Germline Sequencing of DNA Damage Repair Genes in Two Hereditary Prostate Cancer Cohorts Reveals New Disease Risk-Associated Gene Variants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Resources
2.2. Whole-Genome Sequencing and Bioinformatic Sequence Analysis
2.3. Variant Filtering, Prioritisation, and Validation
2.4. Additional Genotyping in Expanded Australian Resources
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics of Australian and North American PrCa Resources
3.2. Identification of Candidate Rare DDR PrCa Risk Variants
3.3. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Ethics Approval and Consent to Participate
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mucci, L.A.; Hjelmborg, J.B.; Harris, J.R.; Czene, K.; Havelick, D.J.; Scheike, T.; Graff, R.E.; Holst, K.; Möller, S.; Unger, R.H.; et al. Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA 2016, 315, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.; Romero-Laorden, N.; del Pozo, A.; Lozano, R.; Medina, A.; Puente, J.; Piulats, J.M.; Lorente, D.; Saez, M.I.; Morales-Barrera, R.; et al. PROREPAIR-B: A Prospective Cohort Study of the Impact of Germline DNA Repair Mutations on the Outcomes of Patients With Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2019, 37, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Abida, W.; Armenia, J.; Gopalan, A.; Brennan, R.; Walsh, M.; Barron, D.; Danila, D.; Rathkopf, D.; Morris, M.; Slovin, S.; et al. Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making. JCO Precis. Oncol. 2017, 1. [Google Scholar] [CrossRef] [PubMed]
- Abida, W.; Cyrta, J.; Heller, G.; Prandi, D.; Armenia, J.; Coleman, I.; Cieslik, M.; Benelli, M.; Robinson, D.; Van Allen, E.M.; et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 11428–11436. [Google Scholar] [CrossRef]
- Robinson, D.; Van Allen, E.M.; Wu, Y.-M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.-M.; Montgomery, B.; Taplin, M.-E.; Pritchard, C.C.; Attard, G.; et al. Integrative Clinical Genomics of Advanced Prostate Cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef]
- Holt, C. Comprehensive Genetic Profiling Unravels Molecular Targets in Prostate Cancer. Oncol. Times 2019, 41, 9. [Google Scholar] [CrossRef]
- Beltran, H.; Yelensky, R.; Frampton, G.M.; Park, K.; Downing, S.R.; MacDonald, T.Y.; Jarosz, M.; Lipson, D.; Tagawa, S.T.; Nanus, D.M.; et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur. Urol. 2013, 63, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, C.C.; Mateo, J.; Walsh, M.F.; De Sarkar, N.; Abida, W.; Beltran, H.; Garofalo, A.; Gulati, R.; Carreira, S.; Eeles, R.; et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N. Engl. J. Med. 2016, 375, 443–453. [Google Scholar] [CrossRef]
- Lozano, R.; Castro, E.; Aragón, I.M.; Cendón, Y.; Cattrini, C.; López-Casas, P.P.; Olmos, D. Genetic aberrations in DNA repair pathways: A cornerstone of precision oncology in prostate cancer. Br. J. Cancer 2021, 124, 552–563. [Google Scholar] [CrossRef]
- Paulo, P.; Maia, S.; Pinto, C.; Pinto, P.; Monteiro, A.; Peixoto, A.; Teixeira, M.R. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer. PLoS Genet. 2018, 14, e1007355. [Google Scholar] [CrossRef]
- Leongamornlert, D.A.; Saunders, E.J.; Wakerell, S.; Whitmore, I.; Dadaev, T.; Cieza-Borrella, C.; Benafif, S.; Brook, M.N.; Donovan, J.L.; Hamdy, F.C.; et al. Germline DNA Repair Gene Mutations in Young-onset Prostate Cancer Cases in the UK: Evidence for a More Extensive Genetic Panel. Eur. Urol. 2019, 76, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Darst, B.F.; Dadaev, T.; Saunders, E.; Sheng, X.; Wan, P.; Pooler, L.; Xia, L.Y.; Chanock, S.; Berndt, S.I.; Gapstur, S.M.; et al. Germline Sequencing DNA Repair Genes in 5545 Men With Aggressive and Nonaggressive Prostate Cancer. JNCI J. Natl. Cancer Inst. 2021, 113, 616–625. [Google Scholar] [CrossRef]
- Nombela, P.; Lozano, R.; Aytes, A.; Mateo, J.; Olmos, D.; Castro, E. BRCA2 and Other DDR Genes in Prostate Cancer. Cancers 2019, 11, 352. [Google Scholar] [CrossRef]
- Castro, E.; Goh, C.; Leongamornlert, D.; Saunders, E.; Tymrakiewicz, M.; Dadaev, T.; Govindasami, K.; Guy, M.; Ellis, S.; Frost, D.; et al. Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer. Eur. Urol. 2015, 68, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Na, R.; Zheng, S.L.; Han, M.; Yu, H.; Jiang, D.; Shah, S.; Ewing, C.M.; Zhang, L.; Novakovic, K.; Petkewicz, J.; et al. Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death. Eur. Urol. 2017, 71, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Fisher, C.; Foster, C.S.; Jameson, C.; Barbachanno, Y.; Bartlett, J.; Bancroft, E.; Doherty, R.; Kote-Jarai, Z.; Peock, S.; et al. Prostate cancer in male BRCA1 and BRCA2 mutation carriers has a more aggressive phenotype. Br. J. Cancer 2008, 98, 502–507. [Google Scholar] [CrossRef]
- Castro, E.; Goh, C.; Olmos, D.; Saunders, E.; Leongamornlert, D.; Tymrakiewicz, M.; Mahmud, N.; Dadaev, T.; Govindasami, K.; Guy, M.; et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J. Clin. Oncol. 2013, 31, 1748–1757. [Google Scholar] [CrossRef]
- Lukashchuk, N.; Barnicle, A.; Adelman, C.A.; Armenia, J.; Kang, J.; Barrett, J.C.; Harrington, E.A. Impact of DNA damage repair alterations on prostate cancer progression and metastasis. Front. Oncol. 2023, 13, 1162644. [Google Scholar] [CrossRef]
- Paulo, P.; Cardoso, M.; Brandão, A.; Pinto, P.; Falconi, A.; Pinheiro, M.; Cerveira, N.; Silva, R.; Santos, C.; Pinto, C.; et al. Genetic landscape of homologous recombination repair genes in early-onset/familial prostate cancer patients. Genes Chromosomes Cancer 2023, 62, 710–720. [Google Scholar] [CrossRef]
- Mateo, J.; Carreira, S.; Sandhu, S.; Miranda, S.; Mossop, H.; Perez-Lopez, R.; Nava Rodrigues, D.; Robinson, D.; Omlin, A.; Tunariu, N.; et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N. Engl. J. Med. 2015, 373, 1697–1708. [Google Scholar] [CrossRef]
- Mota, J.M.; Barnett, E.; Nauseef, J.T.; Nguyen, B.; Stopsack, K.H.; Wibmer, A.; Flynn, J.R.; Heller, G.; Danila, D.C.; Rathkopf, D.; et al. Platinum-Based Chemotherapy in Metastatic Prostate Cancer With DNA Repair Gene Alterations. JCO Precis. Oncol. 2020, 4, 355–366. [Google Scholar] [CrossRef] [PubMed]
- FitzGerald, L.M.; Raspin, K.; Marthick, J.R.; Field, M.A.; Malley, R.C.; Thomson, R.J.; Blackburn, N.B.; Banks, A.; Charlesworth, J.C.; Donovan, S.; et al. Impact of the G84E variant on HOXB13 gene and protein expression in formalin-fixed, paraffin-embedded prostate tumours. Sci. Rep. 2017, 7, 17778. [Google Scholar] [CrossRef] [PubMed]
- Marthick, J.R.; Raspin, K.; Foley, G.R.; Blackburn, N.B.; Banks, A.; Donovan, S.; Malley, R.C.; Field, M.A.; Stanford, J.L.; Ostrander, E.A.; et al. Massively parallel sequencing in hereditary prostate cancer families reveals a rare risk variant in the DNA repair gene, RAD51C. Eur. J. Cancer 2021, 159, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Raspin, K.; FitzGerald, L.M.; Marthick, J.R.; Field, M.A.; Malley, R.C.; Banks, A.; Donovan, S.; Thomson, R.J.; Foley, G.R.; Stanford, J.L.; et al. A rare variant in EZH2 is associated with prostate cancer risk. Int. J. Cancer 2021, 149, 1089–1099. [Google Scholar] [CrossRef]
- Stanford, J.L.; FitzGerald, L.M.; McDonnell, S.K.; Carlson, E.E.; McIntosh, L.M.; Deutsch, K.; Hood, L.; Ostrander, E.A.; Schaid, D.J. Dense genome-wide SNP linkage scan in 301 hereditary prostate cancer families identifies multiple regions with suggestive evidence for linkage. Hum. Mol. Genet. 2009, 18, 1839–1848. [Google Scholar] [CrossRef] [PubMed]
- Foley, G.R.; Blizzard, C.L.; Stokes, B.; Skala, M.; Redwig, F.; Dickinson, J.L.; FitzGerald, L.M. Urban-rural prostate cancer disparities in a regional state of Australia. Sci. Rep. 2022, 12, 3022. [Google Scholar] [CrossRef]
- Li, H.W. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Van der Auwera, G.; O’Connor, B. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra, 1st ed.; O’Reilly Media: Sevastopol, CA, USA, 2020. [Google Scholar]
- Ewing, C.M.; Ray, A.M.; Lange, E.M.; Zuhlke, K.A.; Robbins, C.M.; Tembe, W.D.; Wiley, K.E.; Isaacs, S.D.; Johng, D.; Wang, Y.; et al. Germline Mutations in HOXB13 and Prostate-Cancer Risk. N. Engl. J. Med. 2012, 366, 141–149. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Thornton, T.; McPeek, M.S. Case-Control Association Testing with Related Individuals: A More Powerful Quasi-Likelihood Score Test. Am. J. Human. Genet. 2007, 81, 321–337. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Hao, K.; Ladd-Acosta, C.; Hansen, K.D.; Tsai, H.-J.; Liu, X.; Xu, X.; Thornton, T.A.; Caruso, D.; Keet, C.A.; et al. Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat. Commun. 2015, 6, 6304. [Google Scholar] [CrossRef] [PubMed]
- Cummings, A.C.; Torstenson, E.; Davis, M.F.; D’aoust, L.N.; Scott, W.K.; Pericak-Vance, M.A.; Bush, W.S.; Haines, J.L. Evaluating Power and Type 1 Error in Large Pedigree Analyses of Binary Traits. PLOS ONE 2013, 8, e62615. [Google Scholar] [CrossRef] [PubMed]
- Venselaar, H.; Beek, T.A.T.; Kuipers, R.K.; Hekkelman, M.L.; Vriend, G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinform. 2010, 11, 548. [Google Scholar] [CrossRef]
- Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The Human Genome Browser at UCSC. Genome Res. 2002, 12, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Quang, D.; Chen, Y.; Xie, X. DANN: A deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 2014, 31, 761–763. [Google Scholar] [CrossRef]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE 2012, 7, e46688. [Google Scholar] [CrossRef] [PubMed]
- A Adzhubei, I.; Schmidt, S.; Peshkin, L.; E Ramensky, V.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef]
- Reva, B.; Antipin, Y.; Sander, C. Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Res. 2011, 39, e118. [Google Scholar] [CrossRef] [PubMed]
- A Shihab, H.; Gough, J.; Mort, M.; Cooper, D.N.; Day, I.N.; Gaunt, T.R. Ranking non-synonymous single nucleotide polymorphisms based on disease concepts. Hum. Genom. 2014, 8, 11. [Google Scholar] [CrossRef]
- Bernhofer, M.; Dallago, C.; Karl, T.; Satagopam, V.; Heinzinger, M.; Littmann, M.; Olenyi, T.; Qiu, J.; Schütze, K.; Yachdav, G.; et al. PredictProtein - Predicting Protein Structure and Function for 29 Years. Nucleic Acids Res. 2021, 49, W535–W540. [Google Scholar] [CrossRef]
- Blum, M.; Chang, H.-Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef] [PubMed]
- Topka, S.; Steinsnyder, Z.; Ravichandran, V.; Tkachuk, K.; Kemel, Y.; Bandlamudi, C.; Winkel Madsen, M.; Furberg, H.; Ouerfelli, O.; Rudin, C.M.; et al. Targeting Germline- and Tumor-Associated Nucleotide Excision Repair Defects in Cancer. Clin. Cancer Res. 2021, 27, 1997–2010. [Google Scholar] [CrossRef] [PubMed]
- Kohaar, I.; Zhang, X.; Tan, S.-H.; Nousome, D.; Babcock, K.; Ravindranath, L.; Sukumar, G.; McGrath-Martinez, E.; Rosenberger, J.; Alba, C.; et al. Germline mutation landscape of DNA damage repair genes in African Americans with prostate cancer highlights potentially targetable RAD genes. Nat. Commun. 2022, 13, 1361. [Google Scholar] [CrossRef] [PubMed]
- Carignan, D.; Lessard, T.; Villeneuve, L.; Desjardins, S.; Magnan, S.; Després, P.; Martin, A.-G.; Foster, W.; Guillemette, C.; Lévesque, É.; et al. DNA repair gene polymorphisms, tumor control, and treatment toxicity in prostate cancer patients treated with permanent implant prostate brachytherapy. Prostate 2020, 80, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Rantapero, T.; Wahlfors, T.; Kähler, A.; Hultman, C.; Lindberg, J.; Tammela, T.L.; Nykter, M.; Schleutker, J.; Wiklund, F. Inherited DNA Repair Gene Mutations in Men with Lethal Prostate Cancer. Genes 2020, 11, 314. [Google Scholar] [CrossRef] [PubMed]
- Feliubadaló, L.; Tonda, R.; Gausachs, M.; Trotta, J.-R.; Castellanos, E.; López-Doriga, A.; Teulé, À.; Tornero, E.; Del Valle, J.; Gel, B.; et al. Benchmarking of Whole Exome Sequencing and Ad Hoc Designed Panels for Genetic Testing of Hereditary Cancer. Sci. Rep. 2017, 7, 37984. [Google Scholar] [CrossRef]
- Vijai, J.; Topka, S.; Villano, D.; Ravichandran, V.; Maxwell, K.N.; Maria, A.; Thomas, T.; Gaddam, P.; Lincoln, A.; Kazzaz, S.; et al. A Recurrent ERCC3 Truncating Mutation Confers Moderate Risk for Breast Cancer. Cancer Discov. 2016, 6, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- Kote-Jarai, Z.; Jugurnauth, S.; Mulholland, S.; Leongamornlert, D.A.; Guy, M.; Edwards, S.; Tymrakiewitcz, M.; O’Brien, L.; Hall, A.; Wilkinson, R.; et al. A recurrent truncating germline mutation in the BRIP1/FANCJ gene and susceptibility to prostate cancer. Br. J. Cancer 2009, 100, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.M.; Zuhlke, K.A.; Johnson, G.R.; Levin, A.M.; Douglas, J.A.; Lange, E.M.; Cooney, K.A. Absence of truncating BRIP1 mutations in chromosome 17q-linked hereditary prostate cancer families. Br. J. Cancer 2009, 101, 2043–2047. [Google Scholar] [CrossRef] [PubMed]
- de Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef]
- Abida, W.; Campbell, D.; Patnaik, A.; Shapiro, J.D.; Sautois, B.; Vogelzang, N.J.; Voog, E.G.; Bryce, A.H.; McDermott, R.; Ricci, F.; et al. Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate Cancer: Analysis From the Phase II TRITON2 Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 2487–2496. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.M.; Rowley, S.M.; Clouston, D.; Li, J.; Lupat, R.; Krishnananthan, N.; Risbridger, G.; Taylor, R.; Bolton, D.; Campbell, I.G.; et al. Searching for candidate genes in familial BRCAX mutation carriers with prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2016, 34, 120.e9–120.e16. [Google Scholar] [CrossRef]
- Johnson, A.M.; Zuhlke, K.A.; Plotts, C.; McDonnell, S.K.; Middha, S.; Riska, S.M.; Schaid, D.J.; Thibodeau, S.N.; Douglas, J.A.; Cooney, K.A. Mutational landscape of candidate genes in familial prostate cancer. Prostate 2014, 74, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Popanda, O.; Seibold, P.; Nikolov, I.; Oakes, C.C.; Burwinkel, B.; Hausmann, S.; Flesch-Janys, D.; Plass, C.; Chang-Claude, J.; Schmezer, P. Germline variants of base excision repair genes and breast cancer: A polymorphism in DNA polymerase gamma modifies gene expression and breast cancer risk. Int. J. Cancer 2013, 132, 55–62. [Google Scholar] [CrossRef]
- Thorsell, A.-G.; Ekblad, T.; Karlberg, T.; Löw, M.; Pinto, A.F.; Trésaugues, L.; Moche, M.; Cohen, M.S.; Schüler, H. Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors. J. Med. Chem. 2017, 60, 1262–1271. [Google Scholar] [CrossRef]
- Kwon, D.H.-M.; Borno, H.T.; Cheng, H.H.; Zhou, A.Y.; Small, E.J. Ethnic disparities among men with prostate cancer undergoing germline testing. Urol. Oncol. Semin. Orig. Investig. 2020, 38, 80.e1–80.e7. [Google Scholar] [CrossRef]
- Nicolosi, P.; Ledet, E.; Yang, S.; Michalski, S.; Freschi, B.; O’Leary, E.; Esplin, E.D.; Nussbaum, R.L.; Sartor, O. Prevalence of Germline Variants in Prostate Cancer and Implications for Current Genetic Testing Guidelines. JAMA Oncol. 2019, 5, 523–528. [Google Scholar] [CrossRef]
- Shinmura, K.; Kato, H.; Kawanishi, Y.; Yoshimura, K.; Igarashi, H.; Goto, M.; Tao, H.; Inoue, Y.; Sugiyama, T.; Furuse, H.; et al. Reduced expression of the DNA glycosylase gene MUTYH is associated with an increased number of somatic mutations via a reduction in the DNA repair capacity in prostate adenocarcinoma. Mol. Carcinog. 2017, 56, 781–788. [Google Scholar] [CrossRef] [PubMed]
Australian Familial Cases, n (%) | Australian Sporadic Cases, n (%) | PROGRESS Familial Cases, n (%) | |
---|---|---|---|
Age at Diagnosis | |||
<60 | 93 (24.54%) | 137 (29.85%) | 108 (33.64%) |
60–64 | 98 (25.86%) | 170 (37.04%) | 75 (23.36%) |
65–69 | 97 (20.32%) | 125 (27.23%) | 77 (23.99%) |
≥70 | 107 (28.23%) | 26 (5.66%) | 61 (19.00%) |
Missing | 4 (1.06%) | 1 (0.22%) | n.a. |
Age at Diagnosis, Median (IQR) | 64.82 (60.06–71.50) | 62.59 (59.26–66.05) | 63 (57.0–68.0) |
Years between Diagnosis and Death | |||
<5 | 19 (5.01%) | 25 (5.45%) | 11 (3.43%) |
5–9 | 39 (10.29%) | 54 (11.76%) | 36 (11.21%) |
10–19 | 81 (21.37%) | 103 (22.44%) | 65 (20.25%) |
≥20 | 18 (4.75%) | 19 (4.14%) | 7 (2.18%) |
Missing | 2 (0.53%) | n.a. | n.a. |
n.a. | 220 (58.05%) | 258 (56.21%) | 202 (62.93%) |
Years between Diagnosis and Death, Median (IQR) | 11.62 (8.75–16.10) | 11.82 (7.64–15.52) | 11.00 (6.50–15.0) |
Cause of Death | |||
PrCa | 49 (12.93%) | 68 (14.81%) | 41 (12.77%) |
Other | 91 (24.01%) | 133 (28.98%) | 72 (22.43%) |
Not Processed | 2 (0.53%) | n.a. | n.a. |
Missing | 17 (4.49%) | 1 (0.22%) | 6 (1.87%) |
n.a. | 220 (58.05%) | 257 (55.99%) | 202 (62.93%) |
Total | 379 | 459 | 321 |
Gene | Variant | Amino Acid Change | MAF (gnomAD NFE) * | Australian Discovery Familial Cohort | North American Familial Cohort | ||||
---|---|---|---|---|---|---|---|---|---|
PrCa Affected Carriers | Total Carriers | Number of Families | PrCa Affected Carriers | Total Carriers | Number of Families | ||||
ATM | rs55801750 | C2464R | 9 × 10−4 | 1 | 2 | 1 | - | - | - |
ATM | rs55982963 | R2719H | 1 × 10−4 | 1 | 2 | 1 | - | - | - |
ATM | rs56128736 | V410A | 0.0021 | 3 | 6 | 2 | 2 | 2 | 1 |
ATM | rs767507047 | Y2954C | 6.48 × 10−5 | 1 | 1 | 1 | - | - | - |
BRCA1 | rs28897673 | Y58C | 1 × 10−4 | 2 | 4 | 1 | - | - | - |
BRCA2 | rs55639415 | S1733F | 4.71 × 10−5 | 2 | 4 | 1 | - | - | - |
BRCA2 | rs56403624 | E462G | 4.29 × 10−4 | 1 | 1 | 1 | - | - | - |
BRCA2 | rs786202915 | F2254Y | n.a. | 3 | 8 | 1 | - | - | - |
ERCC2 | rs142568756 | V536M | 0.0005 | 2 | 4 | 1 | - | - | - |
MRE11 | rs777373591 | P132S | 1.77 × 10−5 | 2 | 4 | 1 | - | - | - |
MSH6 | rs142254875 | P943S | 0.0001 | 2 | 6 | 1 | - | - | - |
PMS2 | rs1554304601 | A116V | n.a. | 3 | 7 | 1 | - | - | - |
POLE | chr12: 133219216 | P1610A | n.a. | 3 | 9 | 1 | - | - | - |
POLE | rs36120395 | P697R | 0.0016 | 1 | 1 | 1 | - | - | - |
POLE | rs41561818 | A1420V | 0.0044 | 2 | 3 | 1 | - | - | - |
PTEN | rs587779989 | n.a. | n.a. | 3 | 6 | 1 | - | - | - |
PTEN | rs773513402 | n.a. | 0.0003 | 2 | 5 | 1 | - | - | - |
RECQL4 | rs780723602 | I920V | 9 × 10−6 | 4 | 11 | 1 | - | - | - |
BARD1 | rs3738888 | R658C | 0.0063 | 2 | 5 | 1 | 4 | 4 | 4 |
BRCA2 | rs28897727 | D1420Y | 0.0098 | 3 | 9 | 1 | 4 | 5 | 3 |
BRIP1 | rs4988345 | R173C | 0.0043 | 2 | 5 | 1 | 6 | 6 | 6 |
ERCC3 | rs145201970 | R283C | 0.0017 | 2 | 7 | 1 | 5 | 5 | 3 |
MUTYH | rs36053993 | G368D | 0.0047 | 2 | 5 | 2 | 9 | 9 | 4 |
PARP2 | rs200603922 | R15G | 0.0012 | 4 | 6 | 1 | 2 | 2 | 2 |
Gene | Variant | Chr: Position ° | Allele Change | AA Change | CADD * | DANN ** | SIFT | PROVEAN | PolyPhen | Mutation Taster (Rank Score) | Mutation Assessor | FATHMM † (Coding) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BARD1 | rs3738888 | 2:214730440 | G > A | R658C | 24.3 | 0.999 | 0.008 (D) | −4.02 (De) | 1 (P) | 0.462 (D) | 2.12 (M) | 0.9778 |
BRCA2 | rs28897727 | 13:32338613 | G > T | D1420Y | 16.66 | 0.988 | 0.030 (D) | −6.60 (De) | 0.03 (B) | 0.09 (N) | 2.15 (M) | 0.49798 |
BRIP1 | rs4988345 | 17:61847211 | G > A | R173C | 24.7 | 0.999 | 0.001 (D) | −2.54 (De) | 1 (P) | 0.81 (D) | 2.67 (M) | 0.93639 |
ERCC3 | rs145201970 | 2:127288840 | G > A | R283C | 26.5 | 0.999 | 0.000 (D) | −7.59 (De) | 0.995 (P) | 0.81 (D) | 3.31 (M) | 0.99364 |
MUTYH | rs36053993 | 1:45331556 | C > T | G368D | 29.7 | 0.998 | 0.000 (D) | −6.46 (De) | 1 (P) | 0.81 (D) | 4.09 (H) | 0.99757 |
PARP2 | rs200603922 | 14:20343684 | A > G | R15G | 16.46 | 0.8 | 0.153 (T) | −1.04 (N) | 0 (B) | 0.09 (N) | 0.695 (N) | 0.00048 |
Gene | Variant | Australian Familial and Sporadic Prostate Cancer | North American Familial PROGRESS Cohort | Tasmanian Familial Prostate Cancer Study and PROGRESS | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Total Carriers (% Cases) * | MQLS p-Value | MQLS Odds Ratio | Total Carriers (% Cases) * | MQLS p-Value | MQLS Odds Ratio | Total Carriers (% Cases) * | MQLS p-Value | MQLS Odds Ratio | ||
BARD1 | rs3738888 | 31 (58.1%) | 0.407 | 1.7 | 4 (100%) | 0.318 | n.a. | 35 (62.9%) | 0.066 | 1.9 |
BRCA2 | rs28897727 | 24 (54.2%) | 0.063 | n.a. | 5 (80%) | 0.157 | n.a. | 29 (58.6%) | 0.193 | n.a. |
BRIP1 | rs4988345 | 25 (64.0%) | 0.118 | 3.1 | 6 (100%) | 0.034 | n.a. | 31 (71.0%) | 0.025 | 3.1 |
ERCC3 | rs145201970 | 16 (50.0%) | 0.554 | 1 | 5 (100%) | 0.010 | n.a. | 21 (61.9%) | 2.57 × 10−4 | 1.7 |
MUTYH | rs36053993 | 23 (26.1%) | 0.630 | 0.4 | 9 (100%) | 0.031 | n.a. | 32 (46.9%) | 0.201 | 0.8 |
PARP2 | rs200603922 | 14 (71.4%) | 0.028 | n.a. | 2 (100%) | 0.388 | n.a. | 16 (75.0%) | 0.162 | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foley, G.R.; Marthick, J.R.; Lucas, S.E.; Raspin, K.; Banks, A.; Stanford, J.L.; Ostrander, E.A.; FitzGerald, L.M.; Dickinson, J.L. Germline Sequencing of DNA Damage Repair Genes in Two Hereditary Prostate Cancer Cohorts Reveals New Disease Risk-Associated Gene Variants. Cancers 2024, 16, 2482. https://doi.org/10.3390/cancers16132482
Foley GR, Marthick JR, Lucas SE, Raspin K, Banks A, Stanford JL, Ostrander EA, FitzGerald LM, Dickinson JL. Germline Sequencing of DNA Damage Repair Genes in Two Hereditary Prostate Cancer Cohorts Reveals New Disease Risk-Associated Gene Variants. Cancers. 2024; 16(13):2482. https://doi.org/10.3390/cancers16132482
Chicago/Turabian StyleFoley, Georgea R., James R. Marthick, Sionne E. Lucas, Kelsie Raspin, Annette Banks, Janet L. Stanford, Elaine A. Ostrander, Liesel M. FitzGerald, and Joanne L. Dickinson. 2024. "Germline Sequencing of DNA Damage Repair Genes in Two Hereditary Prostate Cancer Cohorts Reveals New Disease Risk-Associated Gene Variants" Cancers 16, no. 13: 2482. https://doi.org/10.3390/cancers16132482
APA StyleFoley, G. R., Marthick, J. R., Lucas, S. E., Raspin, K., Banks, A., Stanford, J. L., Ostrander, E. A., FitzGerald, L. M., & Dickinson, J. L. (2024). Germline Sequencing of DNA Damage Repair Genes in Two Hereditary Prostate Cancer Cohorts Reveals New Disease Risk-Associated Gene Variants. Cancers, 16(13), 2482. https://doi.org/10.3390/cancers16132482