Infectious Complications of Targeted Therapies for Solid Cancers or Leukemias/Lymphomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
3. Monoclonals Antibodies
Immune Checkpoint Inhibitors
4. Bruton’s Tyrosine Kinase Inhibitors
5. Phosphatidylinositol 3-Kinase (pi3k) Inhibitors
6. Antiapoptotic Protein BCL-2 Inhibitors
7. Janus Kinase Inhibitors
8. CAR-T Cell Therapy
8.1. Bacterial Infections
8.2. Viral Infections
8.3. Fungal Infections
8.4. Prevention Strategies
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vigneron, C.; Charpentier, J.; Valade, S.; Alexandre, J.; Chelabi, S.; Palmieri, L.-J.; Franck, N.; Laurence, V.; Mira, J.-P.; Jamme, M.; et al. Patterns of ICU Admissions and Outcomes in Patients with Solid Malignancies over the Revolution of Cancer Treatment. Ann. Intensive Care 2021, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef] [PubMed]
- O’Day, S.J.; Maio, M.; Chiarion-Sileni, V.; Gajewski, T.F.; Pehamberger, H.; Bondarenko, I.N.; Queirolo, P.; Lundgren, L.; Mikhailov, S.; Roman, L.; et al. Efficacy and Safety of Ipilimumab Monotherapy in Patients with Pretreated Advanced Melanoma: A Multicenter Single-Arm Phase II Study. Ann. Oncol. 2010, 21, 1712–1717. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Nivolumab plus Ipilimumab or Nivolumab Alone versus Ipilimumab Alone in Advanced Melanoma (CheckMate 067): 4-Year Outcomes of a Multicentre, Randomised, Phase 3 Trial. Lancet Oncol 2018, 19, 1480–1492. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Brown, J.R.; O’Brien, S.; Barrientos, J.C.; Kay, N.E.; Reddy, N.M.; Coutre, S.; Tam, C.S.; Mulligan, S.P.; Jaeger, U.; et al. Ibrutinib versus of atumumab in Previously Treated Chronic Lymphoid Leukemia. N. Engl. J. Med. 2014, 371, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Coutré, S.E.; Furman, R.R.; Flinn, I.W.; Burger, J.A.; Blum, K.; Sharman, J.; Jones, J.; Wierda, W.; Zhao, W.; Heerema, N.A.; et al. Extended Treatment with Single-Agent Ibrutinib at the 420 Mg Dose Leads to Durable Responses in Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. Clin. Cancer Res. 2017, 23, 1149–1155. [Google Scholar] [CrossRef] [Green Version]
- Byrd, J.C.; Furman, R.R.; Coutre, S.E.; Burger, J.A.; Blum, K.A.; Coleman, M.; Wierda, W.G.; Jones, J.A.; Zhao, W.; Heerema, N.A.; et al. Three-Year Follow-up of Treatment-Naïve and Previously Treated Patients with CLL and SLL Receiving Single-Agent Ibrutinib. Blood 2015, 125, 2497–2506. [Google Scholar] [CrossRef]
- Rule, S.; Dreyling, M.; Goy, A.; Hess, G.; Auer, R.; Kahl, B.; Hernández-Rivas, J.-Á.; Qi, K.; Deshpande, S.; Parisi, L.; et al. Ibrutinib for the Treatment of Relapsed/Refractory Mantle Cell Lymphoma: Extended 3.5-Year Follow up from a Pooled Analysis. Haematologica 2019, 104, e211–e214. [Google Scholar] [CrossRef] [Green Version]
- Tam, C.S.; Dimopoulos, M.; Garcia-Sanz, R.; Trotman, J.; Opat, S.; Roberts, A.W.; Owen, R.; Song, Y.; Xu, W.; Zhu, J.; et al. Pooled Safety Analysis of Zanubrutinib Monotherapy in Patients with B-Cell Malignancies. Blood Adv. 2022, 6, 1296–1308. [Google Scholar] [CrossRef]
- Korycka-Wołowiec, A.; Wołowiec, D.; Robak, T. The Safety of Available Chemo-Free Treatments for Mantle Cell Lymphoma. Expert Opin. Drug Saf. 2020, 19, 1377–1393. [Google Scholar] [CrossRef]
- Jensen, J.L.; Mato, A.R.; Pena, C.; Roeker, L.E.; Coombs, C.C. The Potential of Pirtobrutinib in Multiple B-Cell Malignancies. Adv. Hematol. 2022, 13, 20406207221101696. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Smith, S.; Wagner-Johnston, N.; Sharman, J.; Chen, A.I.; Advani, R.; Augustson, B.; Marlton, P.; Renee Commerford, S.; Okrah, K.; et al. First-in-Human Phase 1 Study of the BTK Inhibitor GDC-0853 in Relapsed or Refractory B-Cell NHL and CLL. Oncotarget 2018, 9, 13023–13035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driscoll, N. Idelalisib: Practical Tools for Identifying and Managing Adverse Events in Clinical Practice. J. Adv. Pr. Oncol. 2016, 7, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Cuneo, A.; Barosi, G.; Danesi, R.; Fagiuoli, S.; Ghia, P.; Marzano, A.; Montillo, M.; Poletti, V.; Viale, P.; Zinzani, P.L. Management of Adverse Events Associated with Idelalisib Treatment in Chronic Lymphocytic Leukemia and Follicular Lymphoma: A Multidisciplinary Position Paper. Hematol Oncol 2019, 37, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyre, T.A.; Preston, G.; Kagdi, H.; Islam, A.; Nicholson, T.; Smith, H.W.; Cursley, A.P.; Ramroth, H.; Xing, G.; Gu, L.; et al. A Retrospective Observational Study to Evaluate the Clinical Outcomes and Routine Management of Patients with Chronic Lymphocytic Leukaemia Treated with Idelalisib and Rituximab in the UK and Ireland (RETRO-Idel). Br. J. Haematol. 2021, 194, 69–77. [Google Scholar] [CrossRef]
- Flinn, I.W.; Cherry, M.A.; Maris, M.B.; Matous, J.V.; Berdeja, J.G.; Patel, M. Combination Trial of Duvelisib (IPI-145) with Rituximab or Bendamustine/Rituximab in Patients with Non-Hodgkin Lymphoma or Chronic Lymphocytic Leukemia. Am J Hematol 2019, 94, 1325–1334. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Xu, J.; Wang, J.; Niu, T. Safety and Efficacy of Dual PI3K-δ, γ Inhibitor, Duvelisib in Patients with Relapsed or Refractory Lymphoid Neoplasms: A Systematic Review and Meta-Analysis of Prospective Clinical Trials. Front. Immunol. 2022, 13, 1070660. [Google Scholar] [CrossRef]
- Bajaj, S.; Barrett, S.M.; Nakhleh, R.E.; Brahmbhatt, B.; Bi, Y. Umbralisib-Induced Immune-Mediated Colitis: A Concerning Adverse Effect of the Novel PI3Kδ/CK1ε Inhibitor. ACG Case Rep. J. 2021, 8, e00701. [Google Scholar] [CrossRef]
- Sawas, A.; Farber, C.M.; Schreeder, M.T.; Khalil, M.Y.; Mahadevan, D.; Deng, C.; Amengual, J.E.; Nikolinakos, P.G.; Kolesar, J.M.; Kuhn, J.G.; et al. A Phase 1/2 Trial of Ublituximab, a Novel Anti-CD20 Monoclonal Antibody, in Patients with B-Cell Non-Hodgkin Lymphoma or Chronic Lymphocytic Leukaemia Previously Exposed to Rituximab. Br. J. Haematol. 2017, 177, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Davids, M.S.; Hallek, M.; Wierda, W.; Roberts, A.W.; Stilgenbauer, S.; Jones, J.A.; Gerecitano, J.F.; Kim, S.Y.; Potluri, J.; Busman, T.; et al. Comprehensive Safety Analysis of Venetoclax Monotherapy for Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2018, 24, 4371–4379. [Google Scholar] [CrossRef] [Green Version]
- Hoisnard, L.; Lebrun-Vignes, B.; Maury, S.; Mahevas, M.; El Karoui, K.; Roy, L.; Zarour, A.; Michel, M.; Cohen, J.L.; Amiot, A.; et al. Adverse Events Associated with JAK Inhibitors in 126,815 Reports from the WHO Pharmacovigilance Database. Sci. Rep. 2022, 12, 7140. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Reinwald, M.; Silva, J.T.; Mueller, N.J.; Fortún, J.; Garzoni, C.; de Fijter, J.W.; Fernández-Ruiz, M.; Grossi, P.; Aguado, J.M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the Safety of Targeted and Biological Therapies: An Infectious Diseases Perspective (Intracellular Signaling Pathways: Tyrosine Kinase and MTOR Inhibitors). Clin. Microbiol. Infect. 2018, 24 (Suppl. 2), S53–S70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Robert, C.; Thomas, L.; Bondarenko, I.; O’Day, S.; Weber, J.; Garbe, C.; Lebbe, C.; Baurain, J.-F.; Testori, A.; Grob, J.-J.; et al. Ipilimumab plus Dacarbazine for Previously Untreated Metastatic Melanoma. N. Engl. J. Med. 2011, 364, 2517–2526. [Google Scholar] [CrossRef] [Green Version]
- Naimi, A.; Mohammed, R.N.; Raji, A.; Chupradit, S.; Yumashev, A.V.; Suksatan, W.; Shalaby, M.N.; Thangavelu, L.; Kamrava, S.; Shomali, N.; et al. Tumor Immunotherapies by Immune Checkpoint Inhibitors (ICIs); the Pros and Cons. Cell Commun. Signal 2022, 20, 44. [Google Scholar] [CrossRef]
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef]
- Weber, J.S.; D’Angelo, S.P.; Minor, D.; Hodi, F.S.; Gutzmer, R.; Neyns, B.; Hoeller, C.; Khushalani, N.I.; Miller, W.H.; Lao, C.D.; et al. Nivolumab versus Chemotherapy in Patients with Advanced Melanoma Who Progressed after Anti-CTLA-4 Treatment (CheckMate 037): A Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet Oncol. 2015, 16, 375–384. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Ribas, A.; Shin, D.S.; Zaretsky, J.; Frederiksen, J.; Cornish, A.; Avramis, E.; Seja, E.; Kivork, C.; Siebert, J.; Kaplan-Lefko, P.; et al. PD-1 Blockade Expands Intratumoral Memory T Cells. Cancer Immunol. Res. 2016, 4, 194–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horn, D.L.; Neofytos, D.; Anaissie, E.J.; Fishman, J.A.; Steinbach, W.J.; Olyaei, A.J.; Marr, K.A.; Pfaller, M.A.; Chang, C.-H.; Webster, K.M. Epidemiology and Outcomes of Candidemia in 2019 Patients: Data from the Prospective Antifungal Therapy Alliance Registry. Clin. Infect. Dis. 2009, 48, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- Schadendorf, D.; Hodi, F.S.; Robert, C.; Weber, J.S.; Margolin, K.; Hamid, O.; Patt, D.; Chen, T.-T.; Berman, D.M.; Wolchok, J.D. Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2015, 33, 1889–1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemiale, V.; Meert, A.-P.; Vincent, F.; Darmon, M.; Bauer, P.R.; Van de Louw, A.; Azoulay, E. Groupe de Recherche en Reanimation Respiratoire du patient d’Onco-Hématologie (Grrr-OH) Severe Toxicity from Checkpoint Protein Inhibitors: What Intensive Care Physicians Need to Know? Ann. Intensive Care 2019, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.A.; Komoda, K.; Pal, S.; Dickter, J.; Salgia, R.; Dadwal, S. Infectious Complications of Immune Checkpoint Inhibitors in Solid Organ Malignancies. Cancer Med. 2022, 11, 21–27. [Google Scholar] [CrossRef]
- Postow, M.A.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.; McDermott, D.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; et al. Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. N. Engl. J. Med. 2015, 372, 2006–2017. [Google Scholar] [CrossRef] [Green Version]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse Effects of Immune-Checkpoint Inhibitors: Epidemiology, Management and Surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef]
- Del Castillo, M.; Romero, F.A.; Argüello, E.; Kyi, C.; Postow, M.A.; Redelman-Sidi, G. The Spectrum of Serious Infections Among Patients Receiving Immune Checkpoint Blockade for the Treatment of Melanoma. Clin. Infect Dis. 2016, 63, 1490–1493. [Google Scholar] [CrossRef] [Green Version]
- Oltolini, C.; Ripa, M.; Andolina, A.; Brioschi, E.; Cilla, M.; Petrella, G.; Gregorc, V.; Castiglioni, B.; Tassan Din, C.; Scarpellini, P. Invasive Pulmonary Aspergillosis Complicated by Carbapenem-Resistant Pseudomonas Aeruginosa Infection During Pembrolizumab Immunotherapy for Metastatic Lung Adenocarcinoma: Case Report and Review of the Literature. Mycopathologia 2019, 184, 181–185. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, T.; Zhang, X.; Si, X.; Wang, H.; Zhang, J.; Huang, H.; Sun, X.; Wang, J.; Wang, M.; et al. Opportunistic Infections Complicating Immunotherapy for Non-Small Cell Lung Cancer. Thorac. Cancer 2020, 11, 1689–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taima, K.; Tanaka, H.; Itoga, M.; Ishioka, Y.; Kurose, A.; Tasaka, S. Destroyed Lung Due to Sustained Inflammation after Chemoradiotherapy Followed by Durvalumab. Respirol. Case Rep. 2020, 8, e00580. [Google Scholar] [CrossRef]
- Kyi, C.; Hellmann, M.D.; Wolchok, J.D.; Chapman, P.B.; Postow, M.A. Opportunistic Infections in Patients Treated with Immunotherapy for Cancer. J. Immunother. Cancer 2014, 2, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Tun, A.; Ticona, K.; Baqui, A.; Guevara, E. Invasive Aspergillosis in a Patient with Stage III (or 3a or 3b) Non-Small-Cell Lung Cancer Treated with Durvalumab. Case Rep. Oncol. Med. 2019, 2019, 2178925. [Google Scholar] [CrossRef] [PubMed]
- Malek, A.E.; Taremi, M.; Spallone, A.; Alvarez-Cardona, J.J.; Kontoyiannis, D.P. Necrotizing Soft Tissue Invasive Aspergillosis in a Cancer Patient Treated with Immunosupressants Due to Checkpoint Inhibitor-Induced Hepatitis. J. Infect. 2020, 80, 232–254. [Google Scholar] [CrossRef] [PubMed]
- Arriola, E.; Wheater, M.; Krishnan, R.; Smart, J.; Foria, V.; Ottensmeier, C. Immunosuppression for Ipilimumab-Related Toxicity Can Cause Pneumocystis Pneumonia but Spare Antitumor Immune Control. Oncoimmunology 2015, 4, e1040218. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, M.; Kocher, F.; Niedersuess-Beke, D.; Rudzki, J.; Hochmair, M.; Widmann, G.; Hilbe, W.; Pircher, A. Immunosuppression for Immune Checkpoint-Related Toxicity Can Cause Pneumocystis Jirovecii Pneumonia (PJP) in Non-Small-Cell Lung Cancer (NSCLC): A Report of 2 Cases. Clin. Lung Cancer 2019, 20, e247–e250. [Google Scholar] [CrossRef]
- Si, S.; Erickson, K.; Evageliou, N.; Silverman, M.; Kersun, L. An Usual Presentation of Pneumocystis Jirovecii Pneumonia in a Woman Treated With Immune Checkpoint Inhibitor. J. Pediatr. Hematol. Oncol. 2021, 43, e163–e164. [Google Scholar] [CrossRef]
- Diamantopoulos, P.T.; Kalopisis, K.; Tsatsou, A.; Efthymiou, A.; Giannakopoulou, N.; Hatzidavid, S.; Viniou, N.-A. Progressive Multifocal Leukoencephalopathy in the Context of Newer Therapies in Hematology and Review of New Treatment Strategies. Eur. J. Haematol. 2022, 108, 359–368. [Google Scholar] [CrossRef]
- Lambert, N.; El Moussaoui, M.; Maquet, P. Immune Checkpoint Inhibitors for Progressive Multifocal Leukoencephalopathy: Identifying Relevant Outcome Factors. Eur. J. Neurol. 2021, 28, 3814–3819. [Google Scholar] [CrossRef]
- Martinot, M.; Ahle, G.; Petrosyan, I.; Martinez, C.; Gorun, D.M.; Mohseni-Zadeh, M.; Fafi-Kremer, S.; Tebacher-Alt, M. Progressive Multifocal Leukoencephalopathy after Treatment with Nivolumab. Emerg. Infect Dis. 2018, 24, 1594–1596. [Google Scholar] [CrossRef] [PubMed]
- Furuta, Y.; Miyamoto, H.; Naoe, H.; Shimoda, M.; Hinokuma, Y.; Miyamura, T.; Miyashita, A.; Fukushima, S.; Tanaka, M.; Sasaki, Y. Cytomegalovirus Enterocolitis in a Patient with Refractory Immune-Related Colitis. Case Rep. Gastroenterol. 2020, 14, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Gueguen, J.; Bailly, E.; Machet, L.; Miquelestorena-Standley, E.; Stefic, K.; Gatault, P.; Büchler, M. CMV Disease and Colitis in a Kidney Transplanted Patient under Pembrolizumab. Eur. J. Cancer 2019, 109, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.A.; Shaw, H.; Bataille, V.; Nathan, P. Campylobacteriosis Following Immunosuppression for Immune Checkpoint Inhibitor-Related Toxicity. J. Immunother. Cancer 2020, 8, e000577. [Google Scholar] [CrossRef]
- Spain, L.; Diem, S.; Larkin, J. Management of Toxicities of Immune Checkpoint Inhibitors. Cancer Treat Rev. 2016, 44, 51–60. [Google Scholar] [CrossRef]
- Baden, L.R.; Bensinger, W.; Angarone, M.; Casper, C.; Dubberke, E.R.; Freifeld, A.G.; Garzon, R.; Greene, J.N.; Greer, J.P.; Ito, J.I.; et al. Prevention and Treatment of Cancer-Related Infections. J. Natl. Compr. Canc. Netw. 2012, 10, 1412–1445. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Yamamoto, Y.; Kanai, O.; Okamura, M.; Hashimoto, M.; Nakatani, K.; Sawai, S.; Mio, T. Incidence of Active Tuberculosis in Lung Cancer Patients Receiving Immune Checkpoint Inhibitors. Open Forum Infect Dis. 2020, 7, ofaa126. [Google Scholar] [CrossRef] [Green Version]
- da Cunha-Bang, C.; Niemann, C.U. Targeting Bruton’s Tyrosine Kinase Across B-Cell Malignancies. Drugs 2018, 78, 1653–1663. [Google Scholar] [CrossRef]
- Tillman, B.F.; Pauff, J.M.; Satyanarayana, G.; Talbott, M.; Warner, J.L. Systematic Review of Infectious Events with the Bruton Tyrosine Kinase Inhibitor Ibrutinib in the Treatment of Hematologic Malignancies. Eur. J. Haematol. 2018, 100, 325–334. [Google Scholar] [CrossRef]
- Stefania Infante, M.; Fernández-Cruz, A.; Núñez, L.; Carpio, C.; Jiménez-Ubieto, A.; López-Jiménez, J.; Vásquez, L.; Del Campo, R.; Romero, S.; Alonso, C.; et al. Severe Infections in Patients with Lymphoproliferative Diseases Treated with New Targeted Drugs: A Multicentric Real-world Study. Cancer Med. 2021, 10, 7629–7640. [Google Scholar] [CrossRef]
- Varughese, T.; Taur, Y.; Cohen, N.; Palomba, M.L.; Seo, S.K.; Hohl, T.M.; Redelman-Sidi, G. Serious Infections in Patients Receiving Ibrutinib for Treatment of Lymphoid Cancer. Clin. Infect Dis. 2018, 67, 687–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarakas, M.A.; Desai, J.V.; Chamilos, G.; Lionakis, M.S. Fungal Infections with Ibrutinib and Other Small-Molecule Kinase Inhibitors. Curr. Fungal. Infect Rep. 2019, 13, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Teh, B.W.; Chui, W.; Handunnetti, S.; Tam, C.; Worth, L.J.; Thursky, K.A.; Slavin, M.A. High Rates of Proven Invasive Fungal Disease with the Use of Ibrutinib Monotherapy for Relapsed or Refractory Chronic Lymphocytic Leukemia. Leuk Lymphoma 2019, 60, 1572–1575. [Google Scholar] [CrossRef]
- Anastasopoulou, A.; DiPippo, A.J.; Kontoyiannis, D.P. Non-Aspergillus Invasive Mould Infections in Patients Treated with Ibrutinib. Mycoses 2020, 63, 787–793. [Google Scholar] [CrossRef]
- Messina, J.A.; Maziarz, E.K.; Spec, A.; Kontoyiannis, D.P.; Perfect, J.R. Disseminated Cryptococcosis With Brain Involvement in Patients With Chronic Lymphoid Malignancies on Ibrutinib. Open Forum. Infect Dis. 2017, 4, ofw261. [Google Scholar] [CrossRef] [Green Version]
- Stankowicz, M.; Banaszynski, M.; Crawford, R. Cryptococcal Infections in Two Patients Receiving Ibrutinib Therapy for Chronic Lymphocytic Leukemia. J. Oncol. Pharm. Pr. 2019, 25, 710–714. [Google Scholar] [CrossRef]
- Wang, D.; Mao, X.; Que, Y.; Xu, M.; Cheng, Y.; Huang, L.; Wang, J.; Xiao, Y.; Wang, W.; Hu, G.; et al. Viral Infection/Reactivation during Long-Term Follow-up in Multiple Myeloma Patients with Anti-BCMA CAR Therapy. Blood Cancer J. 2021, 11, 168. [Google Scholar] [CrossRef]
- Baron, M.; Zini, J.M.; Challan Belval, T.; Vignon, M.; Denis, B.; Alanio, A.; Malphettes, M. Fungal Infections in Patients Treated with Ibrutinib: Two Unusual Cases of Invasive Aspergillosis and Cryptococcal Meningoencephalitis. Leuk Lymphoma 2017, 58, 2981–2982. [Google Scholar] [CrossRef]
- Bercusson, A.; Colley, T.; Shah, A.; Warris, A.; Armstrong-James, D. Ibrutinib Blocks Btk-Dependent NF-ĸB and NFAT Responses in Human Macrophages during Aspergillus Fumigatus Phagocytosis. Blood 2018, 132, 1985–1988. [Google Scholar] [CrossRef] [Green Version]
- Chamilos, G.; Lionakis, M.S.; Kontoyiannis, D.P. Call for Action: Invasive Fungal Infections Associated With Ibrutinib and Other Small Molecule Kinase Inhibitors Targeting Immune Signaling Pathways. Clin. Infect Dis. 2018, 66, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Douglas, A.P.; Trubiano, J.A.; Barr, I.; Leung, V.; Slavin, M.A.; Tam, C.S. Ibrutinib May Impair Serological Responses to Influenza Vaccination. Haematologica 2017, 102, e397–e399. [Google Scholar] [CrossRef] [Green Version]
- Coutré, S.E.; Barrientos, J.C.; Brown, J.R.; de Vos, S.; Furman, R.R.; Keating, M.J.; Li, D.; O’Brien, S.M.; Pagel, J.M.; Poleski, M.H.; et al. Management of Adverse Events Associated with Idelalisib Treatment: Expert Panel Opinion. Leuk Lymphoma 2015, 56, 2779–2786. [Google Scholar] [CrossRef] [Green Version]
- Cheah, C.Y.; Fowler, N.H. Idelalisib in the Management of Lymphoma. Blood 2016, 128, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Ward, L.M.; Peluso, M.J.; Budak, J.Z.; Elicker, B.M.; Chin-Hong, P.V.; Lampiris, H.; Mulliken, J.S. Opportunistic Coinfection with Pneumocystis Jirovecii and Coccidioides Immitis Associated with Idelalisib Treatment in a Patient with Chronic Lymphocytic Leukaemia. BMJ Case Rep. 2020, 13, e234113. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Pratz, K.W.; Letai, A.; Jonas, B.A.; Wei, A.H.; Thirman, M.; Arellano, M.; Frattini, M.G.; Kantarjian, H.; Popovic, R.; et al. Safety and Preliminary Efficacy of Venetoclax with Decitabine or Azacitidine in Elderly Patients with Previously Untreated Acute Myeloid Leukaemia: A Non-Randomised, Open-Label, Phase 1b Study. Lancet Oncol. 2018, 19, 216–228. [Google Scholar] [CrossRef]
- Vannucchi, A.M.; Kiladjian, J.J.; Griesshammer, M.; Masszi, T.; Durrant, S.; Passamonti, F.; Harrison, C.N.; Pane, F.; Zachee, P.; Mesa, R.; et al. Ruxolitinib versus Standard Therapy for the Treatment of Polycythemia Vera. N. Engl. J. Med. 2015, 372, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Passamonti, F.; Griesshammer, M.; Palandri, F.; Egyed, M.; Benevolo, G.; Devos, T.; Callum, J.; Vannucchi, A.M.; Sivgin, S.; Bensasson, C.; et al. Ruxolitinib for the Treatment of Inadequately Controlled Polycythaemia Vera without Splenomegaly (RESPONSE-2): A Randomised, Open-Label, Phase 3b Study. Lancet Oncol. 2017, 18, 88–99. [Google Scholar] [CrossRef]
- Cohen, S.; Radominski, S.C.; Gomez-Reino, J.J.; Wang, L.; Krishnaswami, S.; Wood, S.P.; Soma, K.; Nduaka, C.I.; Kwok, K.; Valdez, H.; et al. Analysis of Infections and All-Cause Mortality in Phase II, Phase III, and Long-Term Extension Studies of Tofacitinib in Patients with Rheumatoid Arthritis. Arthritis. Rheumatol. 2014, 66, 2924–2937. [Google Scholar] [CrossRef]
- Bechman, K.; Subesinghe, S.; Norton, S.; Atzeni, F.; Galli, M.; Cope, A.P.; Winthrop, K.L.; Galloway, J.B. A Systematic Review and Meta-Analysis of Infection Risk with Small Molecule JAK Inhibitors in Rheumatoid Arthritis. Rheumatology 2019, 58, 1755–1766. [Google Scholar] [CrossRef]
- Wollenhaupt, J.; Lee, E.-B.; Curtis, J.R.; Silverfield, J.; Terry, K.; Soma, K.; Mojcik, C.; DeMasi, R.; Strengholt, S.; Kwok, K.; et al. Safety and Efficacy of Tofacitinib for up to 9.5 Years in the Treatment of Rheumatoid Arthritis: Final Results of a Global, Open-Label, Long-Term Extension Study. Arthritis Res. 2019, 21, 89. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, S.A.; Restifo, N.P.; Yang, J.C.; Morgan, R.A.; Dudley, M.E. Adoptive Cell Transfer: A Clinical Path to Effective Cancer Immunotherapy. Nat. Rev. Cancer 2008, 8, 299–308. [Google Scholar] [CrossRef]
- Johnson, L.A.; June, C.H. Driving Gene-Engineered T Cell Immunotherapy of Cancer. Cell Res. 2017, 27, 38–58. [Google Scholar] [CrossRef] [Green Version]
- Kochenderfer, J.N.; Rosenberg, S.A. Treating B-Cell Cancer with T Cells Expressing Anti-CD19 Chimeric Antigen Receptors. Nat. Rev. Clin. Oncol. 2013, 10, 267–276. [Google Scholar] [CrossRef]
- Kansagra, A.J.; Frey, N.V.; Bar, M.; Laetsch, T.W.; Carpenter, P.A.; Savani, B.N.; Heslop, H.E.; Bollard, C.M.; Komanduri, K.V.; Gastineau, D.A.; et al. Clinical Utilization of Chimeric Antigen Receptor T-Cells (CAR-T) in B-Cell Acute Lymphoblastic Leukemia (ALL)-an Expert Opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transpl. 2019, 54, 1868–1880. [Google Scholar] [CrossRef]
- Jain, T.; Bar, M.; Kansagra, A.J.; Chong, E.A.; Hashmi, S.K.; Neelapu, S.S.; Byrne, M.; Jacoby, E.; Lazaryan, A.; Jacobson, C.A.; et al. Use of Chimeric Antigen Receptor T Cell Therapy in Clinical Practice for Relapsed/Refractory Aggressive B Cell Non-Hodgkin Lymphoma: An Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy. Biol. Blood Marrow Transpl. 2019, 25, 2305–2321. [Google Scholar] [CrossRef]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy Bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef]
- Wudhikarn, K.; Palomba, M.L.; Pennisi, M.; Garcia-Recio, M.; Flynn, J.R.; Devlin, S.M.; Afuye, A.; Silverberg, M.L.; Maloy, M.A.; Shah, G.L.; et al. Infection during the First Year in Patients Treated with CD19 CAR T Cells for Diffuse Large B Cell Lymphoma. Blood Cancer J. 2020, 10, 79. [Google Scholar] [CrossRef]
- Wittmann Dayagi, T.; Sherman, G.; Bielorai, B.; Adam, E.; Besser, M.J.; Shimoni, A.; Nagler, A.; Toren, A.; Jacoby, E.; Avigdor, A. Characteristics and Risk Factors of Infections Following CD28-Based CD19 CAR-T Cells. Leuk Lymphoma 2021, 62, 1692–1701. [Google Scholar] [CrossRef]
- Abbasi, A.; Peeke, S.; Shah, N.; Mustafa, J.; Khatun, F.; Lombardo, A.; Abreu, M.; Elkind, R.; Fehn, K.; de Castro, A.; et al. Axicabtagene Ciloleucel CD19 CAR-T Cell Therapy Results in High Rates of Systemic and Neurologic Remissions in Ten Patients with Refractory Large B Cell Lymphoma Including Two with HIV and Viral Hepatitis. J. Hematol. Oncol. 2020, 13, 1. [Google Scholar] [CrossRef] [Green Version]
- Logue, J.M.; Zucchetti, E.; Bachmeier, C.A.; Krivenko, G.S.; Larson, V.; Ninh, D.; Grillo, G.; Cao, B.; Kim, J.; Chavez, J.C.; et al. Immune Reconstitution and Associated Infections Following Axicabtagene Ciloleucel in Relapsed or Refractory Large B-Cell Lymphoma. Haematologica 2021, 106, 978–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baird, J.H.; Epstein, D.J.; Tamaresis, J.S.; Ehlinger, Z.; Spiegel, J.Y.; Craig, J.; Claire, G.K.; Frank, M.J.; Muffly, L.; Shiraz, P.; et al. Immune Reconstitution and Infectious Complications Following Axicabtagene Ciloleucel Therapy for Large B-Cell Lymphoma. Blood Adv. 2021, 5, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Romero, F.A.; Taur, Y.; Sadelain, M.; Brentjens, R.J.; Hohl, T.M.; Seo, S.K. Cytokine Release Syndrome Grade as a Predictive Marker for Infections in Patients With Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia Treated With Chimeric Antigen Receptor T Cells. Clin. Infect Dis. 2018, 67, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, P.; Zhao, A.; Lei, W.; Liang, A.; Qian, W. Incidence and Prophylaxis of Herpes Zoster in Relapsed or Refractory B-Cell Lymphoma Patients after CD19-Specific CAR-T Cell Therapy. Leuk. Lymphoma 2022, 63, 1001–1004. [Google Scholar] [CrossRef]
- Heldman, M.R.; Ma, J.; Gauthier, J.; O’Hara, R.A.; Cowan, A.J.; Yoke, L.M.; So, L.; Gulleen, E.; Duke, E.R.; Liu, C.; et al. CMV and HSV Pneumonia After Immunosuppressive Agents for Treatment of Cytokine Release Syndrome Due to Chimeric Antigen Receptor-Modified T (CAR-T)-Cell Immunotherapy. J. Immunother 2021, 44, 351–354. [Google Scholar] [CrossRef]
- Hensley, M.K.; Bain, W.G.; Jacobs, J.; Nambulli, S.; Parikh, U.; Cillo, A.; Staines, B.; Heaps, A.; Sobolewski, M.D.; Rennick, L.J.; et al. Intractable Coronavirus Disease 2019 (COVID-19) and Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Replication in a Chimeric Antigen Receptor-Modified T-Cell Therapy Recipient: A Case Study. Clin. Infect Dis. 2021, 73, e815–e821. [Google Scholar] [CrossRef]
- Abid, M.B.; Mughal, M.; Abid, M.A. Coronavirus Disease 2019 (COVID-19) and Immune-Engaging Cancer Treatment. JAMA Oncol. 2020, 6, 1529–1530. [Google Scholar] [CrossRef]
- Spanjaart, A.M.; Ljungman, P.; de La Camara, R.; Tridello, G.; Ortiz-Maldonado, V.; Urbano-Ispizua, A.; Barba, P.; Kwon, M.; Caballero, D.; Sesques, P.; et al. Poor Outcome of Patients with COVID-19 after CAR T-Cell Therapy for B-Cell Malignancies: Results of a Multicenter Study on Behalf of the European Society for Blood and Marrow Transplantation (EBMT) Infectious Diseases Working Party and the European Hematology Association (EHA) Lymphoma Group. Leukemia 2021, 35, 3585–3588. [Google Scholar] [CrossRef]
- Busca, A.; Salmanton-García, J.; Corradini, P.; Marchesi, F.; Cabirta, A.; Di Blasi, R.; Dulery, R.; Lamure, S.; Farina, F.; Weinbergerová, B.; et al. COVID-19 and CAR T Cells: A Report on Current Challenges and Future Directions from the EPICOVIDEHA Survey by EHA-IDWP. Blood Adv. 2022, 6, 2427–2433. [Google Scholar] [CrossRef]
- Rejeski, K.; Kunz, W.G.; Rudelius, M.; Bücklein, V.; Blumenberg, V.; Schmidt, C.; Karschnia, P.; Schöberl, F.; Dimitriadis, K.; von Baumgarten, L.; et al. Severe Candida Glabrata Pancolitis and Fatal Aspergillus Fumigatus Pulmonary Infection in the Setting of Bone Marrow Aplasia after CD19-Directed CAR T-Cell Therapy—A Case Report. BMC Infect Dis. 2021, 21, 121. [Google Scholar] [CrossRef]
- Hill, J.A.; Li, D.; Hay, K.A.; Green, M.L.; Cherian, S.; Chen, X.; Riddell, S.R.; Maloney, D.G.; Boeckh, M.; Turtle, C.J. Infectious Complications of CD19-Targeted Chimeric Antigen Receptor-Modified T-Cell Immunotherapy. Blood 2018, 131, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Haidar, G.; Garner, W.; Hill, J.A. Infections after Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy for Hematologic Malignancies: Timeline, Prevention, and Uncertainties. Curr. Opin. Infect Dis. 2020, 33, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Yakoub-Agha, I.; Chabannon, C.; Bader, P.; Basak, G.W.; Bonig, H.; Ciceri, F.; Corbacioglu, S.; Duarte, R.F.; Einsele, H.; Hudecek, M.; et al. Management of Adults and Children Undergoing Chimeric Antigen Receptor T-Cell Therapy: Best Practice Recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica 2020, 105, 297–316. [Google Scholar] [CrossRef] [PubMed]
- Los-Arcos, I.; Iacoboni, G.; Aguilar-Guisado, M.; Alsina-Manrique, L.; Díaz de Heredia, C.; Fortuny-Guasch, C.; García-Cadenas, I.; García-Vidal, C.; González-Vicent, M.; Hernani, R.; et al. Recommendations for Screening, Monitoring, Prevention, and Prophylaxis of Infections in Adult and Pediatric Patients Receiving CAR T-Cell Therapy: A Position Paper. Infection 2021, 49, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Norelli, M.; Camisa, B.; Barbiera, G.; Falcone, L.; Purevdorj, A.; Genua, M.; Sanvito, F.; Ponzoni, M.; Doglioni, C.; Cristofori, P.; et al. Monocyte-Derived IL-1 and IL-6 Are Differentially Required for Cytokine-Release Syndrome and Neurotoxicity Due to CAR T Cells. Nat. Med. 2018, 24, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Giavridis, T.; van der Stegen, S.J.C.; Eyquem, J.; Hamieh, M.; Piersigilli, A.; Sadelain, M. CAR T Cell-Induced Cytokine Release Syndrome Is Mediated by Macrophages and Abated by IL-1 Blockade. Nat. Med. 2018, 24, 731–738. [Google Scholar] [CrossRef]
- Schubert, M.-L.; Schmitt, M.; Wang, L.; Ramos, C.A.; Jordan, K.; Müller-Tidow, C.; Dreger, P. Side-Effect Management of Chimeric Antigen Receptor (CAR) T-Cell Therapy. Ann. Oncol. 2021, 32, 34–48. [Google Scholar] [CrossRef]
- Galli, E.; Allain, V.; Di Blasi, R.; Bernard, S.; Vercellino, L.; Morin, F.; Moatti, H.; Caillat-Zucman, S.; Chevret, S.; Thieblemont, C. G-CSF Does Not Worsen Toxicities and Efficacy of CAR-T Cells in Refractory/Relapsed B-Cell Lymphoma. Bone Marrow Transpl. 2020, 55, 2347–2349. [Google Scholar] [CrossRef]
- Stuver, R.; Shah, G.L.; Korde, N.S.; Roeker, L.E.; Mato, A.R.; Batlevi, C.L.; Chung, D.J.; Doddi, S.; Falchi, L.; Gyurkocza, B.; et al. Activity of AZD7442 (Tixagevimab-Cilgavimab) against Omicron SARS-CoV-2 in Patients with Hematologic Malignancies. Cancer Cell 2022, 40, 590–591. [Google Scholar] [CrossRef]
- Meir, J.; Abid, M.A.; Abid, M.B. State of the CAR-T: Risk of Infections with Chimeric Antigen Receptor T-Cell Therapy and Determinants of SARS-CoV-2 Vaccine Responses. Transplant. Cell. Ther. 2021, 27, 973–987. [Google Scholar] [CrossRef]
- Mikulska, M.; Cesaro, S.; de Lavallade, H.; Di Blasi, R.; Einarsdottir, S.; Gallo, G.; Rieger, C.; Engelhard, D.; Lehrnbecher, T.; Ljungman, P.; et al. Vaccination of Patients with Haematological Malignancies Who Did Not Have Transplantations: Guidelines from the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect Dis. 2019, 19, e188–e199. [Google Scholar] [CrossRef] [PubMed]
Treatment | Adverse Effects | |||||
---|---|---|---|---|---|---|
Infection (Grade ≥ 3) | Neutropenia | Diarrhea | Hypertension | Hemorrhage/Bleeding | References | |
Immune checkpoint inhibitor | 2–7% | - | 1–25% | - | - | [2,3,4] |
BTK inhibitors | ||||||
Ibrutinib | 11–48% | 4–17% | 5–68% | 5–22% | 3–15% | [5,6,7,8] |
Zanubrutinib | 27% | 36% | 23% | 12% | 3% | [9] |
Acalabrutinib | 18% | 12% | 37% | 8% | 4% | [10] |
Orelabrutinib | 15% | 29% | 7% | - | 1% | [11] |
Fenebrutinib | 17% | 4% | 29% | - | 1% | [12] |
PI3K inhibitors | ||||||
Idelalisib | 20–35% | 56% | 30–45% | - | - | [13,14,15] |
Duvelisib | 51–68% | 26–50% | 43–52% | - | - | [16,17] |
Umbralisib | - | 14–35% | 26–43% | - | - | [18,19] |
Anti-apoptotic protein BCL-2 inhibitors | 70–75% | 40–50% | 41% | - | - | [20] |
Janus Kinase inhibitors | 30–35% | - | - | - | - | [21] |
CAR-T cell therapy | 10–31% | 53–87% | - | - | - | [22,23,24] |
Treatment | Drugs | Approved Indications | Infectious Complications | Prophylaxis Suggestions |
---|---|---|---|---|
Immune checkpoint inhibitor | ||||
CTLA-4 targeted agents | Ipilimumab Tremelimumab | Melanoma | Does not appear independently associated with the occurrence of infection but combination with treatment (corticosteroids and/or TNF-α) for irAEs increased infectious risk | Anti-Pneumocystis prophylaxis for patients who are expected to receive 20 mg of prednisone daily for at least 4 weeks Hepatitis B and C: prophylaxis or therapy if needed. |
(PD)-1 and (PD-L1) targeted agents | Nivolumab Pembrolizumab Atezolizumab | Melanoma Non-small cell lung cancer Head and neck carcinoma Hodgkin lymphoma Metastatic renal cell carcinoma (nivolumab) Urothelial carcinoma and lung cancer (atezolizumab) | ||
BTK inhibitor | Ibrutinib Acalabrutinib Zanubrutinib | Mantle cell lymphoma Chronic lymphocytic leukemia Waldenström macroglobulinemia Marginal zone lymphoma | Fungal infections: Aspergillus, Pneumocystis jirovecii | Assess antifungal prophylaxis or screening for fungal infections Anti-Pneumocystis prophylaxis in patients treated with corticosteroids |
Bacterial infections: Staphylococcus aureus Mycobacterium tuberculosis | ||||
PI3K inhibitors | Idelalisib Duvelisib Umbralisib | Chronic lymphocytic leukemia Lymphoid malignancies | Fungal infections: Pneumocystis jirovecii | CMV serology be performed prior to treatment initiation and that CMV viral load be measured monthly. Acyclovir prophylaxis is also recommended |
Viral infections: CMV, HSV and VZV reactivation | ||||
Antiapoptotic protein BCL-2 inhibitors | Venetoclax | Chronic lymphocytic leukemia Acute myeloid leukemia | Bacterial infections | |
Fungal infections | ||||
JAK inhibitors | Myeloproliferative neoplasms | Bacterial infections: mycobacterial infections | Chronic HBV infection and latent tuberculosis screening | |
Fungal infections: Pneumocystis jirovecii, Cryptococcus spp. | ||||
Viral infections: HSV, VZV, JC virus, HBV reactivation | ||||
CAR-T cells | Large B-cell lymphoma Acute lymphoblastic leukemia Mantle cell lymphoma Multiple myeloma | Fungal infections: Aspergillus spp., Fusarium spp., Mucorales, Pneumocystis jirovecii | Anti-Pneumocystis prophylaxis (trimethoprim/sulfamethoxazole) Assess antifungal prophylaxis or screening for fungal infections | |
Bacterial infections including Clostridioides difficile infections | G-CSF in case of prolonged neutropenia | |||
Viral infections: respiratory syncytial virus, cytomegalovirus, influenza, polyomaviruses, SARS-CoV-2 | Acyclovir for at least 3–6 months after CAR-T cell therapy Antiviral therapy for hepatitis B virus in case of positive HbS Ag or AntiHbC Ac alone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilmis, B.; Kherabi, Y.; Huriez, P.; Zahar, J.-R.; Mokart, D. Infectious Complications of Targeted Therapies for Solid Cancers or Leukemias/Lymphomas. Cancers 2023, 15, 1989. https://doi.org/10.3390/cancers15071989
Pilmis B, Kherabi Y, Huriez P, Zahar J-R, Mokart D. Infectious Complications of Targeted Therapies for Solid Cancers or Leukemias/Lymphomas. Cancers. 2023; 15(7):1989. https://doi.org/10.3390/cancers15071989
Chicago/Turabian StylePilmis, Benoît, Yousra Kherabi, Pauline Huriez, Jean-Ralph Zahar, and Djamel Mokart. 2023. "Infectious Complications of Targeted Therapies for Solid Cancers or Leukemias/Lymphomas" Cancers 15, no. 7: 1989. https://doi.org/10.3390/cancers15071989
APA StylePilmis, B., Kherabi, Y., Huriez, P., Zahar, J. -R., & Mokart, D. (2023). Infectious Complications of Targeted Therapies for Solid Cancers or Leukemias/Lymphomas. Cancers, 15(7), 1989. https://doi.org/10.3390/cancers15071989