Non-Insulin Antidiabetic Agents and Lung Cancer Risk in Drug-Naive Patients with Type 2 Diabetes Mellitus: A Nationwide Retrospective Cohort Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.H. Human Insulin Therapy Is Associated With an Increased Risk of Lung Cancer: A Population-Based Retrospective Cohort Study. Front. Endocrinol. 2019, 10, 443. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Chlebowski, R.; Wactawski-Wende, J.; Schlecht, N.F.; Tinker, L.; Margolis, K.L. Diabetes and Lung Cancer Among Postmenopausal Women. Diabetes Care 2012, 35, 1485–1491. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, H.B.; Shi, X.F.; Song, Y. Conventional Hypoglycaemic Agents and the Risk of Lung Cancer in Patients with Diabetes: A Meta-Analysis. PLoS ONE 2014, 9, e99577. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; Pollak, M.; Regensteiner, J.G.; Yee, D. Diabetes and Cancer: A Consensus Report. CA Cancer J. Clin. 2010, 60, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Farhan, S.Y.; Jankowski, M.; Hanbali, A.; Wang, D. The use of insulin and the effect on survival of non-small cell lung cancer patients. J. Clin. Oncol. 2009, 27 (Suppl. S15), e22073. [Google Scholar] [CrossRef]
- Lai, S.W.; Liao, K.F.; Chen, P.C.; Tsai, P.Y.; Hsieh, D.P.H.; Chen, C.C. Antidiabetes Drugs Correlate With Decreased Risk of Lung Cancer: A Population-Based Observation in Taiwan. Clin. Lung Cancer 2012, 13, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kim, C.H. Malignancies associated with DPP4 inhibitors and GLP1 receptor agonists: Data from a large real-world database. J. Clin. Oncol. 2020, 38 (Suppl. S15), 1567. [Google Scholar] [CrossRef]
- Wang, J.; Kim, C.H. Differential Risk of Cancer Associated with Glucagon-like Peptide-1 Receptor Agonists: Analysis of Real-world Databases. Endocr. Res. 2022, 47, 18–25. [Google Scholar] [CrossRef]
- Klil-Drori, A.J.; Azoulay, L.; Pollak, M.N. Cancer, obesity, diabetes, and antidiabetic drugs: Is the fog clearing? Nat. Rev. Clin. Oncol. 2017, 14, 85–99. [Google Scholar] [CrossRef]
- Yao, L.; Liu, M.; Huang, Y.; Wu, K.; Huang, X.; Zhao, Y.; He, W.; Zhang, R. Metformin Use and Lung Cancer Risk in Diabetic Patients: A Systematic Review and Meta-Analysis. Dis. Markers 2019, 2019, 6230162. [Google Scholar] [CrossRef] [PubMed]
- Basak, D.; Gamez, D.; Deb, S. SGLT2 Inhibitors as Potential Anticancer Agents. Biomedicines 2023, 11, 1867. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Nguyen, P.-A.; Humayun, A.; Chien, S.-C.; Yang, H.-C.; Asdary, R.N.; Syed-Abdul, S.; Hsu, M.-H.; Moldovan, M.; Yen, Y.; et al. Does long-term use of antidiabetic drugs changes cancer risk? Medicine 2019, 98, e17461. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes—State-of-the-art. Mol. Metab. 2021, 46, 101102. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zhang, A.; Li, D.; Wu, Y.; Wang, C.-Z.; Wan, J.-Y.; Yuan, C.-S. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: Systematic review and network meta-analysis. BMJ 2024, 384, e076410. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Mei, A.; Wei, Y.; Li, C.; Qian, H.; Min, X.; Yang, H.; Dong, L.; Rao, X.; Zhong, J. GLP-1 receptor agonist as a modulator of innate immunity. Front. Immunol. 2022, 13, 997578. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, W.; Kaelber, D.C.; Xu, R.; Berger, N.A. GLP-1 Receptor Agonists and Colorectal Cancer Risk in Drug-Naive Patients With Type 2 Diabetes, with and Without Overweight/Obesity. JAMA Oncol. 2024, 10, 256. [Google Scholar] [CrossRef] [PubMed]
- TriNetX. Available online: https://trinetx.com (accessed on 2 February 2024).
- Wang, L.; Berger, N.A.; Xu, R. Risks of SARS-CoV-2 Breakthrough Infection and Hospitalization in Fully Vaccinated Patients With Multiple Myeloma. JAMA Netw. Open 2021, 4, e2137575. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Kaelber, D.C.; Xu, R.; Berger, N.A. Breakthrough SARS-CoV-2 Infections, Hospitalizations, and Mortality in Vaccinated Patients With Cancer in the US Between December 2020 and November 2021. JAMA Oncol. 2022, 8, 1027–1034. [Google Scholar] [CrossRef]
- Wang, W.; Volkow, N.D.; Berger, N.A.; Davis, P.B.; Kaelber, D.C.; Xu, R. Association of semaglutide with risk of suicidal ideation in a real-world cohort. Nat. Med. 2024, 30, 168–176. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Warren, G.W.; Cummings, K.M. Tobacco and lung cancer: Risks, trends, and outcomes in patients with cancer. Am. Soc. Clin. Oncol. Educ. Book 2013, 33, 359–364. [Google Scholar] [CrossRef]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef]
- Bishnoi, R.; Hong, Y.-R.; Shah, C.; Ali, A.; Skelton, W.P., IV; Huo, J.; Dang, N.H.; Dang, L.H. Dipeptidyl peptidase 4 inhibitors as novel agents in improving survival in diabetic patients with colorectal cancer and lung cancer: A Surveillance Epidemiology and Endpoint Research Medicare study. Cancer Med. 2019, 8, 3918–3927. [Google Scholar] [CrossRef]
- Currie, C.J.; Poole, C.D.; Gale, E.A.M. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 2009, 52, 1766–1777. [Google Scholar] [CrossRef]
- Jonasson, J.M.; Ljung, R.; Talbäck, M.; Haglund, B.; Gudbjörnsdòttir, S.; Steineck, G. Insulin glargine use and short-term incidence of malignancies—A population-based follow-up study in Sweden. Diabetologia 2009, 52, 1745–1754. [Google Scholar] [CrossRef]
- Colhoun, H.M.; SDRN Epidemiology Group. Use of insulin glargine and cancer incidence in Scotland: A study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia 2009, 52, 1755–1765. [Google Scholar] [CrossRef]
- Hemkens, L.G.; Grouven, U.; Bender, R.; Günster, C.; Gutschmidt, S.; Selke, G.W.; Sawicki, P.T. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: A cohort study. Diabetologia 2009, 52, 1732–1744. [Google Scholar] [CrossRef]
- Gerstein, H.C. Does Insulin Therapy Promote, Reduce, or Have a Neutral Effect on Cancers? JAMA 2010, 303, 446–447. [Google Scholar] [CrossRef]
- Rosenstock, J.; Fonseca, V.; McGill, J.B.; Riddle, M.; Hallé, J.P.; Hramiak, I.; Johnston, P.; Davis, M. Similar risk of malignancy with insulin glargine and neutral protamine Hagedorn (NPH) insulin in patients with type 2 diabetes: Findings from a 5 year randomised, open-label study. Diabetologia 2009, 52, 1971–1973. [Google Scholar] [CrossRef]
- Bordeleau, L.; Yakubovich, N.; Dagenais, G.R.; Rosenstock, J.; Probstfield, J.; Yu, P.C.; Ryden, L.E.; Pirags, V.; Spinas, G.A.; Birkeland, K.I.; et al. The Association of Basal Insulin Glargine and/or n-3 Fatty Acids With Incident Cancers in Patients With Dysglycemia. Diabetes Care 2014, 37, 1360–1366. [Google Scholar] [CrossRef]
- Argirion, I.; Weinstein, S.J.; Männistö, S.; Albanes, D.; Mondul, A.M. Serum Insulin, Glucose, Indices of Insulin Resistance, and Risk of Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1519–1524. [Google Scholar] [CrossRef]
- Jiang, J.; Ren, H.Y.; Geng, G.J.; Mi, Y.; Liu, Y.; Li, N.; Yang, S.; Shen, D. Oncogenic activity of insulin in the development of non-small cell lung carcinoma. Oncol. Lett. 2018, 15, 447–452. [Google Scholar] [CrossRef]
- Frisch, C.M.; Zimmermann, K.; Zilleßen, P.; Pfeifer, A.; Racké, K.; Mayer, P. Non-small cell lung cancer cell survival crucially depends on functional insulin receptors. Endocr.-Relat. Cancer 2015, 22, 609–621. [Google Scholar] [CrossRef]
- De Barra, C.; Khalil, M.; Mat, A.; O’Donnell, C.; Shaamile, F.; Brennan, K.; O’Shea, D.; Hogan, A.E. Glucagon-like peptide-1 therapy in people with obesity restores natural killer cell metabolism and effector function. Obesity 2023, 31, 1787–1797. [Google Scholar] [CrossRef]
- Bray, J.J.H.; Foster-Davies, H.; Salem, A.; Hoole, A.L.; Obaid, D.R.; Halcox, J.P.J.; Stephens, J.W. Glucagon-like peptide-1 receptor agonists improve biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomised controlled trials. Diabetes Obes. Metab. 2021, 23, 1806–1822. [Google Scholar] [CrossRef]
- Lahiri, A.; Maji, A.; Potdar, P.D.; Singh, N.; Parikh, P.; Bisht, B.; Mukherjee, A.; Paul, M.K. Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol. Cancer 2023, 22, 40. [Google Scholar] [CrossRef]
- Pati, S.; Irfan, W.; Jameel, A.; Ahmed, S.; Shahid, R.K. Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management. Cancers 2023, 15, 485. [Google Scholar] [CrossRef]
- Vedire, Y.; Kalvapudi, S.; Yendamuri, S. Obesity and lung cancer—A narrative review. J. Thorac. Dis. 2023, 15, 2806–2823. [Google Scholar] [CrossRef]
- Luo, J.; Hendryx, M.; Dong, Y. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and non-small cell lung cancer survival. Br. J. Cancer 2023, 128, 1541–1547. [Google Scholar] [CrossRef]
- Govindarajan, R.; Ratnasinghe, L.; Simmons, D.L.; Siegel, E.R.; Midathada, M.V.; Kim, L.; Kim, P.J.; Owens, R.J.; Lang, N.P. Thiazolidinediones and the risk of lung, prostate, and colon cancer in patients with diabetes. J. Clin. Oncol. 2007, 25, 1476–1481. [Google Scholar] [CrossRef]
- Bosetti, C.; Rosato, V.; Buniato, D.; Zambon, A.; La Vecchia, C.; Corrao, G. Cancer Risk for Patients Using Thiazolidinediones for Type 2 Diabetes: A Meta-Analysis. Oncologist 2013, 18, 148–156. [Google Scholar] [CrossRef]
Before Propensity Score Matching, % | After Propensity Score Matching, % | Before Propensity Score Matching, % | After Propensity Score Matching, % | |||||||
---|---|---|---|---|---|---|---|---|---|---|
GLP-1RA (+)/Insulin (−) (n = 29,850) | Insulin (+)/GLP-1RA (−) (n = 628,808) | GLP-1RA (+)/Insulin (−) (n = 29,850) | Insulin (+)/GLP-1RA (−) (n = 29,751) | SMDc | Metformin (+)/Insulin (−) (n = 293,113) | Insulin (+)/Metformin (−) (n = 399,957) | Metformin (+)/Insulin (−) (n = 250,615) | Insulin (+)/Metformin (−) (n = 249,277) | SMD | |
Age at Index Event, mean (SD), y | 56.6 (11.6) | 61.8 (15.7) | 56.5(11.6) | 56.5(12.5) | 0.0121 | 59.7 (13.3) | 62.5(16.4) | 60.5(13.3) | 59.8(15.9) | 0.0450 |
Sex | ||||||||||
Female | 54.9 | 47.8 | 54.9 | 54.5 | 0.0077 | 49.5 | 47.4 | 48.9 | 48.8 | 0.0018 |
Male | 39.4 | 48.8 | 39.4 | 39.8 | 0.0087 | 46.6 | 48.8 | 47.2 | 47.3 | 0.0016 |
Ethnicity | ||||||||||
Hispanic/LatinX | 7.8 | 9.2 | 7.8 | 7.5 | 0.0098 | 9.7 | 8.7 | 9.5 | 9.6 | 0.0009 |
Not Hispanic/LatinX | 68.6 | 66.3 | 68.6 | 69.0 | 0.0080 | 67.1 | 65.5 | 66.0 | 67.5 | 0.0321 |
Unknown | 23.6 | 24.5 | 23.6 | 23.5 | 0.0026 | 23.2 | 25.9 | 24.5 | 23.0 | 0.0362 |
Race | ||||||||||
American Indian or Alaska Native | 0.4 | 0.4 | 0.4 | 0.4 | 0.0018 | 0.4 | 0.4 | 0.4 | 0.4 | 0.0020 |
Asian | 2.5 | 4.2 | 2.5 | 2.3 | 0.0134 | 4.5 | 4.3 | 4.3 | 3.9 | 0.0182 |
Black | 13.2 | 18.5 | 13.2 | 13.6 | 0.0112 | 16.7 | 17.7 | 17.4 | 17.9 | 0.0148 |
Native Hawaiian or Other Pacific Islander | 0.5 | 1.3 | 0.5 | 0.4 | 0.0120 | 0.5 | 1.4 | 0.6 | 0.6 | 0.0001 |
White | 68.1 | 61.4 | 68.1 | 68.5 | 0.0079 | 62 | 62 | 61.9 | 62.0 | 0.0011 |
Unknown | 13.1 | 11.5 | 13.1 | 12.7 | 0.0106 | 12.6 | 11.9 | 12.5 | 12.2 | 0.0069 |
Lifestyle Factors: | ||||||||||
Nicotine dependence | 7.5 | 13.2 | 7.5 | 7.2 | 0.0118 | 9.8 | 12.0 | 10.4 | 10.1 | 0.0116 |
Personal history of nicotine dependence | 6.1 | 11.9 | 6.1 | 5.5 | 0.0234 | 5.5 | 12.9 | 6.4 | 6.3 | 0.0045 |
Alcohol-related disorders | 1.3 | 3.8 | 1.3 | 1.1 | 0.0139 | 2.3 | 3.7 | 2.6 | 2.4 | 0.0120 |
Family History and Screening | ||||||||||
Family history of malignant neoplasm of trachea, bronchus, and lung | 0.2 | 0.3 | 0.3 | 0.2 | 0.0137 | 0.2 | 0.4 | 0.2 | 0.2 | 0.0043 |
Encounter for screening for malignant neoplasm of respiratory organs | 0.2 | 0.1 | 0.2 | 0.1 | 0.0304 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0059 |
Personal history of malignant neoplasm of bronchus and lung | 0.1 | 0.2 | 0.1 | 0.1 | 0.0013 | 0.1 | 0.4 | 0.2 | 0.2 | 0.0018 |
Pre-Existing Health Conditions | ||||||||||
Asthma | 11.1 | 9.3 | 11.1 | 10.8 | 0.0081 | 8.8 | 8.5 | 8.5 | 8.5 | 0.0008 |
Primary respiratory tuberculosis | 0.0 | <0.1 | 0.0 | 0.0 | <0.1 | <0.1 | 0.0 | 0.0 | 0.0012 | |
Adverse Exposures: | ||||||||||
Pneumoconiosis due to other dust-containing silica | <0.1 | <0.1 | 0.0 | 0.0 | 0.0000 | <0.1 | <0.1 | 0.0 | 0.0 | 0.0005 |
Contact with and (suspected) exposure to asbestos | 0.1 | 0.1 | 0.1 | 0.1 | 0.0013 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0030 |
Contact with and (suspected) exposure to air pollution | <0.1 | <0.1 | 0.0 | 0.0 | 0.0258 | 0.0 | <0.1 | 0.0 | 0.0 | 0.0089 |
Personal history of irradiation | 0.4 | 1.0 | 0.4 | 0.3 | 0.0131 | 0.4 | 1.1 | 0.5 | 0.5 | 0.0041 |
Hemoglobin A1c, mean(SD),% | 7.7 (1.8) | 7.7 (2.2) | 7.7 (1.8) | 7.7 (2.0) | 7.2 (1.6) | 7.5 (2.1) | 7.4 (1.7) | 7.3 (1.9) | ||
>9% | 20.0 | 15.0 | 20.0 | 19.7 | 0.0064 | 10.0 | 11.9 | 11.4 | 11.4 | 0.0002 |
<9% | 53.9 | 39.6 | 53.9 | 53.6 | 0.0058 | 54.4 | 35.4 | 47.0 | 45.7 | 0.0277 |
No recorded A1c | 26.1 | 45.4 | 35.6 | 52.7 | ||||||
BMI, mean(SD), kg/m2 | 36.3 (6.6) | 31.5 (7.1) | 36.3 (6.6) | 35.1 (6.5) | 33.5 (6.7) | 30.9 (7.2) | 32.9 (6.8) | 32.3 (7.0) | ||
0–18.4 kg/m2 | 0.4 | 0.9 | 0.4 | 0.3 | 0.0165 | 0.4 | 1.0 | 0.4 | 0.4 | 0.0017 |
18.5–24.9 kg/m2 | 1.2 | 4.9 | 1.2 | 1.1 | 0.0103 | 2.6 | 5.2 | 3.0 | 3.0 | 0.0017 |
25–29.9 kg/m2 | 5.1 | 8.8 | 5.1 | 4.9 | 0.0119 | 7.4 | 8.2 | 7.4 | 7.4 | 0.0025 |
At least 30 kg/m2 | 18.8 | 14.4 | 18.8 | 17.7 | 0.0278 | 15.6 | 12.4 | 14.1 | 13.4 | 0.0193 |
No recorded BMI | 74.5 | 71.0 | 74.0 | 73.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabernacki, T.; Wang, L.; Kaelber, D.C.; Xu, R.; Berger, N.A. Non-Insulin Antidiabetic Agents and Lung Cancer Risk in Drug-Naive Patients with Type 2 Diabetes Mellitus: A Nationwide Retrospective Cohort Study. Cancers 2024, 16, 2377. https://doi.org/10.3390/cancers16132377
Tabernacki T, Wang L, Kaelber DC, Xu R, Berger NA. Non-Insulin Antidiabetic Agents and Lung Cancer Risk in Drug-Naive Patients with Type 2 Diabetes Mellitus: A Nationwide Retrospective Cohort Study. Cancers. 2024; 16(13):2377. https://doi.org/10.3390/cancers16132377
Chicago/Turabian StyleTabernacki, Tomasz, Lindsey Wang, David C. Kaelber, Rong Xu, and Nathan A. Berger. 2024. "Non-Insulin Antidiabetic Agents and Lung Cancer Risk in Drug-Naive Patients with Type 2 Diabetes Mellitus: A Nationwide Retrospective Cohort Study" Cancers 16, no. 13: 2377. https://doi.org/10.3390/cancers16132377
APA StyleTabernacki, T., Wang, L., Kaelber, D. C., Xu, R., & Berger, N. A. (2024). Non-Insulin Antidiabetic Agents and Lung Cancer Risk in Drug-Naive Patients with Type 2 Diabetes Mellitus: A Nationwide Retrospective Cohort Study. Cancers, 16(13), 2377. https://doi.org/10.3390/cancers16132377