M.R. Colorectal liver metastatic disease: Efficacy of irreversible electroporation—A single-arm phase II clinical trial (COLDFIRE-2 trial). BMC Cancer 2015, 15, 772. [Google Scholar] [CrossRef] [PubMed]
- Ruarus, A.H.; Vroomen, L.G.P.H.; Puijk, R.S.; Scheffer, H.J.; Zonderhuis, B.M.; Kazemier, G.; van den Tol, M.P.; Berger, F.H.; Meijerink, M.R. Irreversible Electroporation in Hepatopancreaticobiliary Tumours. Can. Assoc. Radiol. J. 2018, 69, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Kluger, M.D.; Epelboym, I.; Schrope, B.A.; Mahendraraj, K.; Hecht, E.M.; Susman, J.; Weintraub, J.L.; Chabot, J.A. Single-Institution Experience with Irreversible Electroporation for T4 Pancreatic Cancer: First 50 Patients. Ann. Surg. Oncol. 2016, 23, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.C.G.I.; Kwon, D.; Chalikonda, S.; Sellers, M.; Kotz, E.; Scoggins, C.; McMasters, K.M.; Watkins, K. Treatment of 200 Locally Advanced (Stage III) Pancreatic Adenocarcinoma Patients with Irreversible Electroporation: Safety and Efficacy. Ann. Surg. 2015, 262, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, H.J.; Vroomen, L.G.P.H.; de Jong, M.C.; Melenhorst, M.C.A.M.; Zonderhuis, B.M.; Daams, F.; Vogel, J.A.; Besselink, M.G.H.; van Kuijk, C.; Witvliet, J.; et al. Ablation of Locally Advanced Pancreatic Cancer with Percutaneous Irreversible Electroporation: Results of the Phase I/II PANFIRE Study. Radiology 2017, 282, 585–597. [Google Scholar] [CrossRef]
- Lum, M.A.; Shah, S.B.; Durack, J.C.; Nikolovski, I. Imaging of Small Renal Masses before and after Thermal Ablation. RadioGraphics 2019, 39, 2134–2145. [Google Scholar] [CrossRef]
- Pech, M.; Janitzky, A.; Wendler, J.J.; Strang, C.; Blaschke, S.; Dudeck, O.; Ricke, J.; Liehr, U.-B. Irreversible Electroporation of Renal Cell Carcinoma: A First-in-Man Phase I Clinical Study. Cardiovasc. Interv. Radiol. 2011, 34, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Canvasser, N.E.; Sorokin, I.; Lay, A.H.; Morgan, M.S.C.; Ozayar, A.; Trimmer, C.; Cadeddu, J.A. Irreversible electroporation of small renal masses: Suboptimal oncologic efficacy in an early series. World J. Urol. 2017, 35, 1549–1555. [Google Scholar] [CrossRef]
- Tasu, J.-P.; Tougeron, D.; Rols, M.-P. Irreversible electroporation and electrochemotherapy in oncology: State of the art. Diagn. Interv. Imaging 2022, 103, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Onik, G.; Mikus, P.; Rubinsky, B. Irreversible Electroporation: Implications for Prostate Ablation. Technol. Cancer Res. Treat. 2007, 6, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Neal II, R.E.; Millar, J.L.; Kavnoudias, H.; Royce, P.; Rosenfeldt, F.; Pham, A.; Smith, R.; Davalos, R.V.; Thomson, K.R. In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation. Prostate 2014, 74, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Blazevski, A.; Scheltema, M.J.; Yuen, B.; Masand, N.; Nguyen, T.V.; Delprado, W.; Shnier, R.; Haynes, A.-M.; Cusick, T.; Thompson, J.; et al. Oncological and Quality-of-life Outcomes Following Focal Irreversible Electroporation as Primary Treatment for Localised Prostate Cancer: A Biopsy-monitored Prospective Cohort. Eur. Urol. Oncol. 2020, 3, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Blazevski, A.; Amin, A.; Scheltema, M.J.; Balakrishnan, A.; Haynes, A.-M.; Barreto, D.; Cusick, T.; Thompson, J.; Stricker, P.D. Focal ablation of apical prostate cancer lesions with irreversible electroporation (IRE). World J. Urol. 2021, 39, 1107–1114. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xue, W.; Yan, W.; Yin, L.; Dong, B.; He, B.; Yu, Y.; Shi, W.; Zhou, Z.; Lin, H.; et al. Extended Focal Ablation of Localized Prostate Cancer with High-Frequency Irreversible Electroporation: A Nonrandomized Controlled Trial. JAMA Surg. 2022, 157, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Kalapara, A.A.; Ballok, Z.E.; Ramdave, S.; O’Sullivan, R.; Ryan, A.; Konety, B.; Grummet, J.P.; Frydenberg, M. Combined Utility of 68Ga-Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography and Multiparametric Magnetic Resonance Imaging in Predicting Prostate Biopsy Pathology. Eur. Urol. Oncol. 2022, 5, 314–320. [Google Scholar] [CrossRef]
- Kalapara, A.A.; Verbeek, J.F.M.; Nieboer, D.; Fahey, M.; Gnanapragasam, V.; Van Hemelrijck, M.; Lee, L.S.; Bangma, C.H.; Steyerberg, E.W.; Harkin, T.; et al. Adherence to Active Surveillance Protocols for Low-risk Prostate Cancer: Results of the Movember Foundation’s Global Action Plan Prostate Cancer Active Surveillance Initiative. Eur. Urol. Oncol. 2020, 3, 80–91. [Google Scholar] [CrossRef]
- Izadifar, Z.; Izadifar, Z.; Chapman, D.; Babyn, P. An Introduction to High Intensity Focused Ultrasound: Systematic Review on Principles, Devices, and Clinical Applications. J. Clin. Med. 2020, 9, 460. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-F. High intensity focused ultrasound in clinical tumor ablation. World J. Clin. Oncol. 2011, 2, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Dewey, W.C. Arrhenius relationships from the molecule and cell to the clinic. Int. J. Hyperth. 2009, 25, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Lagneaux, L.; de Meulenaer, E.C.; Delforge, A.; Dejeneffe, M.; Massy, M.; Moerman, C.; Hannecart, B.; Canivet, Y.; Lepeltier, M.F.; Bron, D. Ultrasonic low-energy treatment: A novel approach to induce apoptosis in human leukemic cells. Exp. Hematol. 2002, 30, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Salgaonkar, V.A.; Diederich, C.J. Catheter-based ultrasound technology for image-guided thermal therapy: Current technology and applications. Int. J. Hyperth. 2015, 31, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Chen, W.Z.; Bai, J.; Zou, J.Z.; Wang, Z.L.; Zhu, H.; Wang, Z.B. Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound. Ultrasound Med. Biol. 2001, 27, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, Z.-B.; Chen, W.-Z.; Wang, W.; Gui, Y.; Zhang, M.; Zheng, G.; Zhou, Y.; Xu, G.; Li, M.; et al. Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: An overview. Ultrason. Sonochem. 2004, 11, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-X.; Xu, G.-L.; Jiang, Z.-Y.; Li, J.-J.; Luo, G.-Y.; Shan, H.-B.; Zhang, R.; Li, Y. Analysis of clinical effect of high-intensity focused ultrasound on liver cancer. World J. Gastroenterol. 2004, 10, 2201–2204. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, Z.-B.; Chen, W.-Z.; Zou, J.-Z.; Bai, J.; Zhu, H.; Li, K.-Q.; Jin, C.-B.; Xie, F.-L.; Su, H.-B. Advanced hepatocellular carcinoma: Treatment with high-intensity focused ultrasound ablation combined with transcatheter arterial embolization. Radiology 2005, 235, 659–667. [Google Scholar] [CrossRef]
- Wu, F.; Wang, Z.-B.; Cao, Y.-D.; Zhu, X.-Q.; Zhu, H.; Chen, W.-Z.; Zou, J.-Z. “Wide local ablation” of localized breast cancer using high intensity focused ultrasound. J. Surg. Oncol. 2007, 96, 130–136. [Google Scholar] [CrossRef]
- Furusawa, H.; Namba, K.; Thomsen, S.; Akiyama, F.; Bendet, A.; Tanaka, C.; Yasuda, Y.; Nakahara, H. Magnetic resonance–guided focused ultrasound surgery of breast cancer: Reliability and effectiveness. J. Am. Coll. Surg. 2006, 203, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, Z.-B.; Zhu, H.; Chen, W.-Z.; Zou, J.-Z.; Bai, J.; Li, K.-Q.; Jin, C.-B.; Xie, F.-L.; Su, H.-B. Extracorporeal high intensity focused ultrasound treatment for patients with breast cancer. Breast Cancer Res. Treat. 2005, 92, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, Z.-B.; Cao, Y.-D.; Chen, W.-Z.; Bai, J.; Zou, J.-Z.; Zhu, H. A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer. Br. J. Cancer 2003, 89, 2227–2233. [Google Scholar] [CrossRef] [PubMed]
- Gianfelice, D.; Khiat, A.; Amara, M.; Belblidia, A.; Boulanger, Y. MR imaging–guided focused US ablation of breast cancer: Histopathologic assessment of effectiveness—initial experience. Radiology 2003, 227, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, H.; Namba, K.; Nakahara, H.; Tanaka, C.; Yasuda, Y.; Hirabara, E.; Imahariyama, M.; Komaki, K. The evolving non-surgical ablation of breast cancer: MR guided focused ultrasound (MRgFUS). Breast Cancer 2007, 14, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.U.; Zacharakis, E.; Dudderidge, T.; Armitage, J.N.; Scott, R.; Calleary, J.; Illing, R.; Kirkham, A.; Freeman, A.; Ogden, C.; et al. High-intensity-focused ultrasound in the treatment of primary prostate cancer: The first UK series. Br. J. Cancer 2009, 101, 19–26. [Google Scholar] [CrossRef]
- Chaussy, C.; Thüroff, S. The status of high-intensity focused ultrasound in the treatment of localized prostate cancer and the impact of a combined resection. Curr. Urol. Rep. 2003, 4, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Beerlage, H.P.; Thüroff, S.; Debruyne, F.M.; Chaussy, C.; de la Rosette, J.J. Transrectal high-intensity focused ultrasound using the Ablatherm device in the treatment of localized prostate carcinoma. Urology 1999, 54, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Chaussy, C.; Thüroff, S. High-intensity focused ultrasound in prostate cancer: Results after 3 years. Mol. Urol. 2000, 4, 179–182. [Google Scholar]
- Ripert, T.; Azémar, M.-D.; Ménard, J.; Bayoud, Y.; Messaoudi, R.; Duval, F.; Staerman, F. Transrectal high-intensity focused ultrasound (HIFU) treatment of localized prostate cancer: Review of technical incidents and morbidity after 5 years of use. Prostate Cancer Prostatic Dis. 2010, 13, 132–137. [Google Scholar] [CrossRef]
- Hatiboglu, G.; Popeneciu, I.V.; Deppert, M.; Nyarangi-Dix, J.; Hadaschik, B.; Hohenfellner, M.; Teber, D.; Pahernik, S. Quality of life and functional outcome after infravesical desobstruction and HIFU treatment for localized prostate cancer. BMC Urol. 2017, 17, 5. [Google Scholar] [CrossRef]
- Sanda, M.G.; Cadeddu, J.A.; Kirkby, E.; Chen, R.C.; Crispino, T.; Fontanarosa, J.; Freedland, S.J.; Greene, K.; Klotz, L.H.; Makarov, D.V.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO/SUO Guideline. Part I: Risk Stratification, Shared Decision Making, and Care Options. J. Urol. 2018, 199, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, M.E.; Ahrar, K. Ablation of Small Renal Masses. Tech. Vasc. Interv. Radiol. 2020, 23, 100674. [Google Scholar] [CrossRef] [PubMed]
- Klingler, H.C.; Susani, M.; Seip, R.; Mauermann, J.; Sanghvi, N.; Marberger, M.J. A novel approach to energy ablative therapy of small renal tumours: Laparoscopic high-intensity focused ultrasound. Eur. Urol. 2008, 53, 810–816; discussion 817–818. [Google Scholar] [CrossRef]
- Illing, R.O.; Kennedy, J.E.; Wu, F.; ter Haar, G.R.; Protheroe, A.S.; Friend, P.J.; Gleeson, F.V.; Cranston, D.W.; Phillips, R.R.; Middleton, M.R. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br. J. Cancer 2005, 93, 890–895. [Google Scholar] [CrossRef]
- Köhrmann, K.U.; Michel, M.S.; Gaa, J.; Marlinghaus, E.; Alken, P. High intensity focused ultrasound as noninvasive therapy for multilocal renal cell carcinoma: Case study and review of the literature. J. Urol. 2002, 167, 2397–2403. [Google Scholar] [CrossRef]
- Napier, K.J.; Scheerer, M.; Misra, S. Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment modalities. World J. Gastrointest. Oncol. 2014, 6, 112–120. [Google Scholar] [CrossRef]
- Melodelima, D.; Prat, F.; Fritsch, J.; Theillere, Y.; Cathignol, D. Treatment of esophageal tumors using high intensity intraluminal ultrasound: First clinical results. J. Transl. Med. 2008, 6, 28. [Google Scholar] [CrossRef]
- Jung, S.E.; Cho, S.H.; Jang, J.H.; Han, J.-Y. High-intensity focused ultrasound ablation in hepatic and pancreatic cancer: Complications. Abdom. Imaging 2011, 36, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.L.; Hwang, J.H.; Huang, X.B.; Yao, S.S.; He, C.J.; Ge, X.H.; Ge, H.Y.; Wang, X.F. Early clinical experience using high intensity focused ultrasound for palliation of inoperable pancreatic cancer. JOP J. Pancreas 2009, 10, 123–129. [Google Scholar]
- Zhang, F.-Q.; Li, L.; Huang, P.-C.; Xia, F.-F.; Zhu, L.; Cao, C. Stent Insertion with High Intensity-Focused Ultrasound Ablation for Biliary Obstruction Caused by Pancreatic Carcinoma: A Randomized Controlled Trial. Surg. Laparosc. Endosc. Percutan. Tech. 2021, 31, 298–303. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, G.; Wang, D.; Yu, X.; Zhang, Y.; Zhu, J.; Ji, Y.; Zhong, B.; Zhao, W.; Yang, Z.; et al. Concurrent gemcitabine and high-intensity focused ultrasound therapy in patients with locally advanced pancreatic cancer. Anti-Cancer Drugs 2010, 21, 447–452. [Google Scholar] [CrossRef]
- Lipsman, N.; Mainprize, T.G.; Schwartz, M.L.; Hynynen, K.; Lozano, A.M. Intracranial applications of magnetic resonance-guided focused ultrasound. Neurotherapeutics 2014, 11, 593–605. [Google Scholar] [CrossRef] [PubMed]
- McDannold, N.; Clement, G.T.; Black, P.; Jolesz, F.; Hynynen, K. Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: Initial findings in 3 patients. Neurosurgery 2010, 66, 323–332; discussion 332. [Google Scholar] [CrossRef]
- Cohen-Inbar, O.; Xu, Z.; Sheehan, J.P. Focused ultrasound-aided immunomodulation in glioblastoma multiforme: A therapeutic concept. J. Ther. Ultrasound 2016, 4, 2. [Google Scholar] [CrossRef]
- Hynynen, K.; Chung, A.H.; Colucci, V.; Jolesz, F.A. Potential adverse effects of high-intensity focused ultrasound exposure on blood vessels in vivo. Ultrasound Med. Biol. 1996, 22, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, W.; Fan, W.; Huang, J.; Zhang, F.; Wu, P. Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound. Cancer 2010, 116, 3934–3942. [Google Scholar] [CrossRef]
- Liberman, B.; Gianfelice, D.; Inbar, Y.; Beck, A.; Rabin, T.; Shabshin, N.; Chander, G.; Hengst, S.; Pfeffer, R.; Chechick, A.; et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: A multicenter study. Ann. Surg. Oncol. 2009, 16, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Hall, T.L.; Vlaisavljevich, E.; Lee, F.T. Histotripsy: The first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int. J. Hyperth. 2021, 38, 561–575. [Google Scholar] [CrossRef]
- HistoSonics, Inc. The HistoSonics Edison System for Treatment of Primary Solid Renal Tumors Using Histotripsy (#HOPE4KIDNEY US); HistoSonics, Inc.: Ann Arbor, MI, USA, 2024. Available online: https://clinicaltrials.gov/study/NCT05820087 (accessed on 24 May 2024).
Image Guidance | Advantages | Disadvantages |
Ultrasound | • Real-time feedback | • Limited tissue differentiation |
• Doppler capabilities | • Visualization depth | |
• Portability | • Gas distortion | |
• Low cost | ||
• General availability | ||
Contrast-enchanced ultrasound | • Improved dynamic range | • Single-plane image |
• Improved tumor detection | • Risk of allergy and pulmonary HTN | |
• Quick and cost-effective | • Needs to be able to hold breath | |
CT | • Quick acquisition | • Radiation exposure |
• Paired with fluoroscopy and US | • Limited real-time imaging | |
• Cone beam for higher resolution | • Contrast limitations with renal insufficiency | |
• 3D reconstruction available | • Limitation with isodense targets | |
MRI | • Best tumor/tissue distinction | • High cost |
• 3D reconstruction | • Limited availability | |
• Small mass resolution | • MRI-compatible tools required | |
• Thermal monitoring | • More skilled procedure | |
• Artifact susceptibility | ||
Hybrid Imaging | Advantages | Disadvantages |
Real-time CT/MR sonography | • Instant reference to CT/MR scans | • Needs software and US-compatible systems |
• Improved localization | • Inconsistencies between US and CT/MR alignment | |
• Target masses poorly visualized on US | • Increased time and cost | |
PET-CT | • Tumor metabolic signature | • Faulty signatures |
• Detect isodense masses | • Confounded by inflammatory conditions | |
• Combination scanners increase speed and accuracy | • Low resolution relative to CT | |
• Better mass classification | • Reduced signals in diabetes and hyperglycemia | |
• Incidentalomas | ||
SPECT-CT | • Improved detection over 131-I whole-body scan | • Less sensitive than PET |
• Faster than PET | • Lower resolution than PET | |
• Less radiation than PET | • Fewer tracer options than PET | |
• Cost-effective and more prevalent vs. PET |
Ablation | Advantages | Disadvantages |
---|---|---|
RFA | • Cost-effective | • Limited real-time feedback |
• Versatile to tumor type | • Pacemaker interference | |
• Validated in most tumor types | • General anesthesia common | |
• Can use multiple probes | • Risk of ground pad burns | |
• Targeting smaller tumors for safe margins | ||
Cryoablation | • Visible ablation margins | • Ablation consistency |
• No pacemaker interference | • Tissue thermal conduction limits efficacy | |
• Phase shift measurable on imaging modalities | • Long ablation times | |
• Increased anti-tumor immunity | • Risk of coagulopathy and hemorrhage | |
• Risk of disseminated intravascular coagulation (DIC) | ||
MWA | • Higher ablation temperatures vs. RFA | • Requires general anesthesia |
• Large ablation zones | • Unable to monitor tissue impedance | |
• Fast and short ablation pulses | • More technically challenging | |
• Capable of perivascular targeting | • Proactive cooling to prevent wire overheating | |
• Cost-effective | • Requires larger probes for energy delivery | |
IRE | • Short ablation times | • Requires general anesthesia with paralytic agents |
• Defined ablation zones | • Risk of cardiac arrhythmias | |
• Temperature independent | • Less validated than other techniques | |
HIFU | • Non-radiative modality | • Requires patient cooperation |
• Noninvasive modality | • Risk of thermal injuries | |
• Extracorporeal | • Extended treatment duration | |
Histotripsy | • Minimal thermal generation | • Specific equipment requirements |
• Noninvasive option | • Limited by pneumatic interference | |
• Atraumatic | • Challenging targeting for deep tumors or large body habitus | |
• High-resolution targeting | • Risk of thromboembolism | |
• Well-demarcated boundaries | • Limited efficacy in thick connective tissue | |
• Real-time feedback |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campbell, W.A., IV; Makary, M.S. Advances in Image-Guided Ablation Therapies for Solid Tumors. Cancers 2024, 16, 2560. https://doi.org/10.3390/cancers16142560
Campbell WA IV, Makary MS. Advances in Image-Guided Ablation Therapies for Solid Tumors. Cancers. 2024; 16(14):2560. https://doi.org/10.3390/cancers16142560
Chicago/Turabian StyleCampbell, Warren A., IV, and Mina S. Makary. 2024. "Advances in Image-Guided Ablation Therapies for Solid Tumors" Cancers 16, no. 14: 2560. https://doi.org/10.3390/cancers16142560
APA StyleCampbell, W. A., IV, & Makary, M. S. (2024). Advances in Image-Guided Ablation Therapies for Solid Tumors. Cancers, 16(14), 2560. https://doi.org/10.3390/cancers16142560