Radiologic versus Segmentation Measurements to Quantify Wilms Tumor Volume on MRI in Pediatric Patients
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Magnetic Resonance Imaging
2.3. Tumor Volume Measurement
2.3.1. Radiological Tumor Volume Measurements
2.3.2. Manual Segmentation-Based Tumor Volume Measurements
- Manual indication of tumor and background on each fourth slice of the postcontrast T1-weighted scan, due to the best tumor and kidney contrast in this sequence.
- Initial tumor segmentation using the 3DSlicer algorithm “grow from seeds”, which is a 3D volume growing algorithm. After this step, each pixel was assigned either the label tumor or background.
- Because of the difference in in-slice resolution and slice thickness, the segmentation was reformatted from the T1-weighted image to the T2-weighted image using 3DSlicer’s inbuild function. These labels were extensively checked and manually corrected if needed.
2.3.3. Deep Learning-Based Tumor Volume Measurements
2.4. Statistical Analysis
3. Results
3.1. Patients
3.1.1. Tumor Volume Measurements
3.1.2. Radiological versus Manual Segmentation-Based Tumor Volume Measurements
3.1.3. Deep Learning-Based Segmentation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spreafico, F.; Bellani, F.F. Wilms’ tumor: Past, present and (possibly) future. Expert Rev. Anticancer Ther. 2006, 6, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; van Peer, S.E.; de Witte, M.M.; Tytgat, G.A.M.; Karim-Kos, H.E.; van Grotel, M.; van de Ven, C.P.; Mavinkurve-Groothuis, A.M.C.; Merks, J.H.M.; Kuiper, R.P.; et al. Characteristics and outcome of children with renal tumors in the Netherlands: The first five-year’s experience of national centralization. PLoS ONE 2022, 17, e0261729. [Google Scholar] [CrossRef] [PubMed]
- SIOP Renal Tumour Study Group. Paediatric renal tumours: Perspectives from the SIOP-RTSG. Nat. Rev. Urol. 2017, 14, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Vujanić, G.M.; Gessler, M.; Ooms, A.H.A.G.; Collini, P.; Coulomb-l’Hermine, A.; D’Hooghe, E.; de Krijger, R.R.; Perotti, D.; Pritchard-Jones, K.; Vokuhl, C.; et al. The UMBRELLA SIOP–RTSG 2016 Wilms tumour pathology and molecular biology protocol. Nat. Rev. Urol. 2018, 15, 693–701. [Google Scholar] [CrossRef]
- Van den Heuvel-Eibrink, M.M.; Hol, J.A.; Pritchard-Jones, K.; van Tinteren, H.; Furtwängler, R.; Verschuur, A.C.; Vujanic, G.M.; Leuschner, I.; Brok, J.; Rübe, C.; et al. Rationale for the treatment of Wilms tumour in the UMBRELLA SIOP–RTSG 2016 protocol. Nat. Rev. Urol. 2017, 14, 743–752. [Google Scholar] [CrossRef]
- Provenzi, V.O.; Rosa, R.F.M.; Rosa, R.C.M.; Roehe, A.V.; dos Santos, P.P.A.; Faulhaber, F.R.S.; de Oliveira, C.A.V.; Zen, P.R.G. Tumor size and prognosis in patients with Wilms tumor. Rev. Paul. Pediatr. 2015, 33, 82–87. [Google Scholar] [CrossRef]
- Joseph, L.L.; Boddu, D.; Srinivasan, H.N.; Regi, S.S.; Antonisamy, B.; Matthew, L.G.; Totadri, S. Postchemotherapy tumor volume as a prognostic indicator in Wilms tumor: A single-center experience from South India. Pediatr. Blood Cancer 2022, 69, e29454. [Google Scholar] [CrossRef]
- Tirumani, S.H.; Shinagare, A.B.; O’Neill, A.C.; Nishino, M.; Rosenthal, M.H.; Ramaiya, N.H. Accuracy and Feasibility of Estimated Tumour Volumetry in Primary Gastric Gastrointestinal Stromal Tumours: Validation Using Semi-automated Technique in 127 Patients. Eur. Radiol. 2016, 26, 286–295. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, W. Method of tumor volume evaluation using magnetic resonance imaging for outcome prediction in cervical cancer treated with concurrent chemotherapy and radiotherapy. Radiat. Oncol. J. 2012, 30, 70–77. [Google Scholar] [CrossRef]
- Colvin, R.; Walker, D.; Hafron, J.; Seifman, B.; Nandalur, S.; Gangwish, D.; Nandalur, K.R. Which measurement method should be used for prostate volume for PI-RADS? A comparison of ellipsoid and segmentation methods. Clin. Imaging 2021, 80, 454–458. [Google Scholar] [CrossRef]
- Müller, S.; Farag, I.; Weickert, J.; Braun, Y.; Lollert, A.; Dobberstein, J.; Hötker, A.; Graf, N. Benchmarking Wilms’ tumor in multisequence MRI data: Why does current clinical practice fail? Which popular segmentation algorithms perform well? J. Med. Imaging 2019, 6, 034001. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed]
- Vujanić, G.M.; Sandstedt, B.; Kelsey, A.; Sebire, N.J. Central pathology review in multicenter trials and studies. Cancer 2009, 115, 1977–1983. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Berrar, D. Cross-Validation. Ref. Modul. Life Sci. 2019, 1, 542–545. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Measurement in Medicine: The Analysis of Method Comparison Studies. J. R. Stat. Soc. Ser. Stat. 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Dewitte, K.; Fierens, C.; Stöckl, D.; Thienpont, L.M. Application of the Bland–Altman Plot for Interpretation of Method-Comparison Studies: A Critical Investigation of Its Practice. Clin. Chem. 2002, 48, 799–801. [Google Scholar] [CrossRef]
- Taha, A.A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef]
- Ma, X.H.; Shu, L.; Jia, X.; Zhou, H.C.; Liu, T.T.; Liang, J.W.; Ding, Y.S.; He, M.; Shu, Q. Machine Learning-Based CT Radiomics Method for Identifying the Stage of Wilms Tumor in Children. Front Pediatr. 2022, 10, 873035. [Google Scholar] [CrossRef]
- Fitski, M.; Meulstee, J.W.; Littooij, A.S.; van der Ven, C.P.; van der Steeg, A.F.W.; Wijnen, M.H.W.A. MRI-Based 3-Dimensional Visualization Workflow for the Preoperative Planning of Nephron-Sparing Surgery in Wilms’ Tumor Surgery: A Pilot Study. J. Healthc. Eng. 2020, 2020, 8899049. [Google Scholar] [CrossRef]
- Chaussy, Y.; Vieille, L.; Lacroix, E.; Lenoir, M.; Marie, F.; Corbat, L.; Henriet, J.; Auber, F. 3D reconstruction of Wilms’ tumor and kidneys in children: Variability, usefulness and constraints. J. Pediatr. Urol. 2020, 16, 830.e1–830.e8. [Google Scholar] [CrossRef] [PubMed]
- Reinke, A.; Tizabi, M.D.; Sudre, C.; Eisenmann, M.; Rädsch, T.; Baumgartner, M.; Acion, L.; Antonelli, M.; Arbel, T.; Bakas, S.; et al. Common Limitations of Image Processing Metrics: A Picture Story. arXiv 2021, arXiv:2104.05642. [Google Scholar]
- Van Peer, S.E.; Hol, J.A.; van der Steeg, A.F.W.; van Grotel, M.; Tytgat, G.A.M.; Mavinkurve-Groothuis, A.M.C.; Janssens, G.O.R.; Littooij, A.S.; de Krijger, R.R.; Jongemans, M.C.J.; et al. Bilateral Renal Tumors in Children: The First 5 Years’ Experience of National Centralization in The Netherlands and a Narrative Review of the Literature. J. Clin. Med. 2021, 10, 5558. [Google Scholar] [CrossRef] [PubMed]
Parameters | T1-Weighted with Fat Suppression | 3D T2-Weighted |
---|---|---|
Sequence type | Gradient Echo | Turbo Spin Echo |
Repetition time (ms) | 5.5 | 459 |
Echo time (ms) | 2.7 | 90 |
Flip angle | 10° | 90° |
Slice thickness (mm) | 3.0 | 1.15 |
Voxel spacing (mm) | 0.74 × 0.74 mm2 | 0.83 × 0.83 mm2 |
Characteristic | Value | |
---|---|---|
Median age at diagnosis in months (min–max) | 39 (7–109) | |
Gender | Male Female | 22 (49%) 23 (51%) |
Tumor localization | Bilateral Left Right | 6 (13%) 16 (36%) 23 (51%) |
Characteristics | Value | |
---|---|---|
Histological tumor type | Regressive Non-regressive
Completely necrotic Nephrogenic rest Unknown | 14 (27%) 13 (25%) 9 (17%) 2 (4%) 1 (2%) 5 (10%) 2 (4%) 1 (2%) 5 (10%) |
Median radiological volume [mL] (range) | 215 (0.68–1774) |
Volume Tumor | Absolute Difference (Mean) | p-Value | Percentage Difference (Mean) | p-Value |
---|---|---|---|---|
0–300 mL | 5.6 | 0.01 | 11.9 | 0.95 |
300–500 mL | 21.5 | 9.1 | ||
>500 mL | 70.2 | 9.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buser, M.A.D.; van der Steeg, A.F.W.; Wijnen, M.H.W.A.; Fitski, M.; van Tinteren, H.; van den Heuvel-Eibrink, M.M.; Littooij, A.S.; van der Velden, B.H.M. Radiologic versus Segmentation Measurements to Quantify Wilms Tumor Volume on MRI in Pediatric Patients. Cancers 2023, 15, 2115. https://doi.org/10.3390/cancers15072115
Buser MAD, van der Steeg AFW, Wijnen MHWA, Fitski M, van Tinteren H, van den Heuvel-Eibrink MM, Littooij AS, van der Velden BHM. Radiologic versus Segmentation Measurements to Quantify Wilms Tumor Volume on MRI in Pediatric Patients. Cancers. 2023; 15(7):2115. https://doi.org/10.3390/cancers15072115
Chicago/Turabian StyleBuser, Myrthe A. D., Alida F. W. van der Steeg, Marc H. W. A. Wijnen, Matthijs Fitski, Harm van Tinteren, Marry M. van den Heuvel-Eibrink, Annemieke S. Littooij, and Bas H. M. van der Velden. 2023. "Radiologic versus Segmentation Measurements to Quantify Wilms Tumor Volume on MRI in Pediatric Patients" Cancers 15, no. 7: 2115. https://doi.org/10.3390/cancers15072115
APA StyleBuser, M. A. D., van der Steeg, A. F. W., Wijnen, M. H. W. A., Fitski, M., van Tinteren, H., van den Heuvel-Eibrink, M. M., Littooij, A. S., & van der Velden, B. H. M. (2023). Radiologic versus Segmentation Measurements to Quantify Wilms Tumor Volume on MRI in Pediatric Patients. Cancers, 15(7), 2115. https://doi.org/10.3390/cancers15072115