Cardiotoxicity, Cardioprotection, and Prognosis in Survivors of Anticancer Treatment Undergoing Cardiac Surgery: Unmet Needs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
3.1. Anticancer Treatments, Cardiac Toxicity, and Cardioprotection as of Today
3.1.1. Anthracycline
3.1.2. Trastuzumab
3.1.3. Immune Checkpoint Inhibitors (CTLA-4 Blockers and PD1/PDL1 Blockers)
3.1.4. CAR-T Therapy
3.2. Anticancer Treatments, CV Risk and Disease, and Cardiometabolic Protection
3.3. Cardiovascular Disease, Cardiac Surgery and Prognosis in Survivors of Anticancer Therapy
3.4. Advanced HF in Survivors of Anticancer Treatments: Updates to the Surgical Options
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lenihan, D.J.; Cardinale, D.M. Late cardiac effects of cancer treatment. J. Clin. Oncol. 2012, 30, 3657–3664. [Google Scholar] [CrossRef] [PubMed]
- Montisci, A.; Palmieri, V.; Liu, J.E.; Vietri, M.T.; Cirri, S.; Donatelli, F.; Napoli, C. Severe Cardiac Toxicity Induced by Cancer Therapies Requiring Intensive Care Unit Admission. Front. Cardiovasc. Med. 2021, 8, 713694. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Lenihan, D.; Fradley, M.; Ganatra, S.; Barac, A.; Blaes, A.; Herrmann, J.; Porter, C.; Lyon, A.R.; Lancellotti, P.; et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol. 2020, 31, 171–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, L.; Cheung, W.Y.; Atkinson, E.; Krzyzanowska, M.K. Impact of comorbidity on chemotherapy use and outcomes in solid tumors: A systematic review. J. Clin. Oncol. 2011, 29, 106–117. [Google Scholar] [CrossRef]
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Pepine, C.J. Clinical implications of endothelial dysfunction. Clin. Cardiol. 1998, 21, 795–799. [Google Scholar] [CrossRef] [Green Version]
- Best, L.G.; Zhang, Y.; Lee, E.T.; Yeh, J.-L.; Cowan, L.; Palmieri, V.; Roman, M.; Devereux, R.B.; Fabsitz, R.R.; Tracy, R.P.; et al. C-reactive protein as a predictor of cardiovascular risk in a population with a high prevalence of diabetes: The Strong Heart Study. Circulation 2005, 112, 1289–1295. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, G.T.; Oeffinger, K.C.; Chen, Y.; Kawashima, T.; Yasui, Y.; Leisenring, W.; Stovall, M.; Chow, E.; Sklar, C.A.; Mulrooney, D.A.; et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J. Clin. Oncol. 2013, 31, 3673–3680. [Google Scholar] [CrossRef]
- Mulrooney, D.A.; Armstrong, G.T.; Huang, S.; Ness, K.K.; Ehrhardt, M.; Joshi, V.M.; Plana, J.C.; Soliman, E.Z.; Green, D.M.; Srivastava, D.K.; et al. Cardiac Outcomes in Adult Survivors of Childhood Cancer Exposed to Cardiotoxic Therapy: A Cross-sectional Study. Ann. Intern. Med. 2016, 164, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Armenian, S.H.; Xu, L.; Ky, B.; Sun, C.; Farol, L.T.; Pal, S.K.; Douglas, P.S.; Bhatia, S.; Chao, C. Cardiovascular Disease Among Survivors of Adult-Onset Cancer: A Community-Based Retrospective Cohort Study. J. Clin. Oncol. 2016, 34, 1122–1130. [Google Scholar] [CrossRef]
- Leger, K.J.; Baker, K.S.; Cushing-Haugen, K.L.; Flowers, M.E.D.; Leisenring, W.; Martin, P.J.; Mendoza, J.A.; Reding, K.W.; Syrjala, K.L.; Lee, S.J.; et al. Lifestyle factors and subsequent ischemic heart disease risk after hematopoietic cell transplantation. Cancer 2018, 124, 1507–1515. [Google Scholar] [CrossRef] [Green Version]
- Chow, E.J.; Baker, K.S.; Lee, S.J.; Flowers, M.E.; Cushing-Haugen, K.L.; Inamoto, Y.; Khera, N.; Leisenring, W.; Syrjala, K.L.; Martin, P.J. Influence of conventional cardiovascular risk factors and lifestyle characteristics on cardiovascular disease after hematopoietic cell transplantation. J. Clin. Oncol. 2014, 32, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.; Rosenfeldt, F.; Chaudhuri, K.; Marasco, S. Cardiac surgery in patients with a history of malignancy: Increased complication rate but similar mortality. Heart Lung Circ. 2012, 21, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, R.; Vizzardi, E.; Johnson, D.M.; Mariscalco, G.; Sciatti, E.; Maessen, J.; Bidar, E.; Gelsomino, S. Cardiac surgery in adult patients with remitted or active malignancies: A review of preoperative screening, surgical management and short- and long-term postoperative results. Eur. J. Cardio-Thorac. Surg. 2018, 54, 10–18. [Google Scholar] [CrossRef]
- Verma, S.; Ewer, M.S. Is cardiotoxicity being adequately assessed in current trials of cytotoxic and targeted agents in breast cancer? Ann. Oncol. 2011, 22, 1011–1018. [Google Scholar] [CrossRef]
- Gurney, J.G.; Ojha, R.; Ness, K.K.; Huang, S.; Sharma, S.; Robison, L.L.; Hudson, M.M.; Kaste, S.C. Abdominal aortic calcification in young adult survivors of childhood acute lymphoblastic leukemia: Results from the St. Jude Lifetime Cohort study. Pediatr. Blood Cancer 2012, 59, 1307–1309. [Google Scholar] [CrossRef] [Green Version]
- Mayer, D.K.; Nasso, S.F.; Earp, J.A. Defining cancer survivors, their needs, and perspectives on survivorship health care in the USA. Lancet Oncol. 2017, 18, e11–e18. [Google Scholar] [CrossRef]
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics. CA Cancer J. Clin. 2022, 72, 409–436. [Google Scholar] [CrossRef]
- Sousa-Uva, M.; Neumann, F.-J.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.-P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. J. Cardiothorac. Surg. 2019, 55, 4–90. [Google Scholar] [CrossRef] [Green Version]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Isselbacher, E.M.; Preventza, O.; Black, I.J.H.; Augoustides, J.G.; Beck, A.W.; Bolen, M.A.; Braverman, A.C.; Bray, B.E.; Brown-Zimmerman, M.M.; Chen, E.P.; et al. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology JoInt. Committee on Clinical Practice Guidelines. Circulation 2022, 146, e334–e482. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint. Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association JoInt. Committee on Clinical Practice Guidelines. Circulation 2022, 145, e4–e17. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Xu, R.; Zhou, B.; Lin, C.; Guo, Y.; Xu, H.; Guo, X. Clinical Manifestations, Monitoring, and Prognosis: A Review of Cardiotoxicity After Antitumor Strategy. Front. Cardiovasc. Med. 2022, 9, 9123–9129. [Google Scholar] [CrossRef]
- Antoniak, S.; Phungphong, S.; Cheng, Z.; Jensen, B.C. Novel Mechanisms of Anthracycline-Induced Cardiovascular Toxicity: A Focus on Thrombosis, CardiacAtrophy, and Programmed Cell Death. Front. Cardiovasc. Med. 2022, 8, 817–977. [Google Scholar] [CrossRef]
- Henriksen, P.A. Anthracycline cardiotoxicity: An update on mechanisms, monitoring and prevention. Heart 2018, 104, 971–977. [Google Scholar] [CrossRef]
- Cardinale, D.; Colombo, A.; Lamantia, G.; Colombo, N.; Civelli, M.; De Giacomi, G.; Rubino, M.; Veglia, F.; Fiorentini, C.; Cipolla, C.M. Anthracycline-induced cardiomyopathy: Clinical relevance and response to pharmacologic therapy. J. Am. Coll. Cardiol. 2010, 55, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Lipshultz, S.E.; Lipsitz, S.R.; Sallan, S.E.; Ii, V.C.S.; Shaikh, S.L.; Mone, S.M.; Gelber, R.D.; Colan, S.D. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J. Clin. Oncol. 2002, 20, 4517–4522. [Google Scholar] [CrossRef]
- Silber, J.H.; Cnaan, A.; Clark, B.J.; Paridon, S.M.; Chin, A.J.; Rychik, J.; Hogarty, A.N.; Cohen, M.I.; Barber, G.; Rutkowski, M.; et al. Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J. Clin. Oncol. 2004, 22, 820–828. [Google Scholar] [CrossRef]
- Lin, M.; Xiong, W.; Wang, S.; Li, Y.; Hou, C.; Li, C.; Li, G. The Research Progress of Trastuzumab-Induced Cardiotoxicity in HER-2-Positive Breast Cancer Treatment. Front. Cardiovasc. Med. 2021, 8, 821663. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.F.; Yadav, N.U.; Eaton, A.A.; Lung, B.Y.; Thaler, H.T.; Liu, J.E.; Hudis, C.A.; Dang, C.T.; Steingart, R.M. Continuous Trastuzumab Therapy in Breast Cancer Patients with Asymptomatic Left Ventricular Dysfunction. Oncologist 2015, 20, 1105–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkham, A.A.; Pituskin, E.; Thompson, R.B.; Mackey, J.R.; Koshman, S.L.; Jassal, D.; Pitz, M.; Haykowsky, M.J.; Pagano, J.J.; Chow, K.; et al. Cardiac and cardiometabolic phenotyping of trastuzumab-mediated cardiotoxicity: A secondary analysis of the MANTICORE trial. Eur. Heart J. Cardiovasc. Pharmacother. 2022, 8, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Laird-Fick, H.S.; Tokala, H.; Kandola, S.; Kehdi, M.; Pelosi, A.; Wang, L.; Grondahl, B. Early morphological changes in cardiac mitochondria after subcutaneous administration of trastuzumab in rabbits: Possible prevention with oral selenium supplementation. Cardiovasc. Pathol. 2020, 44, 107159. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, S.; Liang, S.; Yu, C.; Li, S.; Chen, H.; Wang, S.; Zhu, T. Identification of Subclinical Myocardial Dysfunction in Breast Cancer Patients with Metabolic Syndrome after Cancer-Related Comprehensive Therapy. Cardiol. Res. Pract. 2021, 2021, 6640673. [Google Scholar] [CrossRef]
- Vietri, M.T.; Caliendo, G.; Casamassimi, A.; Cioffi, M.L.; De Paola, M.; Napoli, C.; Molinari, A.M. A novel PALB2 truncating mutation in an Italian family with male breast cancer. Oncol. Rep. 2015, 33, 1243–1247. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, F.; Serlet, L.; Stos, A. Oncogenetic pedigrees: Relation between design and ability to predict mutation. Biosystems 2023, 225, 104841. [Google Scholar] [CrossRef]
- Guglin, M.; Krischer, J.; Tamura, R.; Fink, A.; Bello-Matricaria, L.; McCaskill-Stevens, W.; Munster, P.M. Randomized Trial of Lisinopril Versus Carvedilol to Prevent Trastuzumab Cardiotoxicity in Patients with Breast Cancer. J. Am. Coll. Cardiol. 2019, 73, 2859–2868. [Google Scholar] [CrossRef]
- Goel, S.; Liu, J.; Guo, H.; Barry, W.; Bell, R.; Murray, B.; Lynch, J.; Bastick, P.; Chantrill, L.; Kiely, B.E.; et al. Decline in Left Ventricular Ejection Fraction Following Anthracyclines Predicts Trastuzumab Cardiotoxicity. JACC Heart Fail. 2019, 7, 795–804. [Google Scholar] [CrossRef]
- Lee, C.K.; Chon, H.J.; Cheon, J.; Lee, M.A.; Im, H.S.; Jang, J.S.; Kim, M.H.; Park, S.; Kang, B.; Hong, M.; et al. Trastuzumab plus FOLFOX for HER2-positive biliary tract cancer refractory to gemcitabine and cisplatin: A multi-institutional phase 2 trial of the Korean Cancer Study Group (KCSG-HB19-14). Lancet Gastroenterol. Hepatol. 2023, 8, 56–65. [Google Scholar] [CrossRef]
- Tymon-Rosario, J.; Siegel, E.R.; Bellone, S.; Harold, J.; Adjei, N.; Zeybek, B.; Mauricio, D.; Altwerger, G.; Menderes, G.; Ratner, E.; et al. Trastuzumab tolerability in the treatment of advanced (stage III-IV) or recurrent uterine serous carcinomas that overexpress HER2/neu. Gynecol. Oncol. 2021, 163, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastaticbreast cancer that overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Puzanov, I.; Diab, A.; Abdallah, K.; Bingham, C.O., 3rd; Brogdon, C.; Dadu, R.; Hamad, L.; Kim, S.; Lacouture, M.E.; LeBoeuf, N.R.; et al. Managing toxicities associated with immune checkpoInt. inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 2017, 5, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.; Day, D.; Nicholls, S.J.; Segelov, E. Immune CheckpoInt. Inhibitor Therapy inOncology: Current Uses and Future Directions: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2022, 4, 579–597. [Google Scholar] [CrossRef]
- Haanen, J.; Obeid, M.; Spain, L.; Carbonnel, F.; Wang, Y.; Robert, C.; Lyon, A.; Wick, W.; Kostine, M.; Peters, S.; et al. ESMO Guidelines Committee Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 1217–1238. [Google Scholar] [CrossRef]
- Li, C.; Bhatti, S.A.; Ying, J. Immune CheckpoInt. Inhibitors-Associated Cardiotoxicity. Cancers 2022, 14, 1145. [Google Scholar] [CrossRef]
- Johnson, D.B.; Balko, J.M.; Compton, M.L.; Chalkias, S.; Gorham, J.; Xu, Y.; Hicks, M.; Puzanov, I.; Alexander, M.R.; Bloomer, T.L.; et al. Fulminant Myocarditis with Combination Immune CheckpoInt. Blockade. N. Engl. J. Med. 2016, 375, 1749–1755. [Google Scholar] [CrossRef]
- Cozma, A.; Sporis, N.D.; Lazar, A.L. Cardiac Toxicity Associated with Immune CheckpoInt. Inhibitors: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 10948. [Google Scholar] [CrossRef]
- Delyon, J.; Biard, L.; Renaud, M. PD-1 blockade with pembrolizumab in classic or endemic Kaposi’s sarcoma: A multicentre, single-arm, phase 2 study. Lancet Oncol. 2022, 23, 491–500. [Google Scholar] [CrossRef]
- Totzeck, M.; Michel, L.; Lin, Y.; Herrmann, J.; Rassaf, T. Cardiotoxicity from chimeric antigen receptor-T cell therapy for advanced malignancies. Eur. Heart J. 2022, 43, 1928–1940. [Google Scholar] [CrossRef]
- Goldman, A.; Maor, E.; Bomze, D. Adverse Cardiovascular and Pulmonary Events Associated with Chimeric Antigen Receptor T-Cell Therapy. J. Am. Coll. Cardiol. 2021, 78, 1800–1813. [Google Scholar] [CrossRef] [PubMed]
- Nenna, A.; Carpenito, M.; Chello, C. Cardiotoxicity of Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: Pathophysiology, Clinical Implications, and Echocardiographic Assessment. Int. J. Mol. Sci. 2022, 23, 8242. [Google Scholar] [CrossRef] [PubMed]
- Shalabi, H.; Sachdev, V.; Kulshreshtha, A.; Cohen, J.W.; Yates, B.; Rosing, D.R.; Sidenko, S.; Delbrook, C.; Mackall, C.; Wiley, B.; et al. Impact of cytokine release syndrome on cardiac function following CD19 CAR-T cell therapy in children and young adults with hematological malignancies. J. Immunother. Cancer 2020, 8, e001159. [Google Scholar] [CrossRef] [PubMed]
- Chemotherapy-Free pCR-Guided Strategy with Subcutaneous Trastuzumab-Pertuzumab and T-Dm1 in Her2-Positive Early Breast Cancer (Phergain-2). Medica Scientia Innovation Research (MedSIR). Available online: https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-003205-66/IT.2020-003205-66 (accessed on 1 February 2023).
- Evaluation of Heart Function in Breast Cancer Patients Using Trastuzumab. NCT04961307. Peking University Third Hospital. Available online: https://clinicaltrials.gov/ct2/show/NCT04961307?recrs=a&cond=Cardiac+Toxicity+trastuzumab&draw=2&rank=2 (accessed on 1 February 2023).
- Investigating the Long-Term Cardiac Sequelae of Trastuzumab Therapy. NCT05019365. Kenneth Mangion, University of Glasgow. Available online: https://clinicaltrials.gov/ct2/show/NCT05019365?recrs=a&cond=Cardiac+Toxicity+trastuzumab&draw=2&rank=3 (accessed on 1 February 2023).
- Mechanisms, Predictors, and Social Determinants of Cardiotoxicity in Breast Cancer (Cct2). NCT05078190. Abramson Cancer Center of the University of Pennsylvania. Available online: https://clinicaltrials.gov/ct2/show/NCT05078190?recrs=a&cond=Cardiac+Toxicity+trastuzumab&draw=2&rank=4 (accessed on 1 February 2023).
- Assessment of Myocardial Injury in Patients Treated with Immune checkpoint Inhibitors (MIICI). NCT05349058. Available online: https://clinicaltrials.gov/ct2/show/NCT05349058 (accessed on 1 February 2023).
- CAR T Cell Therapy Related Cardiovascular Outcomes (Cartco). NCT05130489. Derek Yellon, University College London Hospitals. Available online: https://clinicaltrials.gov/ct2/show/NCT05130489?cond=Cardiac+Toxicity+CAR-T&draw=2&rank=1 (accessed on 1 February 2023).
- Radiation-Induced Cardiac Toxicity after Non-Small Cell Lung Cancer Radiotherapy. NCT04867564. Joanna Socha, Military Institute of Medicine, Poland. Available online: https://clinicaltrials.gov/ct2/show/NCT04867564?recrs=a&cond=Cardiac+Toxicity&draw=2&rank=5 (accessed on 1 February 2023).
- Garcia-Valentin, A.; Mestres, C.A.; Bernabeu, E.; Bahamonde, J.A.; Martín, I.; Rueda, C.; Doménech, A.; Valencia, J.; Fletcher, D.; Machado, F.; et al. Validation and quality measurements for EuroSCORE and EuroSCORE II in the Spanish cardiac surgical population: A prospective, multicentre study. Eur. J. Cardiothorac. Surg. 2016, 49, 399–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puskas, J.D.; Kilgo, P.D.; Thourani, V.H.; Lattouf, O.M.; Chen, E.; Vega, J.D.; Cooper, W.; Guyton, R.A.; Halkos, M. The society of thoracic surgeons 30-day predicted risk of mortality score also predicts long-term survival. Ann. Thorac. Surg. 2012, 93, 26–33; discussion 33–35. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. ESC National Cardiac Societies; ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Mistiaen, W.P.; Van Cauwelaert, P.; Muylaert, P.; Wuyts, F.; Harrisson, F.; Bortier, H. Effect of prior malignancy on survival after cardiac surgery. Ann. Thorac. Surg. 2004, 77, 1593–1597; Discussion 1597. [Google Scholar] [CrossRef]
- Groarke, J.D.; Nguyen, P.L.; Nohria, A.; Ferrari, R.; Cheng, S.; Moslehi, J. Cardiovascular complications of radiation therapy for thoracic malignancies: The role for non-invasive imaging for detection of cardiovascular disease. Eur. Heart J. 2014, 35, 612–623. [Google Scholar] [CrossRef] [Green Version]
- Tourmousoglou, C.E.; Apostolakis, E.; Dougenis, D. Simultaneous occurrence of coronary artery disease and lung cancer: What is the best surgical treatment strategy? Interact. Cardiovasc. Thorac. Surg. 2014, 19, 673–681. [Google Scholar] [CrossRef] [Green Version]
- Tricard, J.; Milad, D.; Chermat, A.; Simard, S.; Lacasse, Y.; Dagenais, F.; Conti, M. Staged management of cardiac disease and concomitant early lung cancer: A 20-year single-center experience. Eur. J. Cardiothorac. Surg. 2021, 59, 610–616. [Google Scholar] [CrossRef]
- Dess, R.T.; Sun, Y.; Matuszak, M.M.; Sun, G.; Soni, P.D.; Bazzi, L.; Murthy, V.L.; Hearn, J.W.; Kong, F.M.; Kalemkerian, G.P.; et al. Cardiac Events After Radiation Therapy: Combined Analysis of Prospective Multicenter Trials for Locally Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2017, 35, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Hull, M.C.; Morris, C.G.; Pepine, C.J.; Mendenhall, N.P. Valvular dysfunction and carotid, subclavian, and coronary artery disease in survivors of hodgkin lymphoma treated with radiation therapy. Jama 2003, 290, 2831–2837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaworski, C.; Mariani, J.A.; Wheeler, G.; Kaye, D.M. Cardiac complications of thoracic irradiation. J. Am. Coll. Cardiol. 2013, 61, 2319–2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidenreich, P.A.; Hancock, S.L.; Lee, B.K.; Mariscal, C.S.; Schnittger, I. Asymptomatic cardiac disease following mediastinal irradiation. J. Am. Coll. Cardiol. 2003, 42, 743–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrascal, Y.; Gualis, J.; Arévalo, A. Cardiac surgery with extracorporeal circulation in cancer patients: Influence on surgical morbidity and mortality and on survival. Rev. Esp. Cardiol. 2008, 61, 369–375. [Google Scholar] [CrossRef]
- Gatti, G.; Maraldo, O.; Benussi, B. Early and Late Survival of On-Pump Cardiac Surgery Patients Formerly Affected by Lymphoma. Heart Lung Circ. 2019, 28, 334–341. [Google Scholar] [CrossRef]
- Crespo-Leiro, M.G.; Metra, M.; Lund, L.H.; Milicic, D.; Costanzo, M.R.; Filippatos, G.; Gustafsson, F.; Tsui, S.; Barge-Caballero, E.; De Jonge, N.; et al. Advanced heart failure: A position statement of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 1505–1535. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [CrossRef]
- Chih, S.; McDonald, M.; Dipchand, A.; Kim, D.; Ducharme, A.; Kaan, A.; Abbey, S.; Toma, M.; Anderson, K.; Davey, R.; et al. Canadian Cardiovascular Society/Canadian Cardiac Transplant Network Position Statement on Heart Transplantation: Patient Eligibility, Selection, and Post-Transplantation Care. Can. J. Cardiol. 2020, 36, 335–356. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, S.E.; Pozehl, B.J.; Alonso, W.W. Frailty Assessment in Heart Failure and Ventricular Assist Device Populations: A Review from the United States. Heart Lung 2021, 50, 941–952. [Google Scholar] [CrossRef]
- Roehrich, L.; Sündermann, S.H.; Just, I.A.; Kopp Fernandes, L.; Stein, J.; Solowjowa, N.; Mulzer, J.; Mueller, M.; Hummel, M.; Knierim, J.; et al. Comparison of feasibility and results of frailty assessment methods prior to left ventricular assist device implantation. ESC Heart Fail. 2022, 9, 1038–1049. [Google Scholar] [CrossRef] [PubMed]
- Flint, K.M.; Matlock, D.D.; Lindenfeld, J.; Allen, L.A. Frailty and the selection of patients for destination therapy leftventricular assist device. Circ. Heart Fail. 2012, 5, 286–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistiaen, W.P. Heart transplantation in patients with previous malignancy. An overview. Acta Cardiol. 2015, 70, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Montisci, A.; Palmieri, V.; Vietri, M.T.; Sala, S.; Maiello, C.; Donatelli, F.; Napoli, C. Big Data in cardiac surgery: Real world and perspectives. J. Cardiothorac. Surg. 2022, 17, 277. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Seese, L.; Hickey, G.; Chen, S.; Mathier, M.A.; Kilic, A. Left ventricular assist device implantation in patients with a history of malignancy. J. Card. Surg. 2020, 35, 2224–2231. [Google Scholar] [CrossRef]
- Scully, M.S.; Wessman, D.E.; McKee, J.M.; Francisco, G.M.; Nayak, K.R.; Kobashigawa, J.A. Total Artificial Heart Implantation as a Bridge to Heart Transplantation in an Active Duty Service Member with Amyloid Cardiomyopathy. Mil. Med. 2017, 182, e1858–e1860. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Li, D.; Joseph, D.; Trachtenberg, B. State-of-the-art review on management of end-stage heart failure in amyloidosis: Transplant and beyond. Heart Fail. Rev. 2022, 27, 1567–1578. [Google Scholar] [CrossRef]
Cardiovascular Phenotype | Treatments |
---|---|
IHD—LV dysfunction/HF | Alkylating agents: Cisplatin. |
Antimetabolites: Fluorouracil; Capecitabine; Fludarabine. | |
Antimicrotubule agents: Paclitaxel; Vinblastine; | |
Monoclonal antibodies HRR2: Bevacizumab; | |
Small-molecule TKIs: Ponatinib; Sorafenib; Nilotinib; Regorafenib; Cetuximab; Erlotinib. | |
Others: Bleomycin. | |
Non-IHD LV dysfunction/HF | Anthracyclines: Doxorubicin; Epirubicin; |
Alkylating agents: Cyclophospamide; Ifosfamide, Melphalan. | |
Antimetabolites: Fluorouracil; Decitabine. | |
Antimicrotubule agents: Docetaxel. | |
Monoclonal antibodies: Rituximab; Ofatumumab; Alemtuzumab. | |
Monoclonal antibodies HER2: Pertuzumab; Trastuzumab. | |
Small-molecule TKIs: Dabrafenib; Dasatinib; Lepatinib; Pazopanib; Ponatinib; Sorafenib; Trametinib; Sunitinib; Axitinib; Nilotinib; Imatinib; Vandetanib. | |
Immune checkpoint inhibitors: Nivolumab; Ipilimumab; Pembrolizumab. | |
Protease inhibitors: Bortezomib; Carfilzomib. | |
Endocrine therapy, LHRH agonists: Goserelin; Leuprolide; | |
Antiandrogens: Flutamide; Bicalutamide; Nilutamide. | |
Chimeric antigen receptor (CAR) T cell therapy: Tisagenlecleucel; Axicabtageneciloleucel. | |
Others: Tretinoin | |
HVD, primary | Radiation therapy |
AoS | Unreported |
Trial | Year | Malignancy | Intervention | Estimated Enrollment | Status |
---|---|---|---|---|---|
Chemotherapy-Free pCR-Guided Strategy with subcutaneous trastuzumab-pertuzumab and T-DM1 in HER2-positive early breast cancer (PHERGAIN-2) [54] | 2020 | HER2-Positive Early Breast Cancer | To assess 3-year recurrence-free interval (3y-RFI) in patients with previously untreated HER2[+] (IHC3+) node-negative early stage breast cancer. Primary safety objective To assess global health status decline rate at 1 year from start of neoadjuvant treatment. | 393 participants | Recruiting |
Evaluation of Heart Function in Breast Cancer Patients Using Trastuzumab [55] | 2021 | Breast Cancer | Breast cancer patients using trastuzumab, collected demographic and clinical information of all patients before chemotherapy, performed echocardiography (conventional echocardiography, three-dimensional spot tracking technology), and collected blood samples to detect plasma biology Markers (TnT, BNP, GDF-15, topoisomerase | 30 participants | Recruiting |
Investigating the Long-term Cardiac Sequelae of Trastuzumab Therapy [56] | 2021 | Breast Cancer HER2-positive Breast Cancer | Patients who were treated with anthracycline and adjuvant trastuzumab chemotherapy at least 5 years previously. | 60 participants | Recruiting |
Mechanisms, Predictors, and Social Determinants of Cardiotoxicity in Breast Cancer (CCT2) [57] | 2021 | Breast Cancer | Patients treated with doxorubicin (Adriamycin) for breast cancer Patients treated with trastuzumab (Herceptin) for breast cancer Patients treated with both doxorubicin (Adriamycin) and trastuzumab (Herceptin) for breast cancer | 200 participants | Recruiting |
Assessment of Myocardial Injury in Patients Treated With Immune Checkpoint Inhibitors (MIICI) [58] | 2022 | - | Patients receive Immune Checkpoint Inhibitor as per oncology protocol | 40 participants | Recruiting |
CAR T Cell Therapy Related Cardiovascular Outcomes (CARTCO) [59] | 2021 | B-cell Acute Lymphoblastic Leukemia B-cell Lymphoma Refractory B-cell Lymphoma Recurrent Primary Mediastinal Large B-cell Lymphoma (PMBCL) Diffuse Large B Cell Lymphoma | The primary outcome is a composite of detected abnormalities on biomarkers, transthoracic echocardiogram (TTE), or Cardiac magnetic resonance (CMR) following CAR T cell infusion. The secondary outcome measures include a composite of detected abnormalities of factors on cardiac biomarkers (troponin and N-terminal pro B-type natriuretic peptide), electrocardiogram (ECG) changes and acute heart failure. | 150 participants | Recruiting |
Radiation-induced Cardiac Toxicity After Non-small Cell Lung Cancer Radiotherapy [60] | 2021 | Non-small Cell Lung Cancer | Consecutive NSCLC patients treated with standard RT with curative intent with or without platinum-based CHT | 100 participants | Recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmieri, V.; Vietri, M.T.; Montalto, A.; Montisci, A.; Donatelli, F.; Coscioni, E.; Napoli, C. Cardiotoxicity, Cardioprotection, and Prognosis in Survivors of Anticancer Treatment Undergoing Cardiac Surgery: Unmet Needs. Cancers 2023, 15, 2224. https://doi.org/10.3390/cancers15082224
Palmieri V, Vietri MT, Montalto A, Montisci A, Donatelli F, Coscioni E, Napoli C. Cardiotoxicity, Cardioprotection, and Prognosis in Survivors of Anticancer Treatment Undergoing Cardiac Surgery: Unmet Needs. Cancers. 2023; 15(8):2224. https://doi.org/10.3390/cancers15082224
Chicago/Turabian StylePalmieri, Vittorio, Maria Teresa Vietri, Andrea Montalto, Andrea Montisci, Francesco Donatelli, Enrico Coscioni, and Claudio Napoli. 2023. "Cardiotoxicity, Cardioprotection, and Prognosis in Survivors of Anticancer Treatment Undergoing Cardiac Surgery: Unmet Needs" Cancers 15, no. 8: 2224. https://doi.org/10.3390/cancers15082224
APA StylePalmieri, V., Vietri, M. T., Montalto, A., Montisci, A., Donatelli, F., Coscioni, E., & Napoli, C. (2023). Cardiotoxicity, Cardioprotection, and Prognosis in Survivors of Anticancer Treatment Undergoing Cardiac Surgery: Unmet Needs. Cancers, 15(8), 2224. https://doi.org/10.3390/cancers15082224