Treatment Strategy for Ultra-High-Risk Multiple Myelomas with Chromosomal Aberrations Considering Minimal Residual Disease Status and Bone Marrow Microenvironment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Genetic Background of Patients with UHRCAs in the MASTER Trial
3. MRD in Autografts Might Predict Clinical Outcome
4. Analyzing MRD Status: Optimal Sample and Device for UHRCA
5. Early Treatment Intervention for Myeloma
6. Future Directions: Treatment Strategy for Patients with UHRCA Myeloma
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Palumbo, A.; Anderson, K. Multiple Myeloma. N. Engl. J. Med. 2011, 364, 1046–1060. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Nishiwaki, K.; Yano, S. Treatment Strategy for Multiple Myeloma to Improve Immunological Environment and Maintain MRD Negativity. Cancers 2021, 13, 4867. [Google Scholar] [CrossRef]
- Suzuki, K.; Nishiwaki, K.; Yano, S. Treatment Strategies Considering Micro-Environment and Clonal Evolution in Multiple Myeloma. Cancers 2021, 13, 215. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.-V.; et al. International Myeloma Working Group Consensus Criteria for Response and Minimal Residual Disease Assessment in Multiple Myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Munshi, N.C.; Avet-Loiseau, H.; Anderson, K.C.; Neri, P.; Paiva, B.; Samur, M.; Dimopoulos, M.; Kulakova, M.; Lam, A.; Hashim, M.; et al. A Large Meta-Analysis Establishes the Role of MRD Negativity in Long-Term Survival Outcomes in Patients with Multiple Myeloma. Blood Adv. 2020, 4, 5988–5999. [Google Scholar] [CrossRef]
- Costa, L.J.; Chhabra, S.; Medvedova, E.; Dholaria, B.R.; Schmidt, T.M.; Godby, K.N.; Silbermann, R.; Dhakal, B.; Bal, S.; Giri, S.; et al. Daratumumab, Carfilzomib, Lenalidomide, and Dexamethasone with Minimal Residual Disease Response-Adapted Therapy in Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. 2021, 40, 2901–2912. [Google Scholar] [CrossRef] [PubMed]
- Bisht, K.; Walker, B.; Kumar, S.K.; Spicka, I.; Moreau, P.; Martin, T.; Costa, L.J.; Richter, J.; Fukao, T.; Macé, S.; et al. Chromosomal 1q21 Abnormalities in Multiple Myeloma: A Review of Translational, Clinical Research, and Therapeutic Strategies. Expert Rev. Hematol. 2021, 14, 1099–1114. [Google Scholar] [CrossRef]
- Giesen, N.; Paramasivam, N.; Toprak, U.H.; Huebschmann, D.; Xu, J.; Uhrig, S.; Samur, M.; Bähr, S.; Fröhlich, M.; Mughal, S.S.; et al. Comprehensive Genomic Analysis of Refractory Multiple Myeloma Reveals a Complex Mutational Landscape associated with Drug Resistance and Novel Therapeutic Vulnerabilities. Haematologica 2022, 107, 1891. [Google Scholar] [CrossRef]
- Ziccheddu, B.; Biancon, G.; Bagnoli, F.; De Philippis, C.; Maura, F.; Rustad, E.H.; Dugo, M.; Devecchi, A.; De Cecco, L.; Sensi, M.; et al. Integrative Analysis of the Genomic and Transcriptomic Landscape of Double-Refractory Multiple Myeloma. Blood Adv. 2020, 4, 830–844. [Google Scholar] [CrossRef]
- Teoh, P.J.; An, O.; Chung, T.H.; Vaiyapuri, T.; Raju, A.; Hoppe, M.M.; Toh, S.H.M.; Wang, W.; Chan, M.C.; Fullwood, M.J.; et al. P53-NEIL1 Co-abnormalities Induce Genomic Instability and Promote Synthetic Lethality with Chk1 Inhibition in Multiple Myeloma Having Concomitant 17p13(Del) and 1q21(Gain). Oncogene 2022, 41, 2106–2121. [Google Scholar] [CrossRef]
- Hanamura, I. Gain/Amplification of Chromosome Arm 1q21 in Multiple Myeloma. Cancers 2021, 13, 256. [Google Scholar] [CrossRef] [PubMed]
- Shaughnessy, J. Amplification and Overexpression of CKS1B at Chromosome Band 1q21 Is Associated with Reduced Levels of P27 Kip1 and an Aggressive Clinical Course in Multiple Myeloma. Hematology 2005, 10, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Qi, X.; Trieu, Y.; Xu, W.; Reader, J.C.; Ning, Y.; Reece, D. Multiple Myeloma Patients with CKS1B Gene Amplification Have a Shorter Progression-Free Survival Post-autologous Stem Cell Transplantation. Br. J. Haematol. 2006, 135, 486–491. [Google Scholar] [CrossRef]
- Shi, L.; Wang, S.; Zangari, M.; Xu, H.; Cao, T.M.; Xu, C.; Wu, Y.; Xiao, F.; Liu, Y.; Yang, Y.; et al. Over-Expression of CKS1B Activates Both MEK/ERK and JAK/STAT3 Signaling Pathways and Promotes Myeloma Cell Drug-Resistance. Oncotarget 2010, 1, 22–33. [Google Scholar] [CrossRef]
- Craig, R.W.; Jabs, E.W.; Zhou, P.; Kozopas, K.M.; Hawkins, A.L.; Rochelle, J.M.; Seldin, M.F.; Griffin, C.A. Human and Mouse Chromosomal Mapping of the Myeloid Cell Leukemia-1 Gene: MCL1 Maps to Human Chromosome 1q21, a Region That Is Frequently Altered in Preneoplastic and Neoplastic Disease. Genomics 1994, 23, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Samo, A.A.; Li, J.; Zhou, M.; Sun, Y.; Yang, Y.; Zhang, Y.; Li, J.; van Duin, M.; Lu, X.; Fan, X. MCL1 Gene Co-expression Module Stratifies Multiple Myeloma and Predicts Response to Proteasome Inhibitor-Based Therapy. Genes Chromosomes Cancer 2018, 57, 420–429. [Google Scholar] [CrossRef]
- Gupta, V.A.; Matulis, S.M.; Conage-Pough, J.E.; Nooka, A.K.; Kaufman, J.L.; Lonial, S.; Boise, L.H. Bone Marrow Microenvironment–Derived Signals Induce Mcl-1 Dependence in Multiple Myeloma. Blood 2017, 129, 1969–1979. [Google Scholar] [CrossRef]
- Dash, A.B.; Zhang, J.; Shen, L.; Li, B.; Berg, D.; Lin, J.; Avet-Loiseau, H.; Bahlis, N.J.; Moreau, P.; Richardson, P.G.; et al. Clinical Benefit of Ixazomib plus Lenalidomide-Dexamethasone in Myeloma Patients with Non-canonical NF-κB Pathway Activation. Eur. J. Haematol. 2020, 105, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Jacobus, S.J.; Cohen, A.D.; Weiss, M.; Callander, N.; Singh, A.K.; Parker, T.L.; Menter, A.; Yang, X.; Parsons, B.; et al. Carfilzomib or Bortezomib in Combination with Lenalidomide and Dexamethasone for Patients with Newly Diagnosed Multiple Myeloma without Intention for Immediate Autologous Stem-Cell Transplantation (Endurance): A Multicentre, Open-Label, Phase 3, Randomised, Controlled Trial. Lancet Oncol. 2020, 21, 1317–1330. [Google Scholar] [CrossRef]
- Ogiya, D.; Liu, J.; Ohguchi, H.; Kurata, K.; Samur, M.K.; Tai, Y.T.; Adamia, S.; Ando, K.; Hideshima, T.; Anderson, K.C. The JAK-STAT Pathway Regulates CD38 on Myeloma Cells in the Bone Marrow Microenvironment: Therapeutic Implications. Blood 2020, 136, 2334–2345. [Google Scholar] [CrossRef]
- Mohan, M.; Weinhold, N.; Schinke, C.; Thanedrarajan, S.; Rasche, L.; Sawyer, J.R.; Tian, E.; van Rhee, F.; Zangari, M. Daratumumab in High-Risk Relapsed/Refractory Multiple Myeloma Patients: Adverse Effect of Chromosome 1q21 Gain/Amplification and GEP70 Status on Outcome. Br. J. Haematol. 2020, 189, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Van de Donk, N.W.C.J. Reprint of “Immunomodulatory Effects of CD38-Targeting Antibodies”. Immunol. Lett. 2019, 205, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Stork, M.; Sevcikova, S.; Minarik, J.; Krhovska, P.; Radocha, J.; Pospisilova, L.; Brozova, L.; Jarkovsky, J.; Spicka, I.; Straub, J.; et al. Identification of Patients at High Risk of Secondary Extramedullary Multiple Myeloma Development. Br. J. Haematol. 2022, 196, 954–962. [Google Scholar] [CrossRef]
- Walker, B.A.; Mavrommatis, K.; Wardell, C.P.; Ashby, T.C.; Bauer, M.; Davies, F.; Rosenthal, A.; Wang, H.; Qu, P.; Hoering, A.; et al. A High-Risk, Double-Hit, Group of Newly Diagnosed Myeloma Identified by Genomic Analysis. Leukemia 2019, 33, 159–170. [Google Scholar] [CrossRef]
- Hao, S.; Lu, X.; Gong, Z.; Bassett, R.L.; Hu, S.; Konoplev, S.N.; Tang, G.; Li, S.; Xu, J.; Khanlari, M.; et al. The Survival Impact of CKS1B Gains or Amplification Is Dependent on the Background Karyotype and TP53 Deletion Status in Patients with Myeloma. Mod. Pathol. 2021, 34, 327–335. [Google Scholar] [CrossRef]
- Tirier, S.M.; Mallm, J.P.; Steiger, S.; Poos, A.M.; Awwad, M.H.S.; Giesen, N.; Casiraghi, N.; Susak, H.; Bauer, K.; Baumann, A.; et al. Subclone-Specific Microenvironmental Impact and Drug Response in Refractory Multiple Myeloma Revealed by Single-Cell Transcriptomics. Nat. Commun. 2021, 12, 6960. [Google Scholar] [CrossRef]
- Schmidt, T.M.; Barwick, B.G.; Joseph, N.; Heffner, L.T.; Hofmeister, C.C.; Bernal, L.; Dhodapkar, M.V.; Gupta, V.A.; Jaye, D.L.; Wu, J.; et al. Gain of Chromosome 1Q Is Associated with Early Progression in Multiple Myeloma Patients Treated with Lenalidomide, Bortezomib, and Dexamethasone. Blood Cancer J. 2019, 9, 94. [Google Scholar] [CrossRef]
- Bock, F.; Lu, G.; Srour, S.A.; Gaballa, S.; Lin, H.Y.; Baladandayuthapani, V.; Honhar, M.; Stich, M.; Shah, N.D.; Bashir, Q.; et al. Outcome of Patients with Multiple Myeloma and CKS1B Gene Amplification after Autologous Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2016, 22, 2159–2164. [Google Scholar] [CrossRef]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report from International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef] [PubMed]
- Merz, M.; Jauch, A.; Hielscher, T.; Bochtler, T.; Schönland, S.O.; Seckinger, A.; Hose, D.; Bertsch, U.; Neben, K.; Raab, M.S.; et al. Prognostic Significance of Cytogenetic Heterogeneity in Patients with Newly Diagnosed Multiple Myeloma. Blood Adv. 2018, 2, 1–9. [Google Scholar] [CrossRef]
- D’Agostino, M.; Ruggeri, M.; Aquino, S.; Giuliani, N.; Arigoni, M.; Gentile, M.; Olivero, M.; Vincelli, I.D.; Capra, A.; Mussatto, C.; et al. Impact of Gain and Amplification of 1q in Newly Diagnosed Multiple Myeloma Patients Receiving Carfilzomib-Based Treatment in the Forte Trial. Blood 2020, 136, 38–40. [Google Scholar] [CrossRef]
- Billecke, L.; Murga Penas, E.M.; May, A.M.; Engelhardt, M.; Nagler, A.; Leiba, M.; Schiby, G.; Kröger, N.; Zustin, J.; Marx, A.; et al. Cytogenetics of Extramedullary Manifestations in Multiple Myeloma. Br. J. Haematol. 2013, 161, 87–94. [Google Scholar] [CrossRef]
- Gozzetti, A.; Cerase, A.; Lotti, F.; Rossi, D.; Palumbo, A.; Petrucci, M.T.; Patriarca, F.; Nozzoli, C.; Cavo, M.; Offidani, M.; et al. Extramedullary Intracranial Localization of Multiple Myeloma and Treatment with Novel Agents: A Retrospective Survey of 50 Patients. Cancer 2012, 118, 1574–1584. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Xu, Y.; An, G.; Sui, W.; Zou, D.; Zhao, Y.; Qi, J.; Li, F.; Hao, M.; Qiu, L. Features of Extramedullary Disease of Multiple Myeloma: High Frequency of P53 Deletion and Poor Survival: A Retrospective Single-Center Study of 834 Cases. Clin. Lymphoma Myeloma Leuk. 2015, 15, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Lodé, L.; Eveillard, M.; Trichet, V.; Soussi, T.; Wuillème, S.; Richebourg, S.; Magrangeas, F.; Ifrah, N.; Campion, L.; Traullé, C.; et al. Mutations in TP53 Are Exclusively Associated with Del(17p) in Multiple Myeloma. Haematologica 2010, 95, 1973–1976. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, N.; Ashby, C.; Rasche, L.; Chavan, S.S.; Stein, C.; Stephens, O.W.; Tytarenko, R.; Bauer, M.A.; Meissner, T.; Deshpande, S.; et al. Clonal Selection and Double-Hit Events Involving Tumor Suppressor Genes Underlie Relapse in Myeloma. Blood 2016, 128, 1735–1744. [Google Scholar] [CrossRef]
- Jovanović, K.K.; Escure, G.; Demonchy, J.; Willaume, A.; Van de Wyngaert, Z.; Farhat, M.; Chauvet, P.; Facon, T.; Quesnel, B.; Manier, S. Deregulation and Targeting of TP53 Pathway in Multiple Myeloma. Front. Oncol. 2018, 8, 665. [Google Scholar] [CrossRef]
- Walker, B.A.; Mavrommatis, K.; Wardell, C.P.; Ashby, T.C.; Bauer, M.; Davies, F.E.; Rosenthal, A.; Wang, H.; Qu, P.; Hoering, A.; et al. Identification of Novel Mutational Drivers Reveals Oncogene Dependencies in Multiple Myeloma. Blood 2018, 132, 587–597. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Heuck, C.; Mitchell, A.; Szymonifka, J.; Nair, B.; Hoering, A.; Alsayed, Y.; Waheed, S.; Haider, S.; Restrepo, A.; et al. Extramedullary Disease Portends Poor Prognosis in Multiple Myeloma and Is Over-represented in High-Risk Disease Even in the Era of Novel Agents. Haematologica 2012, 97, 1761–1767. [Google Scholar] [CrossRef]
- Thanendrarajan, S.; Tian, E.; Qu, P.; Mathur, P.; Schinke, C.; van Rhee, F.; Zangari, M.; Rasche, L.; Weinhold, N.; Alapat, D.; et al. The Level of Deletion 17p and Bi-allelic Inactivation of TP53 Has a Significant Impact on Clinical Outcome in Multiple Myeloma. Haematologica 2017, 102, e364–e367. [Google Scholar] [CrossRef]
- Walerych, D.; Lisek, K.; Sommaggio, R.; Piazza, S.; Ciani, Y.; Dalla, E.; Rajkowska, K.; Gaweda-Walerych, K.; Ingallina, E.; Tonelli, C.; et al. Proteasome Machinery Is Instrumental in a Common Gain-of-Function Program of the p53 Missense Mutants in Cancer. Nat. Cell Biol. 2016, 18, 897–909. [Google Scholar] [CrossRef] [PubMed]
- Chin, M.; Sive, J.I.; Allen, C.; Roddie, C.; Chavda, S.J.; Smith, D.; Blombery, P.; Jones, K.; Ryland, G.L.; Popat, R.; et al. Prevalence and Timing of TP53 Mutations in Del(17p) Myeloma and Effect on Survival. Blood Cancer J. 2017, 7, e610. [Google Scholar] [CrossRef] [PubMed]
- Thakurta, A.; Ortiz, M.; Blecua, P.; Towfic, F.; Corre, J.; Serbina, N.V.; Flynt, E.; Yu, Z.; Yang, Z.; Palumbo, A.; et al. High Subclonal Fraction of 17p Deletion Is Associated with Poor Prognosis in Multiple Myeloma. Blood 2019, 133, 1217–1221. [Google Scholar] [CrossRef] [PubMed]
- Lakshman, A.; Painuly, U.; Rajkumar, S.V.; Ketterling, R.P.; Kapoor, P.; Greipp, P.T.; Dispenzieri, A.; Gertz, M.A.; Buadi, F.K.; Lacy, M.Q.; et al. Impact of Acquired Del(17p) in Multiple Myeloma. Blood Adv. 2019, 3, 1930–1938. [Google Scholar] [CrossRef]
- Lancman, G.; Tremblay, D.; Barley, K.; Barlogie, B.; Cho, H.J.; Jagannath, S.; Madduri, D.; Moshier, E.; Parekh, S.; Chari, A. The Effect of Novel Therapies in High-Molecular-Risk Multiple Myeloma. Clin. Adv. Hematol. Oncol. 2017, 15, 870–879. [Google Scholar]
- Lambert, J.M.R.; Gorzov, P.; Veprintsev, D.B.; Söderqvist, M.; Segerbäck, D.; Bergman, J.; Fersht, A.R.; Hainaut, P.; Wiman, K.G.; Bykov, V.J.N. PRIMA-1 Reactivates Mutant P53 by Covalent Binding to the Core Domain. Cancer Cell 2009, 15, 376–388. [Google Scholar] [CrossRef]
- Lehmann, S.; Bykov, V.J.N.; Ali, D.; Andrén, O.; Cherif, H.; Tidefelt, U.; Uggla, B.; Yachnin, J.; Juliusson, G.; Moshfegh, A.; et al. Targeting P53 In Vivo: A First-in-Human Study with P53-Targeting Compound APR-246 in Refractory Hematologic Malignancies and Prostate Cancer. J. Clin. Oncol. 2012, 30, 3633–3639. [Google Scholar] [CrossRef]
- D’Agostino, M.; Cairns, D.A.; Lahuerta, J.J.; Wester, R.; Bertsch, U.; Waage, A.; Zamagni, E.; Mateos, M.V.; Dall’Olio, D.; van de Donk, N.W.C.J.; et al. Second Revision of the International Staging System (R2-ISS) for Overall Survival in Multiple Myeloma: A European Myeloma Network (EMN) Report Within the HARMONY Project. J. Clin. Oncol. 2022, 40, 3406–3418. [Google Scholar] [CrossRef]
- Takamatsu, H.; Takezako, N.; Zheng, J.; Moorhead, M.; Carlton, V.E.H.; Kong, K.A.; Murata, R.; Ito, S.; Miyamoto, T.; Yokoyama, K.; et al. Prognostic Value of Sequencing-Based Minimal Residual Disease Detection in Patients with Multiple Myeloma Who Underwent Autologous Stem-Cell Transplantation. Ann. Oncol. 2017, 28, 2503–2510. [Google Scholar] [CrossRef]
- Kostopoulos, I.V.; Eleutherakis-Papaiakovou, E.; Rousakis, P.; Ntanasis-Stathopoulos, I.; Panteli, C.; Orologas-Stavrou, N.; Kanellias, N.; Malandrakis, P.; Liacos, C.I.; Papaioannou, N.E.; et al. Aberrant Plasma Cell Contamination of Peripheral Blood Stem Cell Autografts, Assessed by Next-Generation Flow Cytometry, Is a Negative Predictor for Deep Response Post Autologous Transplantation in Multiple Myeloma; A Prospective Study in 199 Patients. Cancers 2021, 13, 4047. [Google Scholar] [CrossRef]
- Waszczuk-Gajda, A.; Feliksbrot-Bratosiewicz, M.; Król, M.; Snarski, E.; Drozd-Sokołowska, J.; Biecek, P.; Król, M.; Lewandowski, Z.; Peradzyńska, J.; Jędrzejczak, W.W.; et al. Influence of Clonal Plasma Cell Contamination of Peripheral Blood Stem Cell Autografts on Progression and Survival in Multiple Myeloma Patients after Autologous Peripheral Blood Stem Cell Transplantation in Long-Term Observation. Transplant. Proc. 2018, 50, 2202–2211. [Google Scholar] [CrossRef]
- Ho, J.; Yang, L.; Banihashemi, B.; Martin, L.; Halpenny, M.; Atkins, H.; Sabloff, M.; McDiarmid, S.A.; Huebsch, L.B.; Bence-Bruckler, I.; et al. Contaminating Tumour Cells in Autologous PBSC Grafts Do Not Influence Survival or Relapse Following Transplant for Multiple Myeloma or B-Cell Non-Hodgkin’s Lymphoma. Bone Marrow Transplant. 2009, 43, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Bourhis, J.H.; Bouko, Y.; Koscielny, S.; Bakkus, M.; Greinix, H.; Derigs, G.; Salles, G.; Feremans, W.; Apperley, J.; Samson, D.; et al. Relapse Risk after Autologous Transplantation in Patients with Newly Diagnosed Myeloma Is Not Related with Infused Tumor Cell Load and the Outcome Is Not Improved by CD34+ Cell Selection: Long Term Follow-Up of an EBMT Phase III Randomized Study. Haematologica 2007, 92, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Narayanasami, U.; Kanteti, R.; Morelli, J.; Klekar, A.; Al-Olama, A.; Keating, C.; O’Connor, C.; Berkman, E.; Erban, J.K.; Sprague, K.A.; et al. Randomized Trial of Filgrastim versus Chemotherapy and Filgrastim Mobilization of Hematopoietic Progenitor Cells for Rescue in Autologous Transplantation. Blood 2001, 98, 2059–2064. [Google Scholar] [CrossRef]
- Baumelou, M.; Payssot, A.; Row, C.; Racine, J.; Lafon, I.; Bastie, J.N.; Chevreux, S.; Chrétien, M.L.; Maynadié, M.; Caillot, D.; et al. Early Achievement of Measurable Residual Disease Negativity in the Treatment of Multiple Myeloma as Predictor of Outcome. Br. J. Haematol. 2022, 197, e82–e85. [Google Scholar] [CrossRef] [PubMed]
- Pasvolsky, O.; Milton, D.R.; Rauf, M.; Ghanem, S.; Masood, A.; Mohamedi, A.H.; Tanner, M.R.; Bashir, Q.; Srour, S.A.; Saini, N.; et al. Impact of Presence and Amount of Clonal Plasma Cells in Autografts Affect Outcomes in High-Risk Multiple Myeloma Patients Undergoing Autologous Hematopoietic Stem Cell Transplant. Blood 2022, 140 (Suppl. S1), 284–286. [Google Scholar] [CrossRef]
- Nishimura, N.; Brown, S.; Devlin, S.M.; Dahi, P.B.; Landau, H.; Lahoud, O.B.; Scordo, M.; Shah, G.L.; Hassoun, H.; Hultcrantz, M.; et al. Stem Cell Autograft Minimal Residual Disease Negativity Improves Outcomes after Autotransplant for Multiple Myeloma. Blood 2022, 140 (Suppl. S1), 620–622. [Google Scholar] [CrossRef]
- Bertamini, L.; D’Agostino, M.; Gay, F. MRD Assessment in Multiple Myeloma: Progress and Challenges. Curr. Hematol. Malig. Rep. 2021, 16, 162–171. [Google Scholar] [CrossRef]
- Sanoja-Flores, L.; Flores-Montero, J.; Puig, N.; Contreras-Sanfeliciano, T.; Pontes, R.; Corral-Mateos, A.; García-Sánchez, O.; Díez-Campelo, M.; Pessoa de Magalhães, R.J.; García-Martín, L.; et al. Blood Monitoring of Circulating Tumor Plasma Cells by Next Generation Flow in Multiple Myeloma after Therapy. Blood 2019, 134, 2218–2222. [Google Scholar] [CrossRef]
- Mazzotti, C.; Buisson, L.; Maheo, S.; Perrot, A.; Chretien, M.L.; Leleu, X.; Hulin, C.; Manier, S.; Hébraud, B.; Roussel, M.; et al. Myeloma MRD by Deep Sequencing from Circulating Tumor DNA Does Not Correlate with Results Obtained in the Bone Marrow. Blood Adv. 2018, 2, 2811–2813. [Google Scholar] [CrossRef]
- Costa, L.J.; Derman, B.A.; Bal, S.; Sidana, S.; Chhabra, S.; Silbermann, R.; Ye, J.C.; Cook, G.; Cornell, R.F.; Holstein, S.A.; et al. International Harmonization in Performing and Reporting Minimal Residual Disease Assessment in Multiple Myeloma Trials. Leukemia 2021, 35, 18–30. [Google Scholar] [CrossRef]
- Moor, I.; Bacher, V.U.; Jeker, B.; Taleghani, B.M.; Mueller, B.U.; Keller, P.; Betticher, D.; Egger, T.; Novak, U.; Pabst, T. Peripheral Flow-MRD Status at the Time of Autologous Stem Cell Collection Predicts Outcome in Multiple Myeloma. Bone Marrow Transplant. 2018, 53, 1599–1602. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.K.; Vescio, R.; Schiller, G.; Ballester, O.; Noga, S.; Rugo, H.; Freytes, C.; Stadtmauer, E.; Tarantolo, S.; Sahebi, F.; et al. Purging of Autologous Peripheral-Blood Stem Cells Using CD34 Selection Does Not Improve Overall or Progression-Free Survival after High-Dose Chemotherapy for Multiple Myeloma: Results of a Multicenter Randomized Controlled Trial. J. Clin. Oncol. 2001, 19, 3771–3779. [Google Scholar] [CrossRef]
- Vogel, W.; Kopp, H.G.; Kanz, L.; Einsele, H. Myeloma Cell Contamination of Peripheral Blood Stem-Cell Grafts Can Predict the Outcome in Multiple Myeloma Patients after High-Dose Chemotherapy and Autologous Stem-Cell Transplantation. J. Cancer Res. Clin. Oncol. 2005, 131, 214–218. [Google Scholar] [CrossRef]
- Gay, F.; Mina, R.; Rota-Scalabrini, D.; Galli, M.; Belotti, A.; Zamagni, E.; Bertamini, L.; Zambello, R.; Gamberi, B.; De Sabbata, G.; et al. Carfilzomib-Based Induction/Consolidation with or without Autologous Transplant (ASCT) Followed by Lenalidomide (R) or Carfilzomib-Lenalidomide (KR) Maintenance: Efficacy in High-Risk Patients. J. Clin. Oncol. 2021, 39, 8002. [Google Scholar] [CrossRef]
- Bal, S.; Landau, H.J.; Shah, G.L.; Scordo, M.; Dahi, P.; Lahoud, O.B.; Hassoun, H.; Hultcrantz, M.; Korde, N.; Lendvai, N.; et al. Stem Cell Mobilization and Autograft Minimal Residual Disease Negativity with Novel Induction Regimens in Multiple Myeloma. Biol. Blood Marrow Transplant. 2020, 26, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Tageja, N.; Korde, N.; Kazandjian, D.; Panch, S.; Manasanch, E.; Bhutani, M.; Kwok, M.; Mailankody, S.; Yuan, C.; Stetler-Stevenson, M.; et al. Combination Therapy with Carfilzomib, Lenalidomide and Dexamethasone (KRd) Results in an Unprecedented Purity of the Stem Cell Graft in Newly Diagnosed Patients with Myeloma. Bone Marrow Transplant. 2018, 53, 1445–1449. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Attal, M.; Caillot, D.; Macro, M.; Karlin, L.; Garderet, L.; Facon, T.; Benboubker, L.; Escoffre-Barbe, M.; Stoppa, A.M.; et al. Prospective Evaluation of Magnetic Resonance Imaging and [18 F]Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography at Diagnosis and before Maintenance Therapy in Symptomatic Patients with Multiple Myeloma Included in the IFM/DFCI 2009 Trial: Results of the IMAJEM Study. J. Clin. Oncol. 2017, 35, 2911–2918. [Google Scholar] [CrossRef]
- Hillengass, J.; Usmani, S.; Rajkumar, S.V.; Durie, B.G.M.; Mateos, M.-V.; Lonial, S.; Joao, C.; Anderson, K.C.; García-Sanz, R.; Riva, E.; et al. International Myeloma Working Group Consensus Recommendations on Imaging in Monoclonal Plasma Cell Disorders. Lancet Oncol. 2019, 20, e302–e312. [Google Scholar] [CrossRef]
- Kyle, R.A.; Gertz, M.A.; Witzig, T.E.; Lust, J.A.; Lacy, M.Q.; Dispenzieri, A.; Fonseca, R.; Rajkumar, S.V.; Offord, J.R.; Larson, D.R.; et al. Review of 1027 Patients with Newly Diagnosed Multiple Myeloma. Mayo Clin. Proc. 2003, 78, 21–33. [Google Scholar] [CrossRef]
- Rasche, L.; Alapat, D.; Kumar, M.; Gershner, G.; McDonald, J.; Wardell, C.P.; Samant, R.; Van Hemert, R.; Epstein, J.; Williams, A.F.; et al. Combination of Flow Cytometry and Functional Imaging for Monitoring of Residual Disease in Myeloma. Leukemia 2019, 33, 1713–1722. [Google Scholar] [CrossRef]
- Costa, L.J.; Chhabra, S.; Medvedova, E.; Schmidt, T.M.; Dholaria, B.; Godby, K.N.; Silbermann, R.; Bal, S.; D’Souza, A.; Giri, S.; et al. Outcomes of MRD-Adapted Treatment Modulation in Patients with Newly Diagnosed Multiple Myeloma Receiving Daratumumab, Carfilzomib, Lenalidomide and Dexamethasone (Dara-KRd) and Autologous Transplantation: Extended Follow up of the Master Trial. Blood 2022, 140 (Suppl. S1), 7275–7277. [Google Scholar] [CrossRef]
- Paiva, B.; van Dongen, J.J.M.; Orfao, A. New Criteria for Response Assessment: Role of Minimal Residual Disease in Multiple Myeloma. Blood 2015, 125, 3059–3068. [Google Scholar] [CrossRef]
- Rawstron, A.C.; Child, J.A.; de Tute, R.M.; Davies, F.E.; Gregory, W.M.; Bell, S.E.; Szubert, A.J.; Navarro-Coy, N.; Drayson, M.T.; Feyler, S.; et al. Minimal Residual Disease Assessed by Multiparameter Flow Cytometry in Multiple Myeloma: Impact on Outcome in the Medical Research Council Myeloma IX Study. J. Clin. Oncol. 2013, 31, 2540–2547. [Google Scholar] [CrossRef]
- Zamagni, E.; Nanni, C.; Dozza, L.; Carlier, T.; Bailly, C.; Tacchetti, P.; Versari, A.; Chauvie, S.; Gallamini, A.; Gamberi, B.; et al. Standardization of 18 F-FDG–PET/CT According to Deauville Criteria for Metabolic Complete Response Definition in Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. 2021, 39, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Belotti, A.; Ribolla, R.; Cancelli, V.; Villanacci, A.; Angelini, V.; Chiarini, M.; Giustini, V.; Facchetti, G.V.; Roccaro, A.M.; Ferrari, S.; et al. Predictive Role of Diffusion-Weighted Whole-Body MRI (DW-MRI) Imaging Response According to MY-RADS Criteria after Autologous Stem Cell Transplantation in Patients with Multiple Myeloma and Combined Evaluation with MRD Assessment by Flow Cytometry. Cancer Med. 2021, 10, 5859–5865. [Google Scholar] [CrossRef]
- Murray, D.L.; Puig, N.; Kristinsson, S.; Usmani, S.Z.; Dispenzieri, A.; Bianchi, G.; Kumar, S.; Chng, W.J.; Hajek, R.; Paiva, B.; et al. Mass Spectrometry for the Evaluation of Monoclonal Proteins in Multiple Myeloma and Related Disorders: An International Myeloma Working Group Mass Spectrometry Committee Report. Blood Cancer J. 2021, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Langerhorst, P.; Noori, S.; Zajec, M.; De Rijke, Y.B.; Gloerich, J.; van Gool, A.J.; Caillon, H.; Joosten, I.; Luider, T.M.; Corre, J.; et al. Multiple Myeloma Minimal Residual Disease Detection: Targeted Mass Spectrometry in Blood vs Next-Generation Sequencing in Bone Marrow. Clin. Chem. 2021, 67, 1689–1698. [Google Scholar] [CrossRef]
- Liyasova, M.; McDonald, Z.; Taylor, P.; Gorospe, K.; Xu, X.; Yao, C.; Liu, Q.; Yang, L.; Atenafu, E.G.; Piza, G.; et al. A Personalized Mass Spectrometry–Based Assay to Monitor M-Protein in Patients with Multiple Myeloma (EasyM). Clin. Cancer Res. 2021, 27, 5028–5037. [Google Scholar] [CrossRef] [PubMed]
- Abeykoon, J.P.; Murray, D.L.; Murray, I.; Jevremovic, D.; Otteson, G.E.; Dispenzieri, A.; Arendt, B.K.; Dasari, S.; Gertz, M.; Gonsalves, W.I.; et al. Implications of Detecting Serum Monoclonal Protein by MASS-Fix Following Stem Cell Transplantation in Multiple Myeloma. Br. J. Haematol. 2021, 193, 380–385. [Google Scholar] [CrossRef]
- Ledergor, G.; Weiner, A.; Zada, M.; Wang, S.Y.; Cohen, Y.C.; Gatt, M.E.; Snir, N.; Magen, H.; Koren-Michowitz, M.; Herzog-Tzarfati, K.; et al. Single Cell Dissection of Plasma Cell Heterogeneity in Symptomatic and Asymptomatic Myeloma. Nat. Med. 2018, 24, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Boyle, E.M.; Deshpande, S.; Tytarenko, R.; Ashby, C.; Wang, Y.; Bauer, M.A.; Johnson, S.K.; Wardell, C.P.; Thanendrarajan, S.; Zangari, M.; et al. The Molecular Make up of Smoldering Myeloma Highlights the Evolutionary Pathways Leading to Multiple Myeloma. Nat. Commun. 2021, 12, 293. [Google Scholar] [CrossRef]
- Zavidij, O.; Haradhvala, N.J.; Mouhieddine, T.H.; Sklavenitis-Pistofidis, R.; Cai, S.; Reidy, M.; Rahmat, M.; Flaifel, A.; Ferland, B.; Su, N.K.; et al. Single-Cell RNA Sequencing Reveals Compromised Immune Microenvironment in Precursor Stages of Multiple Myeloma. Nat. Cancer 2020, 1, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, S.; Li, H.; Guo, J.; Wu, D.; Zhou, W.; Xie, L. Cellular Interaction Analysis Characterizing Immunosuppressive Microenvironment Functions in MM Tumorigenesis from Precursor Stages. Front. Genet. 2022, 13, 844604. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Tsakirakis, N.; Malandrakis, P.; Vitsos, P.; Metousis, A.; Orologas-Stavrou, N.; Ntanasis-Stathopoulos, I.; Kanellias, N.; Eleutherakis-Papaiakovou, E.; Pothos, P.; et al. Deep Phenotyping Reveals Distinct Immune Signatures Correlating with Prognostication, Treatment Responses, and MRD Status in Multiple Myeloma. Cancers 2020, 12, 3245. [Google Scholar] [CrossRef]
- Paiva, B.; Cedena, M.T.; Puig, N.; Arana, P.; Vidriales, M.B.; Cordon, L.; Flores-Montero, J.; Gutierrez, N.C.; Martín-Ramos, M.L.; Martinez-Lopez, J.; et al. Minimal Residual Disease Monitoring and Immune Profiling in Multiple Myeloma in Elderly Patients. Blood 2016, 127, 3165–3174. [Google Scholar] [CrossRef]
- Foglietta, M.; Castella, B.; Mariani, S.; Coscia, M.; Godio, L.; Ferracini, R.; Ruggeri, M.; Muccio, V.; Omedé, P.; Palumbo, A.; et al. The Bone Marrow of Myeloma Patients Is Steadily Inhabited by a Normal-Sized Pool of Functional Regulatory T Cells Irrespective of the Disease Status. Haematologica 2014, 99, 1605–1610. [Google Scholar] [CrossRef]
- Marsh-Wakefield, F.; Kruzins, A.; McGuire, H.M.; Yang, S.; Bryant, C.; Fazekas de St Groth, B.; Nassif, N.; Byrne, S.N.; Gibson, J.; Brown, C.; et al. Mass Cytometry Discovers Two Discrete Subsets of CD39−Treg Which Discriminate MGUS from Multiple Myeloma. Front. Immunol. 2019, 10, 1596. [Google Scholar] [CrossRef]
- Bhutani, M.; Foureau, D.; Zhang, Q.; Robinson, M.; Wynn, A.S.; Steuerwald, N.M.; Druhan, L.J.; Guo, F.; Rigby, K.; Turner, M.; et al. Peripheral Immunotype Correlates with Minimal Residual Disease Status and Is Modulated by Immunomodulatory Drugs in Multiple Myeloma. Biol. Blood Marrow Transplant. 2019, 25, 459–465. [Google Scholar] [CrossRef]
- Gu, J.; Liu, J.; Chen, M.; Huang, B.; Li, J. Longitudinal Flow Cytometry Identified “Minimal Residual Disease” (MRD) Evolution Patterns for Predicting the Prognosis of Patients with Transplant-Eligible Multiple Myeloma. Biol. Blood Marrow Transplant. 2018, 24, 2568–2574. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. Lancet Oncol. 2014, 1, e538–e548. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V.; Landgren, O.; Mateos, M.V. Smoldering Multiple Myeloma. Blood 2015, 125, 3069–3075. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.V.; Kumar, S.; Dimopoulos, M.A.; González-Calle, V.; Kastritis, E.; Hajek, R.; De Larrea, C.F.; Morgan, G.J.; Merlini, G.; Goldschmidt, H.; et al. International Myeloma Working Group Risk Stratification Model for Smoldering Multiple Myeloma (SMM). Blood Cancer J. 2020, 10, 102. [Google Scholar] [CrossRef]
- Musto, P.; Engelhardt, M.; Caers, J.; Bolli, N.; Kaiser, M.; Van de Donk, N.; Terpos, E.; Broijl, A.; De Larrea, C.F.; Gay, F.; et al. European Myeloma Network Review and Consensus Statement on Smoldering Multiple Myeloma: How to Distinguish (and Manage) Dr. Jekyll and Mr Hyde. Haematologica 2021, 106, 2799–2812. [Google Scholar] [CrossRef]
- Korde, N.; Roschewski, M.; Zingone, A.; Kwok, M.; Manasanch, E.E.; Bhutani, M.; Tageja, N.; Kazandjian, D.; Mailankody, S.; Wu, P.; et al. Treatment with Carfilzomib-Lenalidomide-Dexamethasone with Lenalidomide Extension in Patients with Smoldering or Newly Diagnosed Multiple Myeloma. JAMA Oncol. 2015, 1, 746–754. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Martinez-Lopez, J.; Rodriguez Otero, P.; Gonzalez-Calle, V.; Gonzalez, M.S.; Oriol, A.; Gutierrez, N.C.; Paiva, B.; Ríos Tamayo, R.; Rosinol Dachs, L.; et al. Curative Strategy (GEM-CESAR) for High-Risk Smoldering Myeloma (SMM): Carfilzomib, Lenalidomide and Dexamethasone (KRd) as Induction Followed by HDT-ASCT, Consolidation with Krd and Maintenance with Rd. Blood 2019, 134, 781. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Martinez Lopez, J.; Rodríguez-Otero, P.; Gonzalez-Calle, V.; Gonzalez, M.S.; Oriol, A.; Gutierrez, N.C.; Rios, R.; Rosinol, L.; Alvarez, M.A.; et al. Curative Strategy (GEM-CESAR) for High-Risk Smoldering Myeloma (SMM): Carfilzomib, Lenalidomide and Dexamethasone (KRd) as Induction Followed by HDT-ASCT, Consolidation with Krd and Maintenance with Rd. Blood 2021, 138, 1829. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Martínez-López, J.; Rodríguez-Otero, P.; San-Miguel, J.; Gonzalez-Calle, V.; Gonzalez, M.S.; Oriol, A.; Gutierrez, N.C.; Rios, R.; Rosinol Dachs, L.; et al. Curative Strategy (GEM-CESAR) for High-Risk Smoldering Myeloma (SMM): Post-Hoc Analysis of Sustained Undetectable Measurable Residual Disease (MRD). Blood 2022, 140 (Suppl. S1), 292–294. [Google Scholar] [CrossRef]
- Gay, F.; Musto, P.; Rota-Scalabrini, D.; Bertamini, L.; Belotti, A.; Galli, M.; Offidani, M.; Zamagni, E.; Ledda, A.; Grasso, M.; et al. Carfilzomib with Cyclophosphamide and Dexamethasone or Lenalidomide and Dexamethasone plus Autologous Transplantation or Carfilzomib plus Lenalidomide and Dexamethasone, Followed by Maintenance with Carfilzomib plus Lenalidomide or Lenalidomide Alone for Patients with Newly Diagnosed Multiple Myeloma (Forte): A Randomised, Open-Label, Phase 2 Trial. Lancet Oncol. 2021, 22, 1705–1720. [Google Scholar] [CrossRef]
- Kumar, S.K.; Abdallah, A.-O.; Badros, A.Z.; Laplant, B.; Dhakal, B.; Alsina, M.; Abonour, R.; Rosenbaum, C.A.; Bensinger, W.I.; Bhutani, M.; et al. Aggressive Smoldering Curative Approach Evaluating Novel Therapies (ASCENT): A Phase 2 Trial of Induction, Consolidation and Maintenance in Subjects with High Risk Smoldering Multiple Myeloma (SMM): Initial Analysis of Safety Data. Blood 2020, 136, 35–36. [Google Scholar] [CrossRef]
- Kumar, S.K.; Alsina, M.; Laplant, B.; Badros, A.Z.; Abdallah, A.-O.; Abonour, R.; Asmus, E.J.; Dhakal, B.; Rosenbaum, C.A.; Egan, D.; et al. Fixed Duration Therapy with Daratumumab, Carfilzomib, Lenalidomide and Dexamethasone for High Risk Smoldering Multiple Myeloma-Results of the Ascent Trial. Blood 2022, 140 (Suppl. S1), 1830–1832. [Google Scholar] [CrossRef]
- Zimmerman, T.; Raje, N.S.; Vij, R.; Reece, D.; Berdeja, J.G.; Stephens, L.A.; McDonnell, K.; Rosenbaum, C.A.; Jasielec, J.; Richardson, P.G.; et al. Final Results of a Phase 2 Trial of Extended Treatment (Tx) with Carfilzomib (CFZ), Lenalidomide (LEN), and Dexamethasone (KRd) Plus Autologous Stem Cell Transplantation (ASCT) in Newly Diagnosed Multiple Myeloma (NDMM). Blood 2016, 128, 675. [Google Scholar] [CrossRef]
- Touzeau, C.; Perrot, A.; Hulin, C.; Manier, S.; Macro, M.; Caillot, D.; Karlin, L.; Decaux, O.; Jacquet, C.; Tiab, M.; et al. Daratumumab Carfilzomib Lenalidomide and Dexamethasone as Induction Therapy in High-Risk, Transplant-Eligible Patients with Newly Diagnosed Myeloma: Results of the Phase 2 Study IFM 2018–04. J. Clin. Oncol. 2022, 40, 8002. [Google Scholar] [CrossRef]
- Guerrero, C.; Puig, N.; Cedena, M.T.; Goicoechea, I.; Perez, C.; Garcés, J.J.; Botta, C.; Calasanz, M.J.; Gutierrez, N.C.; Martin-Ramos, M.L.; et al. A Machine Learning Model Based on Tumor and Immune Biomarkers to Predict Undetectable MRD and Survival Outcomes in Multiple Myeloma. Clin. Cancer Res. 2022, 28, 2598–2609. [Google Scholar] [CrossRef]
- Novella, E.; Madeo, D.; Albiero, E.; Roberti, S.; Castaman, G.; Elice, F.; Rodeghiero, F. Effect of DCEP Mobilizing Regimen in in Vivo Purging of PBSC Harvests in Multiple Myeloma. Leuk. Lymphoma 2004, 45, 1497–1499. [Google Scholar] [CrossRef] [PubMed]
- Atrash, S.; Robinson, M.; Paul, B.; Norek, S.; Foureau, D.M.; Syfert, C.A.; Ndiaye, A.P.; Symanowski, J.T.; Robinson, J.; Bhutani, M.; et al. Phase II Trial of In Vivo Purging with Daratumumab in Newly Diagnosed Multiple Myeloma. Blood 2020, 136 (Suppl. S1), 19–20. [Google Scholar] [CrossRef]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Jagannath, S.; Berdeja, J.G.; Lonial, S.; Raje, N.S.; Siegel, D.S.D.; Lin, Y.; Oriol, A.; et al. Idecabtagene Vicleucel (Ide-Cel; bb2121), a BCMA-Targeted CAR T-Cell Therapy, in Patients with Relapsed and Refractory Multiple Myeloma (RRMM): Initial KarMMa Results. J. Clin. Oncol. 2020, 38, 8503. [Google Scholar] [CrossRef]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Singh, I.; Zudaire, E.; Yeh, T.M.; Allred, A.J.; Olyslager, Y.; Banerjee, A.; Goldberg, J.D.; et al. Update of CARTITUDE-1: A Phase Ib/II Study of JNJ-4528, a B-Cell Maturation Antigen (BCMA)-Directed CAR-T-Cell Therapy, in Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2020, 38, 8505. [Google Scholar] [CrossRef]
- Cho, S.F.; Anderson, K.C.; Tai, Y.T. Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Front. Immunol. 2018, 9, 1821. [Google Scholar] [CrossRef]
- Lakshman, A.; Singh, P.P.; Rajkumar, S.V.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Buadi, F.K.; Dingli, D.; Hwa, Y.L.; Fonder, A.L.; et al. Efficacy of VDT PACE-Like Regimens in Treatment of Relapsed/Refractory Multiple Myeloma. Am. J. Hematol. 2018, 93, 179–186. [Google Scholar] [CrossRef]
- Choi, K.E.; Ratain, M.J.; Williams, S.F.; Golick, J.A.; Beschorner, J.C.; Fullem, L.J.; Bitran, J.D. Plasma Pharmacokinetics of High-Dose Oral Melphalan in Patients Treated with Trialkylator Chemotherapy and Autologous Bone Marrow Reinfusion. Cancer Res. 1989, 49, 1318–1321. [Google Scholar] [PubMed]
- Boros, L.; Peng, Y.M.; Alberts, D.S.; Asbury, R.F.; Goodman, T.L.; Penn, T.E.; Hickox, D.E. Pharmacokinetics of Very High-Dose Oral Melphalan in Cancer Patients. Am. J. Clin. Oncol. 1990, 13, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Samuels, B.L.; Samuels, J.D.; Bitran, J.D. High-Dose Intravenous Melphalan: A Review. J. Clin. Oncol. 1995, 13, 1786–1799. [Google Scholar] [CrossRef]
- Palumbo, A.; Cavallo, F.; Gay, F.; Di Raimondo, F.; Ben Yehuda, D.; Petrucci, M.T.; Pezzatti, S.; Caravita, T.; Cerrato, C.; Ribakovsky, E.; et al. Autologous Transplantation and Maintenance Therapy in Multiple Myeloma. N. Engl. J. Med. 2014, 371, 895–905. [Google Scholar] [CrossRef]
- Gay, F.; Oliva, S.; Petrucci, M.T.; Conticello, C.; Catalano, L.; Corradini, P.; Siniscalchi, A.; Magarotto, V.; Pour, L.; Carella, A.; et al. Chemotherapy plus Lenalidomide versus Autologous Transplantation, Followed by Lenalidomide plus Prednisone versus Lenalidomide Maintenance, in Patients with Multiple Myeloma: A Randomised, Multicentre, Phase 3 Trial. Lancet Oncol. 2015, 16, 1617–1629. [Google Scholar] [CrossRef] [PubMed]
- Cavo, M.; Gay, F.; Beksac, M.; Pantani, L.; Petrucci, M.T.; Dimopoulos, M.A.; Dozza, L.; van der Holt, B.; Zweegman, S.; Oliva, S.; et al. Autologous Haematopoietic Stem-Cell Transplantation versus Bortezomib–Melphalan–Prednisone, with or without Bortezomib–Lenalidomide–Dexamethasone Consolidation Therapy, and Lenalidomide Maintenance for Newly Diagnosed Multiple Myeloma (EMN02/HO95): A Multicentre, Randomised, Open-Label, Phase 3 Study. Lancet Haematol. 2020, 7, e456–e468. [Google Scholar] [CrossRef]
- Attal, M.; Lauwers-Cances, V.; Hulin, C.; Leleu, X.; Caillot, D.; Escoffre, M.; Arnulf, B.; Macro, M.; Belhadj, K.; Garderet, L.; et al. Lenalidomide, Bortezomib, and Dexamethasone with Transplantation for Myeloma. N. Engl. J. Med. 2017, 376, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Jacobus, S.J.; Weller, E.A.; Hassoun, H.; Lonial, S.; Raje, N.S.; Medvedova, E.; McCarthy, P.L.; Libby, E.N.; Voorhees, P.M.; et al. Triplet Therapy, Transplantation, and Maintenance until Progression in Myeloma. N. Engl. J. Med. 2022, 387, 132–147. [Google Scholar] [CrossRef]
- Perrot, A.; Lauwers-Cances, V.; Corre, J.; Robillard, N.; Hulin, C.; Chretien, M.L.; Dejoie, T.; Maheo, S.; Stoppa, A.M.; Pegourie, B.; et al. Minimal Residual Disease Negativity Using Deep Sequencing Is a Major Prognostic Factor in Multiple Myeloma. Blood 2018, 132, 2456–2464. [Google Scholar] [CrossRef]
- Hari, P.; Pasquini, M.C.; Stadtmauer, E.A.; Fraser, R.; Fei, M.; Devine, S.M.; Efebera, Y.A.; Geller, N.; Horowitz, M.M.; Koreth, J.; et al. Long-Term Follow-Up of BMT CTN 0702 (STaMINA) of Postautologous Hematopoietic Cell Transplantation (AutoHCT) Strategies in the Upfront Treatment of Multiple Myeloma (MM). J. Clin. Oncol. 2020, 38, 8506. [Google Scholar] [CrossRef]
- Moreau, P.; Hulin, C.; Perrot, A.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Zweegman, S.; Caillon, H.; Caillot, D.; et al. Maintenance with Daratumumab or Observation Following Treatment with Bortezomib, Thalidomide, and Dexamethasone with or without Daratumumab and Autologous Stem-Cell Transplant in Patients with Newly Diagnosed Multiple Myeloma (Cassiopeia): An Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2021, 22, 1378–1390. [Google Scholar] [CrossRef] [PubMed]
- Jackson, G.H.; Davies, F.E.; Pawlyn, C.; Cairns, D.A.; Striha, A.; Collett, C.; Hockaday, A.; Jones, J.R.; Kishore, B.; Garg, M.; et al. Lenalidomide Maintenance versus Observation for Patients with Newly Diagnosed Multiple Myeloma (Myeloma XI): A Multicentre, Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2019, 20, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Cavo, M.; Pantani, L.; Petrucci, M.T.; Patriarca, F.; Zamagni, E.; Donnarumma, D.; Crippa, C.; Boccadoro, M.; Perrone, G.; Falcone, A.; et al. Bortezomib-Thalidomide-Dexamethasone Is Superior to Thalidomide-Dexamethasone as Consolidation Therapy after Autologous Hematopoietic Stem Cell Transplantation in Patients with Newly Diagnosed Multiple Myeloma. Blood 2012, 120, 9–19. [Google Scholar] [CrossRef]
- Kaiser, M.F.; Hall, A.; Smith, I.; de Tute, R.M.; Roberts, S.; Ingleson, E.; Bowles, K.M.; Garg, M.; Lokare, A.; Messiou, C.; et al. Extended Intensified Post-ASCT Consolidation with Daratumumab, Bortezomib, Lenalidomide and Dexamethasone (Dara-VRd) for Ultra-High Risk (UHiR) Newly Diagnosed Myeloma (NDMM) and Primary Plasma Cell Leukemia (PPCL): The UK Optimum/Muknine Trial. Blood 2022, 140 (Suppl. S1), 1833–1835. [Google Scholar] [CrossRef]
- Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.O.; Callander, N.; Lendvai, N.; Sborov, D.; et al. Belantamab Mafodotin for Relapsed or Refractory Multiple Myeloma (DREAMM-2): A Two-Arm, Randomised, Open-Label, Phase 2 Study. Lancet Oncol. 2020, 21, 207–221. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef]
- Smith, E.L.; Harrington, K.; Staehr, M.; Masakayan, R.; Jones, J.; Long, T.J.; Ng, K.Y.; Ghoddusi, M.; Purdon, T.J.; Wang, X.; et al. GPRC5D Is a Target for the Immunotherapy of Multiple Myeloma with Rationally Designed CAR T Cells. Sci. Transl. Med. 2019, 11, eaau7746. [Google Scholar] [CrossRef]
- Verkleij, C.P.M.; Broekmans, M.E.C.; van Duin, M.; Frerichs, K.A.; Kuiper, R.; de Jonge, A.V.; Kaiser, M.; Morgan, G.; Axel, A.; Boominathan, R.; et al. Preclinical Activity and Determinants of Response of the GPRC5DxCD3 Bispecific Antibody Talquetamab in Multiple Myeloma. Blood Adv. 2021, 5, 2196–2215. [Google Scholar] [CrossRef]
- Atamaniuk, J.; Gleiss, A.; Porpaczy, E.; Kainz, B.; Grunt, T.W.; Raderer, M.; Hilgarth, B.; Drach, J.; Ludwig, H.; Gisslinger, H.; et al. Overexpression of G Protein-Coupled Receptor 5D in the Bone Marrow Is Associated with Poor Prognosis in Patients with Multiple Myeloma. Eur. J. Clin. Investig. 2012, 42, 953–960. [Google Scholar] [CrossRef]
- Seckinger, A.; Delgado, J.A.; Moser, S.; Moreno, L.; Neuber, B.; Grab, A.; Lipp, S.; Merino, J.; Prosper, F.; Emde, M.; et al. Target Expression, Generation, Preclinical Activity, and Pharmacokinetics of the BCMA-T Cell Bispecific Antibody EM801 for Multiple Myeloma Treatment. Cancer Cell 2017, 31, 396–410. [Google Scholar] [CrossRef]
- Fernández de Larrea, C.; Staehr, M.; Lopez, A.V.; Ng, K.Y.; Chen, Y.; Godfrey, W.D.; Purdon, T.J.; Ponomarev, V.; Wendel, H.G.; Brentjens, R.J.; et al. Defining an Optimal Dual-Targeted CAR T-Cell Therapy Approach Simultaneously Targeting BCMA and GPRC5D to Prevent BCMA Escape–Driven Relapse in Multiple Myeloma. Blood Cancer Discov. 2020, 1, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Stagg, N.J.; Johnston, J.; Harris, M.J.; Menzies, S.A.; DiCara, D.; Clark, V.; Hristopoulos, M.; Cook, R.; Slaga, D.; et al. Membrane-Proximal Epitope Facilitates Efficient T Cell Synapse Formation by Anti-FcRH5/CD3 and Is a Requirement for Myeloma Cell Killing. Cancer Cell 2017, 31, 383–395. [Google Scholar] [CrossRef]
- Cohen, A.D.; Harrison, S.J.; Krishnan, A.; Fonseca, R.; Forsberg, P.A.; Spencer, A.; Berdeja, J.G.; Laubach, J.P.; Li, M.; Choeurng, V.; et al. Initial Clinical Activity and Safety of BFCR4350A, a FcRH5/CD3 T-Cell-Engaging Bispecific Antibody, in Relapsed/Refractory Multiple Myeloma. Blood 2020, 136, 42–43. [Google Scholar] [CrossRef]
- Mateos, M.V.; Blacklock, H.; Schjesvold, F.; Oriol, A.; Simpson, D.; George, A.; Goldschmidt, H.; Larocca, A.; Chanan-Khan, A.; Sherbenou, D.; et al. Pembrolizumab plus Pomalidomide and Dexamethasone for Patients with Relapsed or Refractory Multiple Myeloma (KEYNOTE-183): A Randomised, Open-Label, Phase 3 Trial. Lancet Haematol. 2019, 6, e459–e469. [Google Scholar] [CrossRef]
- Tai, Y.T.; Dillon, M.; Song, W.; Leiba, M.; Li, X.F.; Burger, P.; Lee, A.I.; Podar, K.; Hideshima, T.; Rice, A.G.; et al. Anti-CS1 Humanized Monoclonal Antibody HuLuc63 Inhibits Myeloma Cell Adhesion and Induces Antibody-Dependent Cellular Cytotoxicity in the Bone Marrow Milieu. Blood 2008, 112, 1329–1337. [Google Scholar] [CrossRef]
- Lee, J.K.; Mathew, S.O.; Vaidya, S.V.; Kumaresan, P.R.; Mathew, P.A. CS1 (CRACC, CD319) Induces Proliferation and Autocrine Cytokine Expression on Human B Lymphocytes. J. Immunol. 2007, 179, 4672–4678. [Google Scholar] [CrossRef]
- Lee, J.K.; Boles, K.S.; Mathew, P.A. Molecular and Functional Characterization of a CS1 (CRACC) Splice Variant Expressed in Human NK Cells That Does Not Contain Immunoreceptor Tyrosine-Based Switch Motifs. Eur. J. Immunol. 2004, 34, 2791–2799. [Google Scholar] [CrossRef] [PubMed]
- Tassi, I.; Colonna, M. The Cytotoxicity Receptor CRACC (CS−1) Recruits EAT-2 and Activates the PI3K and Phospholipase Cγ Signaling Pathways in Human NK Cells. J. Immunol. 2005, 175, 7996–8002. [Google Scholar] [CrossRef] [PubMed]
- Awwad, M.H.S.; Mahmoud, A.; Bruns, H.; Echchannaoui, H.; Kriegsmann, K.; Lutz, R.; Raab, M.S.; Bertsch, U.; Munder, M.; Jauch, A.; et al. Selective Elimination of Immunosuppressive T Cells in Patients with Multiple Myeloma. Leukemia 2021, 35, 2602–2615. [Google Scholar] [CrossRef]
- Lonial, S.; Dimopoulos, M.; Palumbo, A.; White, D.; Grosicki, S.; Spicka, I.; Walter-Croneck, A.; Moreau, P.; Mateos, M.V.; Magen, H.; et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2015, 373, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Dytfeld, D.; Grosicki, S.; Moreau, P.; Takezako, N.; Hori, M.; Leleu, X.; LeBlanc, R.; Suzuki, K.; Raab, M.S.; et al. Elotuzumab plus Pomalidomide and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2018, 379, 1811–1822. [Google Scholar] [CrossRef] [PubMed]
Drug | Phase | Study Design | Primary Endpoint | |
---|---|---|---|---|
CARTITUDE-2 [NCT04133636] | Cilta-cel | 2 | Cilta-cel is administered after ASCT, followed by LEN (cohort D). | MRD negativity rate 1 year after cilta-cel starts |
bb1212 BMTCTN190 [NCT05032820] | Ide-cel | 2 | Ide-cel is administered after ASCT, followed by LEN. | CR or better rate 6 months after ide-cel starts |
[NCT03455972] | CD19/BCMA CART | 2 | Anit-CD19 (day 0) and anti-BCMA CARTs (day 1 and 2) for high-risk patients who had received ASCT. | PFS, OS, incidence of severe adverse events |
[NCT04680468] | Belantamab mafodotin | 2 | Belantamab mafodotin is administered before and after ASCT (day 42 and 60). | MRD negativity rate 1 year after belantamab mafodotin starts |
[NCT04876248] | Belantamab mafodotin | 2 | Belantamab mafodotin on day 1 and lenalidomide days 1–28, repeats every 8 weeks for six cycles after ASCT. | MRD negativity rate after six cycles of treatment |
Drug | Phase | Study Design | Primary Endpoint | |
---|---|---|---|---|
[NCT02331368] | Pembrolizumab | 2 | PEM 200 mg/kg every 3 weeks 14 days and LEN 5–15 mg/day 45–90 days after ASCT. | CR rate 180 days after ASCT |
[NCT02906332] | Pembrolizumab | 2 | PEM 200 mg/kg every 3 weeks, LEN 25 mg/day for 14 days, and DEX 40 mg weekly for two cycles, followed by PEM 200 mg/kg every 3 weeks and LEN 15 mg/day for 14 days for two cycles. | PFS |
[NCT02636010] | Pembrolizumab | 2 | PEM 200 mg/kg every 3 weeks for 1 year. | ORR |
[NCT03292263] | Nivolumab | 2 | NIVO 100 mg 3 and 17 days after ASCT. | ORR |
GMMG-HD6 [NCT02495922] | Elotuzumab | 3 | Two cycles of ELO+VRd as consolidation therapy followed by 26 cycles of ELO+LEN as maintenance therapy vs. two cycles of VRd as consolidation therapy followed by 26 cycles of LEN as maintenance therapy. | PFS |
Total therapy 8 [NCT03168100] | Elotuzumab | 2 | ELO 10 mg/kg 1 and 15 days, LEN 15 mg 1–21 days, and DEX 20 mg weekly for 28 days, which will be alternated for 8 weeks with BOR, LEN, and DEX. | MRD status |
[NCT03003728] | Elotuzumab | 2 | ELO 10 mg/kg on days 16, 3, 12, and 26; expanded natural killer cell infusion on day 0; and ALT-803 (interleukin-15 superagonist) 10 µg/kg on days 1, 8, 15, and 22. | Response rate |
[NCT02420860] | Elotuzumab | 2 | ELO 10 mg/kg weekly for 2 cycles and monthly after 3 cycles of ELO and LEN on days 1–28. | PFS |
[NCT02655458] | Elotuzumab | 1b | ELO 20 mg/kg on day 1, LEN 10 mg on days 1–21, and autologous peripheral blood mononuclear cell (maximum number of cycles: 12). | Safety and tolerability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, K.; Yano, S. Treatment Strategy for Ultra-High-Risk Multiple Myelomas with Chromosomal Aberrations Considering Minimal Residual Disease Status and Bone Marrow Microenvironment. Cancers 2023, 15, 2418. https://doi.org/10.3390/cancers15092418
Suzuki K, Yano S. Treatment Strategy for Ultra-High-Risk Multiple Myelomas with Chromosomal Aberrations Considering Minimal Residual Disease Status and Bone Marrow Microenvironment. Cancers. 2023; 15(9):2418. https://doi.org/10.3390/cancers15092418
Chicago/Turabian StyleSuzuki, Kazuhito, and Shingo Yano. 2023. "Treatment Strategy for Ultra-High-Risk Multiple Myelomas with Chromosomal Aberrations Considering Minimal Residual Disease Status and Bone Marrow Microenvironment" Cancers 15, no. 9: 2418. https://doi.org/10.3390/cancers15092418
APA StyleSuzuki, K., & Yano, S. (2023). Treatment Strategy for Ultra-High-Risk Multiple Myelomas with Chromosomal Aberrations Considering Minimal Residual Disease Status and Bone Marrow Microenvironment. Cancers, 15(9), 2418. https://doi.org/10.3390/cancers15092418